电磁波隐身技术的研究

合集下载

隐身技术的主要原理措施

隐身技术的主要原理措施

隐身技术的主要原理措施隐身技术,也称隐形技术,是一种使物体不被探测到的技术,常用于军事和侦察领域。

其主要原理包括以下几种措施:1.吸收技术:这种技术通过利用材料的特殊结构和成分,将电磁辐射吸收并转化为其他形式的能量,从而减少或消除物体反射的信号。

常见的应用是利用特殊涂层或材料,吸收、消耗雷达波、红外线、紫外线等各种波长的电磁辐射。

2.反射技术:这种技术通过控制物体表面的结构和材料,使其能够将入射信号反射到其他方向,从而减少或完全消除目标物体的反射信号。

这一技术的关键是设计和制造具有特殊几何形状或材料的表面,使得反射信号不会返回到探测器。

3.散射技术:这种技术通过控制入射信号在物体上的散射方向和强度,使其不易被探测到或被误认为是其他物体。

常见的散射技术有雷达散射剖面(RCS)减小和声纳反射剖面(SCR)减小等。

4.探测信号屏蔽技术:这种技术主要通过在目标物体周围放置探测信号屏蔽装置,从而削弱或屏蔽探测信号的传播和接收。

常用的屏蔽装置包括电磁波反射材料、电磁波吸收材料、遮蔽幕和窒息器等。

5.符合技术:这种技术通过抑制或改变目标物体发出的信号,使其不容易被探测到或被误认为是其他物体。

常见的符合技术包括电子对干扰、频率对干扰、光学对干扰和声学对干扰等。

6.混淆技术:这种技术通过将目标物体与背景环境融为一体,使其在视觉上难以被觉察到。

常用的混淆技术包括视觉伪装、光学伪装、声音伪装和热信号伪装等。

7.干扰技术:这种技术通过发射特定信号或电磁波,干扰和干扰探测器的性能,从而减少对目标物体的探测和定位能力。

干扰技术常用于军事电子战和侦察任务中,包括无线电频率干扰、红外线干扰和雷达干扰等。

总之,隐身技术是通过吸收、反射、散射、屏蔽、干扰、混淆等多种技术手段,来减少或消除物体在各种探测系统中被发现的能力。

这些技术主要应用于军事和侦察领域,可以提高武器系统的生存能力和作战效果。

电磁波隐身的原理与应用

电磁波隐身的原理与应用

电磁波隐身的原理与应用概述电磁波隐身技术是一种利用特定的技术手段使电磁波在特定空间范围内不被侦测到的技术。

电磁波隐身技术具有广泛的应用前景,不仅可以应用于军事领域,还可以应用于通信、无人机、雷达等领域。

本文将介绍电磁波隐身的原理以及其应用。

原理电磁波隐身技术的基本原理是通过改变电磁波的传播路径、频率、相位或幅度等方式,使电磁波在传输过程中减弱或消失。

以下列举几种常见的原理:1.多路径传播原理:利用环境中存在多个传播路径,使电磁波在传输过程中经过多次反射、折射等,从而在某个位置减弱或消失。

2.频率选择表面(Frequency Selective Surface,简称FSS):通过在电磁波传输路径上引入特殊的材料或结构,使特定频率的电磁波被吸收或反射,从而实现对该频率电磁波的隐身。

3.相位控制原理:通过改变电磁波的相位,使相位叠加出现干涉现象,从而达到对特定频率电磁波的隐身。

4.吸波材料原理:利用特殊的材料吸收电磁波的能量,从而减弱或消除电磁波的传输。

5.超材料原理:利用特殊材料的特殊结构和性质,改变电磁波的传输特性,从而实现对电磁波的隐身。

应用电磁波隐身技术在多个领域有着广泛的应用。

以下是一些常见的应用场景:军事领域•雷达隐身:利用电磁波隐身技术,使军事目标对雷达侦测时减弱或消失,提高军事作战的效果。

•无人机隐身:通过应用电磁波隐身技术,使无人机在执行任务时不易被侦测到,提高作战的隐蔽性和突防能力。

•电子干扰:通过控制电磁波在特定频段的传输特性,对敌方通信、雷达等系统进行干扰,削弱其作战能力。

通信领域•隐私保护:利用电磁波隐身技术,使通信内容不易被窃听或侦测到,提高通信的安全性。

•抗干扰能力:通过改变电磁波传输路径或抑制干扰信号,提高通信设备的抗干扰能力,保证通信的稳定性和可靠性。

民用领域•辐射防护:利用电磁波隐身技术,减少无线电、微波等电磁波对人体的辐射,保护人体健康。

•无线充电:通过调控电磁波传输特性,实现对电子设备的无线充电,提高充电的便利性和安全性。

电磁隐身的原理与应用论文

电磁隐身的原理与应用论文

电磁隐身的原理与应用摘要电磁隐身技术是一种重要的隐形技术,广泛应用于军事领域。

本文将介绍电磁隐身的基本原理及其在各个领域中的应用。

1. 引言电磁隐身技术是指通过对电磁信号的控制,使目标在电磁波谱中的回波减弱或消失,从而达到隐身效果。

电磁隐身技术在军事装备以及航空航天领域中起着重要的作用。

本文将从电磁隐身的基本原理和应用案例两个方面进行探讨。

2. 电磁隐身的基本原理电磁隐身的基本原理是通过改变目标对电磁波的散射特性,达到减少或屏蔽目标的电磁回波的目的。

具体的技术包括频率选择性表面(Frequency Selective Surface, FSS)、雷达吸波材料、相控阵天线等。

2.1 频率选择性表面(FSS)频率选择性表面是一种具有特定表面结构的材料,具有对特定波长的电磁波有选择性透过或反射的特性。

通过设计和制造相应的FSS,可以改变目标对不同频率的电磁波的反射或透射。

这样就可以实现目标在某些频段下的隐身效果。

2.2 雷达吸波材料雷达吸波材料是一种能够吸收电磁波并将其能量转化为热能的材料。

通过在目标表面涂覆吸波材料,可以使目标对电磁波的反射降低。

这样就可以降低目标被雷达探测到的概率。

2.3 相控阵天线相控阵天线是一种通过控制天线上的多个单元实现电磁波的发射和接收方向的技术。

通过对相控阵天线的控制,可以使电磁波的发射方向和接收方向发生变化,从而降低目标被雷达探测到的概率。

3. 电磁隐身的应用案例电磁隐身技术在军事装备以及航空航天领域中得到了广泛的应用。

下面将以两个应用案例来介绍电磁隐身技术的实际应用。

3.1 隐形战机隐形战机是电磁隐身技术在军事领域中的重要应用之一。

通过采用上述提到的电磁隐身技术,隐形战机能够大幅度降低被雷达探测到的概率,提高其生存能力和攻击能力。

隐形战机在现代战争中具有重要作用,能够突破敌方防线,对敌方目标进行打击。

3.2 隐形导弹隐形导弹是电磁隐身技术在航空航天领域中的应用之一。

隐形导弹通过采用电磁隐身技术,能够使其在飞行过程中减少或隐藏目标对雷达的回波,提高导弹的命中率和生存能力。

电磁隐身的原理及应用

电磁隐身的原理及应用

电磁隐身的原理及应用引言电磁隐身是一种能够使物体在电磁波谱范围内减少或隐藏其反射、散射、传播和辐射等信号的技术。

该技术具有广泛的应用前景,涉及军事、航空航天、通信、安全等领域。

本文将探讨电磁隐身的原理及应用,并对其影响和进展进行简要阐述。

1. 电磁隐身的原理电磁隐身的原理是基于对电磁波的控制和干扰,通过改变物体对电磁波的相互作用,从而使物体在电磁波的探测中消失或减小反射和散射信号。

主要的原理包括:•多样性吸波材料:利用吸波材料的特性,将电磁波能量转化为热能,从而减少反射和散射信号;•多层复合结构:设计多层结构,通过不同层的折射和反射,达到消除或削弱电磁波信号的目的;•相位控制技术:通过对电磁波相位的调控,改变信号波前的分布和干涉,达到隐身效果;•频率选择性表面技术:通过设计特殊结构的表面,使其在特定的频率范围内吸收或反射电磁波,实现对特定频率的隐身。

2. 电磁隐身的应用2.1 军事领域电磁隐身技术在军事领域具有重要的应用价值。

以隐形战机为例,通过对飞机表面的涂层、形状和结构的改进,大幅度减小飞机在雷达波段的反射面积,从而降低被敌方雷达探测到的可能性。

此外,电磁隐身技术也广泛应用于潜艇、导弹等军事装备中,提高作战能力和生存能力。

2.2 航空航天领域在航空航天领域,电磁隐身技术的应用主要集中在飞行器的设计和改进上。

通过减小飞行器的电磁特征,可以提高其隐身性能,降低被敌方导弹或雷达捕获的可能性。

此外,电磁隐身技术还可以应用于航天器的外壳材料改进,提高在高速、高温等极端环境下的抗辐射能力。

2.3 通信领域电磁隐身技术在通信领域的应用主要体现在通信保密和信号干扰方面。

通过采用电磁隐身技术,可以减少通信设备对外界电磁波的散射和泄露,提高通信系统的安全性和保密性。

同时,电磁隐身技术也可以用于对干扰信号的传播和抑制,提高通信系统的抗干扰能力。

2.4 安全领域在安全领域,电磁隐身技术可以应用于防护设备和隐私保护。

《2024年基于光学变换的电磁隐身斗篷的设计与研究》范文

《2024年基于光学变换的电磁隐身斗篷的设计与研究》范文

《基于光学变换的电磁隐身斗篷的设计与研究》篇一一、引言在过去的几十年中,电磁隐身技术在军事、科研及日常生活中的应用愈发重要。

其目的是利用特殊的材料或技术实现物体的隐形或不可探测。

在众多实现方式中,基于光学变换的电磁隐身斗篷以其独特的原理和广阔的应用前景引起了广大研究者的关注。

本文将详细介绍基于光学变换的电磁隐身斗篷的设计与研究,探讨其工作原理、实现方法以及潜在的应用领域。

二、光学变换与电磁隐身原理光学变换是利用特殊的光学材料和结构,改变光波的传播路径,从而实现物体表面光线的弯曲和散射,达到视觉上的隐形效果。

在电磁隐身领域,这一原理被广泛应用于设计隐身斗篷。

电磁隐身斗篷的设计主要基于光学变换的原理,通过在斗篷表面设计特殊的结构(如微纳米阵列、光子晶体等),使得电磁波在斗篷表面的反射和散射特性发生变化,从而减少反射的电磁波与周围环境的差异,实现隐身效果。

三、基于光学变换的电磁隐身斗篷设计1. 材料选择:选择具有特殊光学特性的材料是实现电磁隐身斗篷的关键。

常用的材料包括光子晶体、微纳米金属结构等。

这些材料可以有效地改变电磁波的传播特性,实现隐身效果。

2. 结构设计:根据光学变换的原理,设计斗篷的表面结构。

通常采用微纳米阵列结构或光子晶体结构,这些结构可以有效地改变电磁波的传播路径和散射特性。

3. 制作工艺:采用先进的微纳加工技术,如纳米压印、激光刻蚀等,将设计好的结构制作在斗篷表面。

同时,为了保证斗篷的轻便性和耐用性,还需要考虑材料的选取和加工工艺的优化。

四、实验与结果分析为了验证基于光学变换的电磁隐身斗篷的效果,我们进行了大量的实验和数据分析。

实验结果表明,当斗篷被放置在特定频率的电磁波环境中时,其表面的反射和散射特性得到了有效改变,使得物体在视觉上呈现出隐身效果。

同时,我们还对不同材料和结构进行了对比分析,以寻找最佳的隐身效果和性能。

五、潜在应用领域基于光学变换的电磁隐身斗篷具有广泛的应用前景。

首先,它可以应用于军事领域,如军事装备的隐身、侦察等;其次,它可以应用于民用领域,如安全监控、隐私保护等;此外,还可以用于科学实验、舞台表演等领域。

电磁隐形涂层在隐身技术中的综合性能评估

电磁隐形涂层在隐身技术中的综合性能评估

电磁隐形涂层:隐身技术中的综合性能评估隐身技术是现代军事装备领域的一项重要技术,而电磁隐形涂层则是实现这一目标的关键工具。

本文将对电磁隐形涂层的综合性能进行评估,并阐述其在隐身技术中的重要性。

一、电磁隐形涂层的性能评估1. 吸收性能:电磁隐形涂层的主要功能是吸收入射的电磁波,降低反射回源的能量,从而达到隐身的效果。

评估涂层的吸收性能,主要关注其在不同频率、不同入射角度下的吸收效率。

2. 厚度与成本:涂层的厚度和成本是影响其应用的重要因素。

在保证吸收性能的前提下,尽量减小涂层的厚度和成本,可以提高其实际应用的可行性。

3. 稳定性与耐候性:电磁隐形涂层在长期使用过程中,需要保持稳定的性能,抵抗环境因素(如温度、湿度、紫外线等)的影响。

评估涂层的耐候性,需要考虑其在各种环境条件下的表现。

二、隐身技术的重要性隐身技术是现代军事装备对抗现代雷达的重要手段。

在现代战争中,雷达是敌方探测装备的主要手段,因此,如何降低雷达反射面积,减少被探测到的可能性,是现代军事装备必须面对的问题。

电磁隐形涂层正是解决这一问题的关键技术。

三、综合性能评估的意义电磁隐形涂层的综合性能评估,不仅是对其吸收性能、厚度与成本、稳定性与耐候性的评估,更是对其在隐身技术中应用价值的评估。

通过评估,我们可以更好地了解电磁隐形涂层的应用前景和局限性,为进一步研发提供依据。

总之,电磁隐形涂层在隐身技术中具有重要的作用,其综合性能的评估将有助于我们更好地认识这一技术的优势和局限性,推动其在军事装备领域的应用和发展。

同时,我们也需要看到,电磁隐形涂层的研发和应用是一个长期的过程,需要我们持续投入研发力量,不断完善和提高其性能和应用范围。

关于隐身技术的研究报告

关于隐身技术的研究报告

关于隐身技术的研究报告隐身技术研究报告一、简介隐身技术是一项非常具有挑战性的技术,旨在使物体在光学、声学、雷达等多个传感器系统的探测下减少或消除目标物体的信息发射与反射,从而使其能够在环境中实现隐身状态。

隐身技术主要应用于军事领域,能够提高作战单位的存活能力和有效作战能力。

本报告将对隐身技术的研究进行系统的介绍和分析。

二、背景在现代战争中,探测和打击敌方目标是至关重要的。

因此,减少自身被敌方探测和打击的可能性,具有重要的战略意义。

传统的隐身技术主要是通过减少目标物体在雷达和红外传感器系统中的反射、辐射,从而降低探测的可能性。

然而,随着技术的发展,探测手段越来越多样化,对隐身技术提出了更高的要求。

三、主要研究内容1.隐身技术的基本原理隐身技术主要通过降低目标物体的雷达截面积、红外辐射、声学信号等方面来实现。

其中,雷达隐身主要采用吸波材料、几何形状设计、复合涂层和电磁波控制等方法;红外隐身主要采用隔热保护、热辐射控制等方法;声学隐身主要采用减振、消音、声学隔离等方法。

2.隐身技术在航空器上的应用隐身技术在航空器上的应用是最为广泛的,其中以隐身战机最具代表性。

隐身战机主要通过设计特殊的外形和使用吸波涂层等手段,减小雷达截面积和红外辐射,使战机具备较高的隐身性能。

3.隐身技术在舰船上的应用对于舰船来说,隐身性能主要体现在减少雷达截面积和声学特征。

船体的形状设计和使用吸波材料是减小雷达截面积的主要手段,而减振和隔音技术是减小声学特征的主要手段。

4.隐身技术在地面装备上的应用地面装备的隐身技术主要通过减小雷达截面积和红外辐射来实现。

几何形状设计和隔热保护是减小雷达截面积的主要手段,而热辐射控制则是减小红外辐射的主要手段。

四、未来发展趋势1.多维度隐身技术目前的隐身技术主要集中在雷达、红外和声学等方面,未来的发展趋势将是在多个传感器系统上实现隐身。

例如,对于电子战系统的探测和攻击,需要进一步研究和应用电磁波控制等技术,实现全频段的隐身。

隐身技术的原理与应用

隐身技术的原理与应用

隐身技术的原理与应用隐身技术是一项先进的技术,已广泛应用于军事、航空、航天、通讯等领域。

本文将对隐身技术的原理和应用进行深入探讨。

一、隐身技术的原理隐身技术的原理是通过降低雷达反射面积和减少电磁波反射的方式来减小被侦测的概率。

隐身技术有两种主要的实现方式:一种是吸波材料和涂层的应用,另一种是几何反射的应用。

1.吸波材料和涂层的应用在吸波材料和涂层的应用中,物体会被覆盖上一层吸波材料或涂层,使物体表面的电磁波反射率降低。

吸波材料是一种能够吸收电磁波、减少电磁波反射的材料。

涂层则是直接附着在物体表面的一层材料。

吸波材料和涂层的原理是利用介电损耗、磁滞损耗和电磁波散射三种方式来吸收电磁波。

这些材料能够使电磁波反射率降低好几倍,从而降低被侦测的概率。

2.几何反射的应用在几何反射的应用中,物体表面采用多个平面,将电磁波反射角度改变,使得反射回来的电磁波不会被雷达侦测到。

这种实现方式需要对物体的形状进行设计和优化。

二、隐身技术的应用隐身技术主要应用于军事、航空、航天、通讯等领域,下面将分别进行介绍。

1.军事应用在军事领域,隐身技术被广泛应用于飞机、导弹、舰艇等军事装备上。

采用隐身技术的装备可以避免被雷达侦测到,从而减少敌方的攻击。

2.航空领域在航空领域,隐身技术的应用使得飞机的雷达反射面积减少,提高了飞机的隐身能力。

同时,采用隐身技术的飞机可以更加灵活和难以被侦测到,从而提高了其在战场上的生存能力。

3.航天领域在航天领域,隐身技术的应用使得航天器在进入大气层时,减少了由于空气密度和摩擦产生的高温和压力,提高了航天器的安全性。

4.通讯领域在通讯领域,隐身技术可以有效避免信号被拦截和窃取。

采用隐身技术的设备可以加密数据,避免数据泄露和非法获取。

三、隐身技术的未来隐身技术在未来将继续得到广泛应用和发展,尤其是在航空和军事领域。

未来的隐身技术将更加高效和先进,利用最新的材料、涂层和结构设计,使得隐身装备更加灵活和安全。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁散射与隐身技术导论课程大作业报告学院:电子工程学院专业:电磁场与无线技术班级: 021061学号: 02106020姓名:赖贤军电子邮件: 92065436@日期: 2013 年 06 月成绩:指导教师:姜文电磁波隐身技术的研究隐形技术(stealth technology)俗称隐身技术,精确的术语应该是“低可探测技术”(low-observable technology)。

即通过研究利用各种不同的技术手法来改变己方目标的可探测性信息特征,最大程度地降低被对方探测系统发现的概率,使己方目标以及己方的武器装备不被敌方的探测系统发现和探测到。

1.隐身技术及其历史背景现代无线电技术和雷达探测系统的迅速发展极大地提高了战争中的搜索、跟踪目标的能力,传统的作战武器所受到的威胁愈来愈严重。

隐身技术作为提高武器系统生存、突防以及纵深打击能力的有效手段已经成为集陆、海、空、天、电、磁六维一体的立体化现代战争中最为重要、最为有效的突防战术技术手段并受到世界各国的高度重视。

隐身技术(又称目标特征信号控制技术)是通过控制武器系统的信号特征使其难以被发现、识别和跟踪打击的技术。

它是针对探测技术而言的,在兵器研制过程中设法降低其可探测性,使之不易被敌方发现、跟踪和攻击的专门技术。

简言之隐身就是使敌方的各种探测系统(如雷达等)发现不了我方的飞机,无法实施拦截和攻击。

早在第二次世界大战期间,美国便开始使用隐身技术以减少飞机被敌方雷达发现的概率。

当前电磁波隐身的研究重点是雷达隐身技术和红外隐身技术。

由于在未来战争中雷达仍将是探测目标的最可靠手段,因此隐身技术研究以目标的雷达特征信号控制为重点,同时展开红外、声、视频等其它特征信号控制的研究工作,最后向多功能、高性能的隐身方向发展。

2.隐身技术的工作原理隐身技术的主要就是反雷达探测。

雷达是一种利用无线电波发现目标并测定其他位置的装置。

雷达的问世使人类的探测技术和能力跨上了新的台阶,同时也向反探测技术提出了新的挑战。

人们为了提高目标反雷达探测能力不懈地奋斗了几十年,终于探索到一条新的隐身途径。

与早期的隐身术——伪装术相比,今天的隐身技术已起了根本变化,有了质的飞跃。

下面从反雷达探测和反红外、热 探测两个方面简单介绍隐身技术的一些工作原理与隐身性能。

1)反雷达探测开始隐身技术的一项主要工作是提高反雷达探测的能力:也就是提高目标在雷达探测下的隐身性能。

通常用目标的雷达散射界面RCS表示。

所谓目标的雷达散射截面是指目标被雷达发射的电磁波散射中时其反射电磁波能量的程度。

雷达散射截面的大小反映了目标反射电磁波能量的强弱,其越小 雷达就越不易探测到目标。

2)反红外(热)探测开始隐身技术的另一项重要工作是提高反红外(热}探测的能力:也就是减小目标的红外(热)信号特征。

发动机的尾喷管是红外探测器的主要红外(热)源。

因此减小红外(热)信号特征主要是要减小发动机尾喷管或排气口的红外(热)辐射。

3.隐身材料概述用于隐身目的的材料称为隐身材料。

由于隐身技术能极大地提高武器的生存能力和作战效果,受到许多国家的高度重视,成为现代军事技术研究的关键技术。

目前雷达在各种探测器中仍占主导地位。

因此雷达波隐身材料是隐身技术中最主要和发展最快的隐身材料。

雷达波隐身材料的基本性能要求是吸收雷达波,所以这种材科又称雷达吸波材料。

我们所指的吸波材料也就是雷达波吸收材料,简称为RAM。

吸波材料的研究始于第二次世界大战期间,起源在德国,发展在美国并扩展到英、法、俄罗斯及日本等发达国家。

经过半个世纪的发展成绩斐然。

第二次世界大战时,德国人曾用活性碳粉末充填天然橡胶片来包覆潜艇以降低被对方雷达发现的可能性。

这可以说是最早的RAM,美国早期研制了一种称为防辐射涂料(HARP)布,是用像胶或塑料填充导电的鳞片状铝粉、铜粉或铁磁材料制成。

这些早期的材料主要通过增加厚度来提高吸波性能,一般较重,用于舰船和陆地武装设备。

从50年代起。

美国等开展了较为系统的飞机隐身技术研究,经过20多年的发展,70年化开始研制隐身飞机,80年代隐身飞机装备部队并投入使用。

现已装备的F-117A隐形攻击机、B-2战略轰炸机以及F-22先进战术隐身战斗机均采用了不同类型的隐身材料。

其它大国也都投人大量人力物力研制吸波材料,己发展出不少新型的雷达吸波材料和吸波结构。

高度的军事敏感性和技术保密性使当前高性能的RAM研究和应用情况笼罩在迷雾之中,但各科技机构的努力主要集中在以下两个方面:全新的吸收机理和吸收剂、计算科学的迅速发展和应用。

总之,应运而生的RAM必将在这场世界性攻关研究中不断取得发展,并对今后的隐身反隐身技术的竟争产生深刻的影响。

4.吸波材料的综合要求和分类4.1隐身技术对吸波材料的基本要求一、材料的化学稳定性应有较宽的温度范围。

二、足够宽的工作频带中要求材料与空气有良好的匹配,使空气与材料界面间的总反射很小。

这就要求材料有较好的频率特性。

再通过合理的设计,充分利用材料的性能。

三、要求吸波涂层材料的面密度小、质量轻,其中对隐身飞行器尤为关键。

四、有高的力学性能及良好的环境适应性和理化性能 就是要求材料具有结强度高 耐一定温度和不同坏境变化的要求。

4.2隐身材料的分类由于吸波材料种类繁多,吸波机理也不尽相同,目前有多种分类方法。

主要有以下几种: 1 涂敷型和结构型按材料成型工艺和承载能力可分为涂敷型和结构型。

涂敷型吸波材料是将吸收剂与粘结剂混合后涂敷于目标表面形成吸波涂层 而结构型吸波材料 则通常是将吸收剂分散在由特种纤维〔如石英纤维、玻璃纤维等)增强的结构材料中所形成的结构复合材料,它具有承载和吸收雷达波双重功能。

2) 吸波型和干涉型按吸波原理分有吸波型和干涉型两大类。

前者主要是材料本身对雷达波损耗吸收,后者则利用吸波层表面反射波和底层反射波的振幅相等、相位相反进行干涉相消。

其中对于吸收型吸波材料按材料损耗机理可分为电阻型、电介质型和磁介质型。

碳化硅纤维、导电高聚物、石墨等属于电阻型吸波材料。

电磁能主要衰减在材料电阻上,钛酸钡之类属于电介质型吸波材料,其机理为介电极化弛豫损耗,磁介质吸波材料的机理主要归结为磁滞损耗和铁磁共振损耗。

这类材料有铁氧体、多晶铁纤维等。

3) 传统型和新型按不同研究时期,吸波材料又可分为传统吸波材料和新型吸波材料。

铁氧化、金属微粉、钛酸钡、碳化硅、石墨、导电纤维等均为传统吸波材料,而新型吸波材料则包括纳米材料、多晶铁纤维、“手征”材料、导电高聚物及电路模拟吸波材料等,它们具有不同于传统吸波材料的新吸波机理。

在传统吸波材料中,铁氧体吸波材料和金属微粉吸波材料是两种研究得最多、性能最好、并已得到较广泛应用的吸波材料。

而纳米材料和多晶铁纤维则是目前众多新型吸波材料中性能最好的两种。

传统吸波材料以强吸收为主要目标。

新型吸波材料则要求满足“薄、轻、宽、强”,而未来吸波材科则应满足多频谱隐身、环境自适应、耐高温、耐海洋气候、抗核辐射等更高要求。

以适应日趋恶劣的未来战场。

其中多频谱隐身材料和智能型隐身材料将成为雷达吸波材料的发展方向。

1)多频谱隐身材料迄今为止的吸波材料都是针对厘米波雷达,如俄罗斯高王雷达)、毫米波雷达(如荷兰翁鸟雷达、瑞典鹰雷达)等先进探侧设备而相继问世,要求吸波材料在不久的将来发展成为能够兼容米波、厘米波、毫米波、红外、激光等多波段电磁波隐身的多频谱隐身材料。

单波段吸波材料在未来将不再具有实战意义。

在同一目标上使用的材料不应再是单功能多层结构,而希望成为多功能材料,实现四个或五个波段以上的多功能隐身材料一体化设计。

2)智能型隐身材料就象上述所讲的那样,智能型隐身材料作为一种新兴材料其应用会越来越广泛。

美国制定的隐身材料研究目标中提出,2005年研制出可单独控制的辐射率/反射率涂层,2010年研制能自动对背景和威胁作出反应的自适应涂层体系。

对此,世界其它军事强国也在积极运作中。

隐身无人机所使用的隐身技术是很全面的。

因此,隐身无人机的发展代表了隐身技术的最前沿。

20世纪60年代,无人机开始用于军事领城。

在1973年的中东战争和1982年的叙、以贝卡谷地之战中,无人机崭露头角,令人刮目相看。

无人机大量、成规模地用于战争是在1991年的海湾战争中。

以美国为首的多国部队使用了几百架无人机,飞行了几千小时,执行了大量的军事任务。

目前,研究无人机对空中战争的影响和新一代多用途、隐身无人机的研制己经成为世界各国空军新的研究和发展之重点。

美国是世界上最早把隐身技术用于无人机的国家。

早在1960年初,美国就在Q-2无人机上部分地采用了隐身技术,其隐身特征是 用金属丝网罩住发动机进气道,在机身两侧贴数雷达吸波材料覆盖层,机头涂不导电的油漆。

自此以后便有越来越多的无人机采用隐身技术。

除美国之外,其它一些国家也开始研制生产这类无人机。

根据隐身要求、方法和程度的不同,无人机隐身可以分为部分隐身和全面隐身两种。

新的隐身机理(1)仿生技术试验证明,海鸥虽与燕八哥的形体大小相近,但海鸥的雷达反射截面比燕八哥的大200倍。

蜜蜂的体积小于麻雀,但它的雷达反射截面反而比麻雀大16倍。

有关科学家们正在研究这些现象,试图采用仿生技术,寻求新的隐身技术。

(2)等离子体隐身技术实验证明,用等离子气体层包围诸如飞机、舰船、卫星等的表面,当雷达波碰到这层特殊气体时,由于等离子体层对雷达波有特殊的吸收和折射特性,使反射回雷达接收机的能量很少。

1999年初,俄罗斯克尔德什研究中心宣称,他们已研制成功完全不同于美国“常规”隐身技术的新机理飞行器隐身系统。

其隐身方法是利用专门的机载等离子体发生器生成等离子体,然后通过等离子体吸收电磁波使飞机的雷达散射截面(RCS)减小。

此外,受一系列物理作用的影响,电磁波急于绕过等离子体,也会使反射信号大大减弱。

第一代系统可能已装到现有飞行器上,装上这种装置后,飞机的RCS 减小近两个数量级第二代系统不仅可衰减反射信号,而且可生成许多假信号,这将大大增大跟踪飞行器的难度。

第二代机载装置质量不超过100kg,能耗不超过几十千瓦。

目前该中心正在根据新的物理原理,研制更有效的第三代隐身系统。

美国对等离子体隐身技术也进行了大量的研究,取得了一些进展。

20世纪90年代初,美国休斯研究实验室投资65万美元进行了一项为期两年的研究计划。

在执行计划的第一阶段,休斯研究等离子体隐身的方法是测量电磁波在充满等离子体的矩形波导管中传播的透射和反射,以及它们随等离子体密度剖面和动量交换碰撞频率的变化,并将实验结果与理论进行了比较,在理论和实验上都取得了重要进展。

在执行计划的第二阶段,休斯研制和验证了等离子体隐身模型组件,在实验室双锥辐射体微波散射实验中,所测的充满等离子体外壳对反射微波信号的衰减为37dB,采用小雷达波段测量了充满等离子体外壳的RCS减小量,其中频率在(4~14)GHz范围内的RCS减小量为(20~25)dB。

相关文档
最新文档