第一章 第二章课后作业答案

合集下载

几何精度课后作业答案

几何精度课后作业答案

第一章1、试写出下列基本系列和派生系列中自1以后的5个优先数的常用值:R10,R10/2,R20/3,R5/3。

解:R10优先数系自1开始的5个优先数常用值是1,1.25,1.6,2,2.5;R10/2优先数系自1开始的5个优先数常用值是1,1.6,2.5,4.0,6.3;R20/3优先数系自1开始的5个优先数常用值是1,1.4,2,2.8,4; R5/3优先数系自1开始的5个优先数常用值是1,4,16,63,250。

2、自6级开始各等级尺寸公差的计算公式为10i ,16i ,25i ,40i ,64i ,100i ,160i ,…。

自3级开始螺纹公差的等级系数为0.50,0.63,0.80,1.00,1.25,1.60,2.00。

试判断它们属于何种优先数的系列(i 为公差单位)。

解:前者属于R5系列,后者属于R10系列。

3、下面两列数据属于哪种系列?公比q 为多少?(1)电动机转速有(单位为r /min ):375,750,1500,3000…。

(2)摇臂钻床的主参数(最大钻孔直径,单位为mm ):25,40,63,80,100,125等。

解:前者属于R10/3派生系列,公比q :2;后者前三项属于R5系列,公比q :1.6,后三项属于R10系列,公比q :1.25,属于R5和R10的复合系列。

第二章1、设某配合的孔径为φ15 +0.027 0mm ,轴径为φ15 -0.016-0.034mm ,试分别计算其极限尺寸、极限偏差、尺寸公差、极限间隙(或过盈)、平均间隙(或过盈)、配合公差,并画出其尺寸公差带及配合公差带图。

解:(1)极限尺寸:孔:D max =φ15.027 D min =φ15 轴: d max =φ14.984 d min =φ14.966(2)极限偏差:孔:ES=+0.027 EI=0轴:es= -0.016 ei= -0.034 (3)尺寸公差:孔:T D =|ES-EI|= |(+0.027)-0|=0.027 轴:T d = |es-ei|=|(-0.016)-(-0.034)|=0.018(4)极限间隙:X max = ES -ei=(+0.027)-(-0.034)=+0.061 X min = EI -es=0-(-0.016)=+0.016平均间隙(5)配合公差:T f = T D + T d =0.027+0.018=0.045()0385.021minmax+=+=XX X av(6)尺寸公差带和配合公差带图,如图所示。

九年级上册数学书人教版电子书答案

九年级上册数学书人教版电子书答案

九年级上册数学书人教版电子书答案第一章:有理数1.练习题答案– 1.1 选择题:1. A2. D3. B– 1.2 解答题:(1)略(2)略(3)略2.课后作业答案–题目1:求下列各式的值:(1)$(-\\dfrac{5}{3})^2$(2)$(\\dfrac{3}{5})^3$•答案1:(1) $\\dfrac{25}{9}$•答案2:(2) $\\dfrac{27}{125}$第二章:方程与不等式1.练习题答案– 1.1 选择题:1. A2. B3. C– 1.2 解答题:(1)略(2)略(3)略2.课后作业答案–题目1:求下列方程的解:(1)3x+7=22(2)2(x−4)=10•答案1:(1) x=5•答案2:(2) x=9第三章:图形的初步认识1.练习题答案– 1.1 选择题:1. D2. C3. B– 1.2 解答题:(1)略(2)略(3)略2.课后作业答案–题目1:求下列问题的解:(1)一长方形的长是5cm,宽是3cm,它的周长是多少?(2)一正方形的周长为20cm,它的边长是多少?•答案1:(1) 周长为16cm•答案2:(2) 边长为5cm第四章:分式1.练习题答案– 1.1 选择题:1. B2. A3. D– 1.2 解答题:(1)略(2)略(3)略2.课后作业答案–题目1:判断下列各式是否等式,并简化结果:(1)$\\dfrac{2}{3} + \\dfrac{5}{6} = \\dfrac{7}{9}$(2)$\\dfrac{3}{4} - \\dfrac{1}{2} = \\dfrac{5}{8}$•答案1:(1) 不是等式•答案2:(2) 是等式,简化为$\\dfrac{1}{4}$第五章:多项式的加减1.练习题答案– 1.1 选择题:1. A2. C3. D– 1.2 解答题:(1)略(2)略(3)略2.课后作业答案–题目1:计算下列各式的结果:(1)(2x2−3x+4)+(x2−2x+1)(2)(3y2+5y−2)−(2y2+3y−1)•答案1:(1) 3x2−5x+5•答案2:(2) y2+2y−1第六章:平面直角坐标系1.练习题答案– 1.1 选择题:1. B2. D3. A– 1.2 解答题:(1)略(2)略(3)略2.课后作业答案–题目1:问题:(1)在平面直角坐标系中,点A(1,3)和点B(−2,−4)的距离是多少?(2)在平面直角坐标系中,点C(0,−1)和点D(4,2)的斜率是多少?•答案1:(1) 距离是$\\sqrt{53}$•答案2:(2) 斜率是$\\dfrac{1}{4}$这只是一部分九年级上册数学书人教版电子书的答案,希望对你的学习有所帮助。

高等数学课后习题及参考答案(第一章)

高等数学课后习题及参考答案(第一章)

高等数学课后习题及参考答案(第一章)习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式.解 A ⋃B =(-∞, 3)⋃(5, +∞),A ⋂B =[-10, -5),A \B =(-∞, -10)⋃(5, +∞),A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C .证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明(1)f (A ⋃B )=f (A )⋃f (B );(2)f (A ⋂B )⊂f (A )⋂f (B ).证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B )⇔ y ∈f (A )⋃f (B ),所以 f (A ⋃B )=f (A )⋃f (B ).(2)因为y ∈f (A ⋂B )⇒∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ),所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A ⊂X . 证明:(1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )),所以 f -1(f (A ))⊃A .(2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域:(1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-. (2)211xy -=; 解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞).(3)211x xy --=; 解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1].(4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2).(5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞).(6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅ ⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=; 解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3).(9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞).(10)x e y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞).7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2, g (x )=2lg x ;(2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1, g (x )=sec 2x -tan 2x .解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x .(3)相同. 因为定义域、对应法则均相相同.(4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性:(1)xx y -=1, (-∞, 1); (2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时, 0)1)(1(112121221121<---=---=-x x x x x x x x y y ,所以函数xx y -=1在区间(-∞, 1)内是单调增加的. (2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有0ln )()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2.因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), -f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加. 11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的和是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ),所以F (x )为奇函数, 即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的积是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个奇函数的积是偶函数.如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ),所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2);(2)y =3x 2-x 3;(3)2211x x y +-=; (4)y =x (x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x a a y -+=. 解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数.(2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f (x )是偶函数. 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);解 是周期函数, 周期为l =2π.(2)y =cos 4x ;解 是周期函数, 周期为2π=l . (3)y =1+sin πx ;解 是周期函数, 周期为l =2.(4)y =x cos x ;解 不是周期函数.(5)y =sin 2x .解 是周期函数, 周期为l =π.14. 求下列函数的反函数:(1)31+=x y ;解 由31+=x y 得x =y 3-1, 所以31+=x y 的反函数为y =x 3-1.(2)xx y +-=11; 解 由x x y +-=11得y y x +-=11, 所以x x y +-=11的反函数为xx y +-=11. (3)dcx b ax y ++=(ad -bc ≠0); 解 由d cx b ax y ++=得a cy b dy x -+-=, 所以d cx b ax y ++=的反函数为acx b dx y -+-=. (4) y =2sin3x ;解 由y =2sin 3x 得2arcsin 31y x =, 所以y =2sin3x 的反函数为2arcsin 31x y =. (5) y =1+ln(x +2);解 由y =1+ln(x +2)得x =e y -1-2, 所以y =1+ln(x +2)的反函数为y =e x -1-2.(6)122+=x x y . 解 由122+=x x y 得y y x -=1log 2, 所以122+=x x y 的反函数为x x y -=1log 2. 15. 设函数f (x )在数集X 上有定义, 试证: 函数f (x )在X 上有界的充分必要条件是它在X 上既有上界又有下界.证明 先证必要性. 设函数f (x )在X 上有界, 则存在正数M , 使|f (x )|≤M , 即-M ≤f (x )≤M . 这就证明了f (x )在X 上有下界-M 和上界M .再证充分性. 设函数f (x )在X 上有下界K 1和上界K 2, 即K 1≤f (x )≤ K 2 . 取M =max{|K 1|, |K 2|}, 则 -M ≤ K 1≤f (x )≤ K 2≤M ,即 |f (x )|≤M .这就证明了f (x )在X 上有界.16. 在下列各题中, 求由所给函数复合而成的函数, 并求这函数分别对应于给定自变量值x 1和x 2的函数值:(1) y =u 2, u =sin x , 61π=x , 32π=x ; 解 y =sin 2x , 41)21(6sin 221===πy ,43)23(3sin 222===πy . (2) y =sin u , u =2x , 81π=x ,42π=x ; 解 y =sin2x , 224sin )82sin(1==⋅=ππy ,12sin )42sin(2==⋅=ππy .(3)u y =, u =1+x 2, x 1=1, x 2= 2;解 21x y +=, 21121=+=y , 52122=+=y .(4) y =e u , u =x 2, x 1 =0, x 2=1;解 2x e y =, 1201==e y , e e y ==212.(5) y =u 2 , u =e x , x 1=1, x 2=-1.解 y =e 2x , y 1=e 2⋅1=e 2, y 2=e 2⋅(-1)=e -2.17. 设f (x )的定义域D =[0, 1], 求下列各函数的定义域:(1) f (x 2);解 由0≤x 2≤1得|x |≤1, 所以函数f (x 2)的定义域为[-1, 1].(2) f (sin x );解 由0≤sin x ≤1得2n π≤x ≤(2n +1)π (n =0, ±1, ±2⋅ ⋅ ⋅), 所以函数f (sin x )的定义域为[2n π, (2n +1)π] (n =0, ±1, ±2⋅ ⋅ ⋅) .(3) f (x +a )(a >0);解 由0≤x +a ≤1得-a ≤x ≤1-a , 所以函数f (x +a )的定义域为[-a , 1-a ].(4) f (x +a )+f (x -a )(a >0).解 由0≤x +a ≤1且0≤x -a ≤1得: 当210≤<a 时, a ≤x ≤1-a ; 当21>a 时, 无解. 因此当210≤<a 时函数的定义域为[a , 1-a ], 当21>a 时函数无意义. 18. 设⎪⎩⎪⎨⎧>-=<=1|| 11||01|| 1)(x x x x f , g (x )=e x , 求f [g (x )]和g [f (x )], 并作出这两个函数的图形.解 ⎪⎩⎪⎨⎧>-=<=1|| 11||01|| 1)]([x x x e e e x g f , 即⎪⎩⎪⎨⎧>-=<=0 10 00 1)]([x x x x g f . ⎪⎩⎪⎨⎧>=<==-1|| 1||e 1|| )]([101)(x e x x e e xfg x f , 即⎪⎩⎪⎨⎧>=<=-1|| 1|| 11|| )]([1x e x x e x f g .19. 已知水渠的横断面为等腰梯形, 斜角ϕ=40︒(图1-37). 当过水断面ABCD 的面积为定值S 0时, 求湿周L (L =AB +BC +CD )与水深h 之间的函数关系式, 并指明其定义域.图1-37解 40sin h DC AB ==, 又从0)]40cot 2([21S h BC BC h =⋅++ 得h hS BC ⋅-= 40cot 0, 所以 h h S L40sin 40cos 20-+=. 自变量h 的取值范围应由不等式组h >0, 040cot 0>⋅-h hS 确定, 定义域为40cot 00S h <<.20. 收敛音机每台售价为90元, 成本为60元. 厂方为鼓励销售商大量采购, 决定凡是订购量超过100台以上的, 每多订购1台, 售价就降低1分, 但最低价为每台75元.(1)将每台的实际售价p 表示为订购量x 的函数;(2)将厂方所获的利润P 表示成订购量x 的函数;(3)某一商行订购了1000台, 厂方可获利润多少?解 (1)当0≤x ≤100时, p =90.令0.01(x 0-100)=90-75, 得x 0=1600. 因此当x ≥1600时, p =75.当100<x <1600时,p =90-(x -100)⨯0.01=91-0. 01x .综合上述结果得到⎪⎩⎪⎨⎧≥<<-≤≤=1600 75160010001.0911000 90x x x x p . (2)⎪⎩⎪⎨⎧≥<<-≤≤=-=1600 151600100 01.0311000 30)60(2x x x x x x x x p P .(3) P =31⨯1000-0.01⨯10002=21000(元).习题1-21. 观察一般项x n 如下的数列{x n }的变化趋势, 写出它们的极限:(1)nn x 21=; 解 当n →∞时, nn x 21=→0, 021lim =∞→n n . (2)nx n n 1)1(-=; 解 当n →∞时, n x n n 1)1(-=→0, 01)1(lim =-∞→nn n . (3)212nx n +=; 解 当n →∞时, 212n x n +=→2, 2)12(lim 2=+∞→nn . (4)11+-=n n x n ; 解 当n →∞时, 12111+-=+-=n n n x n →0, 111lim =+-∞→n n n . (5) x n =n (-1)n .解 当n →∞时, x n =n (-1)n 没有极限.2. 设数列{x n }的一般项nn x n 2cos π=. 问n n x ∞→lim =? 求出N , 使当n >N 时, x n 与其极限之差的绝对值小于正数ε , 当ε =0.001时, 求出数N .解 0lim =∞→n n x . n n n x n 1|2cos ||0|≤=-π. ∀ε >0, 要使|x n -0|<ε , 只要ε<n 1, 也就是ε1>n . 取]1[ε=N , 则∀n >N , 有|x n -0|<ε .当ε =0.001时, ]1[ε=N =1000. 3. 根据数列极限的定义证明:(1)01lim 2=∞→n n ;分析 要使ε<=-221|01|n n , 只须ε12>n , 即ε1>n . 证明 因为∀ε>0, ∃]1[ε=N , 当n >N 时, 有ε<-|01|2n , 所以01lim 2=∞→n n . (2)231213lim =++∞→n n n ; 分析 要使ε<<+=-++n n n n 41)12(21|231213|, 只须ε<n41, 即ε41>n . 证明 因为∀ε>0, ∃]41[ε=N , 当n >N 时, 有ε<-++|231213|n n , 所以231213lim =++∞→n n n . (3)1lim 22=+∞→na n n ; 分析 要使ε<<++=-+=-+na n a n n a n n a n n a n 22222222)(|1|, 只须ε2a n >. 证明 因为∀ε>0, ∃][2εa N =, 当∀n >N 时, 有ε<-+|1|22n a n , 所以1lim 22=+∞→na n n . (4)19 999.0lim =⋅⋅⋅∞→个n n . 分析 要使|0.99 ⋅ ⋅ ⋅ 9-1|ε<=-1101n , 只须1101-n <ε , 即ε1lg 1+>n . 证明 因为∀ε>0, ∃]1lg 1[ε+=N , 当∀n >N 时, 有|0.99 ⋅ ⋅ ⋅ 9-1|<ε , 所以19 999.0lim =⋅⋅⋅∞→个n n . 4. a u n n =∞→lim , 证明||||lim a u n n =∞→. 并举例说明: 如果数列{|x n |}有极限, 但数列{x n }未必有极限.证明 因为a u n n =∞→lim , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有ε<-||a u n , 从而 ||u n |-|a ||≤|u n -a |<ε .这就证明了||||lim a u n n =∞→.数列{|x n |}有极限, 但数列{x n }未必有极限. 例如1|)1(|lim =-∞→n n , 但n n )1(lim -∞→不存在.5. 设数列{x n }有界, 又0lim =∞→n n y , 证明: 0lim =∞→n n n y x .证明 因为数列{x n }有界, 所以存在M , 使∀n ∈Z , 有|x n |≤M .又0lim =∞→n n y , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有M y n ε<||. 从而当n >N 时, 有εε=⋅<≤=-M M y M y x y x n n n n n |||||0|,所以0lim =∞→n n n y x .6. 对于数列{x n }, 若x 2k -1→a (k →∞), x 2k →a (k →∞), 证明: x n →a (n →∞).证明 因为x 2k -1→a (k →∞), x 2k →a (k →∞), 所以∀ε>0, ∃K 1, 当2k -1>2K 1-1时, 有| x 2k -1-a |<ε ; ∃K 2, 当2k >2K 2时, 有|x 2k -a |<ε .取N =max{2K 1-1, 2K 2}, 只要n >N , 就有|x n -a |<ε . 因此x n →a (n →∞).习题1-31. 根据函数极限的定义证明: (1)8)13(lim 3=-→x x ;分析 因为|(3x -1)-8|=|3x -9|=3|x -3|, 所以要使|(3x -1)-8|<ε , 只须ε31|3|<-x .证明 因为∀ε>0, ∃εδ31=, 当0<|x -3|<δ时, 有|(3x -1)-8|<ε , 所以8)13(lim 3=-→x x .(2)12)25(lim 2=+→x x ;分析 因为|(5x +2)-12|=|5x -10|=5|x -2|, 所以要使|(5x +2)-12|<ε , 只须ε51|2|<-x .证明 因为∀ε >0, ∃εδ51=, 当0<|x -2|<δ时, 有 |(5x +2)-12|<ε , 所以12)25(lim 2=+→x x .(3)424lim 22-=+--→x x x ;分析 因为|)2(||2|244)4(2422--=+=+++=--+-x x x x x x x , 所以要使ε<--+-)4(242x x , 只须ε<--|)2(|x . 证明 因为∀ε >0, ∃εδ=, 当0<|x -(-2)|<δ时, 有ε<--+-)4(242x x , 所以424lim22-=+--→x x x .(4)21241lim 321=+--→x x x . 分析 因为|)21(|2|221|212413--=--=-+-x x x x , 所以要使ε<-+-212413x x , 只须ε21|)21(|<--x .证明 因为∀ε >0, ∃εδ21=, 当δ<--<|)21(|0x 时, 有ε<-+-212413x x , 所以21241lim 321=+--→x x x . 2. 根据函数极限的定义证明:(1)2121lim 33=+∞→x x x ; 分析 因为333333||21212121x x x x x x =-+=-+, 所以要使ε<-+212133x x , 只须ε<3||21x , 即321||ε>x . 证明 因为∀ε >0, ∃321ε=X , 当|x |>X 时, 有ε<-+212133x x , 所以2121lim 33=+∞→x x x . (2)0sin lim =+∞→xx x .分析 因为xx x x x 1|sin |0sin ≤=-. 所以要使ε<-0sin x x , 只须ε<x1, 即21ε>x .证明 因为∀ε>0, ∃21ε=X , 当x >X 时, 有ε<-0sin xx ,所以0sin lim =+∞→xx x .3. 当x →2时, y =x 2→4. 问δ等于多少, 使当|x -2|<δ时, |y -4|<0.001? 解 由于当x →2时, |x -2|→0, 故可设|x -2|<1, 即1<x <3. 要使|x 2-4|=|x +2||x -2|<5|x -2|<0.001, 只要0002.05001.0|2|=<-x .取δ=0.0002, 则当0<|x -2|<δ时, 就有|x 2-4|<0. 001.4. 当x →∞时, 13122→+-=x x y , 问X 等于多少, 使当|x |>X 时, |y -1|<0.01?解 要使01.034131222<+=-+-x x x , 只要397301.04||=->x , 故397=X .5. 证明函数f (x )=|x |当x →0时极限为零.证明 因为|f (x )-0|=||x |-0|=|x |=|x -0|, 所以要使|f (x )-0|<ε, 只须|x |<ε.因为对∀ε>0, ∃δ=ε, 使当0<|x -0|<δ, 时有 |f (x )-0|=||x |-0|<ε, 所以0||lim 0=→x x .6. 求,)(xx x f = x x x ||)(=ϕ当x →0时的左﹑右极限, 并说明它们在x →0时的极限是否存在. 证明 因为11lim lim )(lim 000===---→→→x x x x x x f ,11lim lim )(lim 000===+++→→→x x x x x x f ,)(lim )(lim 0x f x f x x +→→=-,所以极限)(lim 0x f x →存在.因为1lim ||lim )(lim 000-=-==---→→→xx x x x x x x ϕ,1lim ||lim )(lim 000===+++→→→x x x x x x x x ϕ,)(lim )(lim 0x x x x ϕϕ+→→≠-,所以极限)(lim 0x x ϕ→不存在.7. 证明: 若x →+∞及x →-∞时, 函数f (x )的极限都存在且都等于A , 则A x f x =∞→)(lim .证明 因为A x f x =-∞→)(lim , A x f x =+∞→)(lim , 所以∀ε>0, ∃X 1>0, 使当x <-X 1时, 有|f (x )-A |<ε ;∃X 2>0, 使当x >X 2时, 有|f (x )-A |<ε .取X =max{X 1, X 2}, 则当|x |>X 时, 有|f (x )-A |<ε , 即A x f x =∞→)(lim .8. 根据极限的定义证明: 函数f (x )当x →x 0 时极限存在的充分必要条件是左极限、右极限各自存在并且相等.证明 先证明必要性. 设f (x )→A (x →x 0), 则∀ε>0, ∃δ>0, 使当0<|x -x 0|<δ 时, 有|f (x )-A |<ε .因此当x 0-δ<x <x 0和x 0<x <x 0+δ 时都有 |f (x )-A |<ε .这说明f (x )当x →x 0时左右极限都存在并且都等于A . 再证明充分性. 设f (x 0-0)=f (x 0+0)=A , 则∀ε>0, ∃δ1>0, 使当x 0-δ1<x <x 0时, 有| f (x )-A <ε ; ∃δ2>0, 使当x 0<x <x 0+δ2时, 有| f (x )-A |<ε .取δ=min{δ1, δ2}, 则当0<|x -x 0|<δ 时, 有x 0-δ1<x <x 0及x 0<x <x 0+δ2 , 从而有 | f (x )-A |<ε ,即f (x )→A (x →x 0).9. 试给出x →∞时函数极限的局部有界性的定理, 并加以证明.解 x →∞时函数极限的局部有界性的定理: 如果f (x )当x →∞时的极限存在, 则存在X >0及M >0, 使当|x |>X 时, |f (x )|<M .证明 设f (x )→A (x →∞), 则对于ε =1, ∃X >0, 当|x |>X 时, 有|f (x )-A |<ε =1. 所以 |f (x )|=|f (x )-A +A |≤|f (x )-A |+|A |<1+|A |.这就是说存在X >0及M >0, 使当|x |>X 时, |f (x )|<M , 其中M =1+|A |. 习题1-41. 两个无穷小的商是否一定是无穷小?举例说明之. 解 不一定.例如, 当x →0时, α(x )=2x , β(x )=3x 都是无穷小, 但32)()(lim0=→x x x βα, )()(x x βα不是无穷小.2. 根据定义证明:(1)392+-=x x y 当x →3时为无穷小; (2)xx y 1sin =当x →0时为无穷小.证明 (1)当x ≠3时|3|39||2-=+-=x x x y . 因为∀ε>0, ∃δ=ε , 当0<|x -3|<δ时, 有εδ=<-=+-=|3|39||2x x x y ,所以当x →3时392+-=x x y 为无穷小. (2)当x ≠0时|0||1sin |||||-≤=x xx y . 因为∀ε>0, ∃δ=ε , 当0<|x -0|<δ时, 有εδ=<-≤=|0||1sin |||||x xx y ,所以当x →0时xx y 1sin =为无穷小.3. 根据定义证明: 函数xx y 21+=为当x →0时的无穷大. 问x 应满足什么条件,能使|y |>104?证明 分析2||11221||-≥+=+=x x x x y , 要使|y |>M , 只须M x >-2||1, 即21||+<M x .证明 因为∀M >0, ∃21+=M δ, 使当0<|x -0|<δ时, 有M x x >+21,所以当x →0时, 函数xx y 21+=是无穷大.取M =104, 则21014+=δ. 当2101|0|04+<-<x 时, |y |>104. 4. 求下列极限并说明理由: (1)xx x 12lim +∞→;(2)xx x --→11lim 20.解 (1)因为xx x 1212+=+, 而当x →∞ 时x 1是无穷小, 所以212lim =+∞→x x x .(2)因为x xx +=--1112(x ≠1), 而当x →0时x 为无穷小, 所以111lim 20=--→x x x .6. 函数y =x cos x 在(-∞, +∞)内是否有界?这个函数是否为当x →+∞ 时的无穷大?为什么?解 函数y =x cos x 在(-∞, +∞)内无界.这是因为∀M >0, 在(-∞, +∞)内总能找到这样的x , 使得|y (x )|>M . 例如y (2k π)=2k π cos2k π=2k π (k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, 就有| y (2k π)|>M .当x →+∞ 时, 函数y =x cos x 不是无穷大.这是因为∀M >0, 找不到这样一个时刻N , 使对一切大于N 的x , 都有|y (x )|>M . 例如0)22cos()22()22(=++=+ππππππk k k y (k =0, 1, 2, ⋅ ⋅ ⋅),对任何大的N , 当k 充分大时, 总有N k x >+=22ππ, 但|y (x )|=0<M .7. 证明: 函数xx y 1sin 1=在区间(0, 1]上无界, 但这函数不是当x →0+时的无穷大.证明 函数xx y 1sin 1=在区间(0, 1]上无界. 这是因为∀M >0, 在(0, 1]中总可以找到点x k , 使y (x k )>M . 例如当221ππ+=k x k (k =0, 1, 2, ⋅ ⋅ ⋅)时, 有22)(ππ+=k x y k ,当k 充分大时, y (x k )>M .当x →0+ 时, 函数xx y 1sin 1=不是无穷大. 这是因为∀M >0, 对所有的δ>0, 总可以找到这样的点x k , 使0<x k <δ, 但y (x k )<M . 例如可取πk x k 21=(k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, x k <δ, 但y (x k )=2k πsin2k π=0<M .习题1-51. 计算下列极限:(1)35lim 22-+→x x x ; 解 9325235lim 222-=-+=-+→x x x .(2)13lim 223+-→x x x ; 解 01)3(3)3(13lim 22223=+-=+-→x x x . (3)112lim 221-+-→x x x x ;解 02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x . (4)xx x x x x 2324lim2230++-→; 解 2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x . (5)hx h x h 220)(lim -+→;解 x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=-++=-+→→→. (6))112(lim 2xx x +-∞→; 解 21lim 1lim2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x . (7)121lim 22---∞→x x x x ; 解 2111211lim 121lim 2222=---=---∞→∞→xx x x x xx x . (8)13lim 242--+∞→x x x x x ; 解 013lim 242=--+∞→x x x x x (分子次数低于分母次数, 极限为零). 或 012111lim 13lim 4232242=--+=--+∞→∞→x x x x x x x x x x . (9)4586lim 224+-+-→x x x x x ; 解 32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x .(10))12)(11(lim 2x x x -+∞→;解 221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x . (11))21 41211(lim n n +⋅⋅⋅+++∞→;解 2211)21(1lim )21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n . (12)2)1( 321limnn n -+⋅⋅⋅+++∞→; 解 211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n nn n n n n n . (13)35)3)(2)(1(limn n n n n +++∞→;解 515)3)(2)(1(lim 3=+++∞→nn n n n (分子与分母的次数相同, 极限为 最高次项系数之比).或 51)31)(21)(11(lim 515)3)(2)(1(lim 3=+++=+++∞→∞→n n n n n n n n n . (14))1311(lim 31x x x ---→;解 )1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++-+--=++--++=---→→→ 112lim21-=+++-=→x x x x . 2. 计算下列极限: (1)2232)2(2lim -+→x x x x ; 解 因为01602)2(lim 2322==+-→x x x x , 所以∞=-+→2232)2(2lim x x x x . (2)12lim 2+∞→x x x ;解 ∞=+∞→12lim 2x x x (因为分子次数高于分母次数).(3))12(lim 3+-∞→x x x .解 ∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数).3. 计算下列极限: (1)xx x 1sin lim 20→;解 01sin lim 20=→xx x (当x →0时, x 2是无穷小, 而x 1sin 是有界变量).(2)xx x arctan lim ∞→.解 0arctan 1lim arctan lim =⋅=∞→∞→x x xx x x (当x →∞时, x 1是无穷小,而arctan x 是有界变量).4. 证明本节定理3中的(2).习题1-61. 计算下列极限: (1)xx x ωsin lim 0→;解 ωωωωω==→→x x xx x x sin lim sin lim 00.(2)xx x 3tan lim 0→;解 33cos 133sin lim 33tan lim 00=⋅=→→xx x x x x x .(3)xx x 5sin 2sin lim 0→;解 52525sin 522sin lim 5sin 2sin lim 00=⋅⋅=→→x x x x x x x x .(4)x x x cot lim 0→;解 1cos lim sin lim cos sin lim cot lim 0000=⋅=⋅=→→→→x x x x x x x x x x x x .(5)xx x x sin 2cos 1lim 0-→;解 2)sin (lim 2sin 2lim 2cos 1lim sin 2cos 1lim 20220200===-=-→→→→x x x x x x x x x x x x x . 或 2sin lim 2sin sin 2lim sin 2cos 1lim 0200===-→→→xx x x x x x x x x x . (6)n n n x 2sin 2lim ∞→(x 为不等于零的常数). 解 x x xx x nn n n nn =⋅=∞→∞→22sin lim2sin 2lim . 2. 计算下列极限:(1)x x x 1)1(lim -→; 解 11)(1)1()(101})](1[lim {)](1[lim )1(lim ---→--→→=-+=-+=-e x x x x x x x x x .(2)x x x 1)21(lim +→;解 2221221010])21(lim [)21(lim )21(lim e x x x x x x x x x =+=+=+→⋅→→.(3)x x xx 2)1(lim +∞→; 解 222])11(lim [)1(lim e xx x x x x x =+=+∞→∞→.(4)kx x x)11(lim -∞→(k 为正整数).解 k k x x kx x e xx ---∞→∞→=-+=-))(()11(lim )11(lim .3. 根据函数极限的定义, 证明极限存在的准则I '. 证明 仅对x →x 0的情形加以证明.设ε为任一给定的正数, 由于A x g x x =→)(lim 0, 故由定义知, 对ε>0, 存在δ1>0, 使得当0<|x -x 0|<δ1时, 恒有|g (x )-A |<ε, 即A -ε<g (x )<A +ε.由于A x h x x =→)(lim 0, 故由定义知, 对ε>0, 存在δ2>0, 使得当0<|x -x 0|<δ2时, 恒有|h (x )-A |<ε, 即A -ε<h (x )<A +ε.取δ=min{δ1, δ2}, 则当0<|x -x 0|<δ时, A -ε<g (x )<A +ε与A -ε<h (x )<A +ε 同时成立, 又因为g (x )≤f (x )≤h (x ), 所以 A -ε<f (x )<A +ε, 即 |f (x )-A |<ε, 因此A x f x x =→)(lim 0.证明 仅对x →x 0的情形加以证明. 因为A x g x x =→)(lim 0, A x h x x =→)(lim 0,所以对任一给定的ε>0, 存在δ>0, 使得当0<|x -x 0|<δ时, 恒有 |g (x )-A |<ε及|h (x )-A |<ε,即 A -ε<g (x )<A +ε及A -ε<h (x )<A +ε.又因为 g (x )≤f (x )≤h (x ), 所以 A -ε<f (x )<A +ε, 即 |f (x )-A |<ε, 因此A x f x x =→)(lim 0.4. 利用极限存在准则证明: (1)111lim =+∞→nn ;证明 因为n n 11111+<+<,而 11lim =∞→n 且1)11(lim =+∞→n n ,由极限存在准则I , 111lim =+∞→nn .(2)1)1 211(lim 222=++⋅⋅⋅++++∞→πππn n n n n n ;证明 因为πππππ+<++⋅⋅⋅++++<+2222222)1 211(n n n n n n n n n n , 而 1lim 22=+∞→πn n n n , 1lim 22=+∞→πn n n , 所以 1)1 211(lim 222=++⋅⋅⋅++++∞→πππn n n n n n .(3)数列2,22+, 222++, ⋅ ⋅ ⋅ 的极限存在;证明 21=x , n n x x +=+21(n =1, 2, 3, ⋅ ⋅ ⋅). 先证明数列{x n }有界.当n =1时221<=x , 假定n =k 时x k <2, 则当n =k +1时, 22221=+<+=+k k x x , 所以x n <2(n =1, 2, 3, ⋅ ⋅ ⋅), 即数列{x n }有界.再证明数列单调增. 因为nn n n n n n n n n n n x x x x x x x x x x x x +++--=++-+=-+=-+2)1)(2(22221, 而x n -2<0, x n +1>0, 所以x n +1-x n >0, 即数列{x n }单调增.因为数列{x n }单调增加有上界, 所以此数列是有极限的. (4)11lim 0=+→n x x ;证明 当|x |≤1时, 则有 1+x ≤1+|x |≤(1+|x |)n , 1+x ≥1-|x |≥(1-|x |)n , 从而有 ||11||1x x x n +≤+≤-. 因为 1|)|1(lim |)|1(lim 0=+=-→→x x x x ,根据夹逼准则, 有 11lim 0=+→n x x .(5)1]1[lim 0=+→xx x .证明 因为x x x 1]1[11≤<-, 所以1]1[1≤<-xx x .又因为11lim )1(lim 00==-++→→x x x , 根据夹逼准则, 有1]1[lim 0=+→xx x .习题 1-71. 当x →0时, 2x -x 2 与x 2-x 3相比, 哪一个是高阶无穷小?解 因为02lim 2lim 202320=--=--→→xx x x x x x x x ,所以当x →0时, x 2-x 3是高阶无穷小, 即x 2-x 3=o (2x -x 2).2. 当x →1时, 无穷小1-x 和(1)1-x 3, (2))1(212x -是否同阶?是否等价?解 (1)因为3)1(lim 1)1)(1(lim 11lim 212131=++=-++-=--→→→x x xx x x x x x x x , 所以当x →1时, 1-x 和1-x 3是同阶的无穷小, 但不是等价无穷小.(2)因为1)1(lim 211)1(21lim 121=+=--→→x x x x x , 所以当x →1时, 1-x 和)1(212x -是同阶的无穷小, 而且是等价无穷小.3. 证明: 当x →0时, 有: (1) arctan x ~x ;(2)2~1sec 2x x -. 证明 (1)因为1tan limarctan lim 00==→→y yxx y x (提示: 令y =arctan x , 则当x →0时, y →0),所以当x →0时, arctan x ~x .(2)因为1)22sin 2(lim 22sin 2lim cos cos 1lim 2211sec lim 202202020===-=-→→→→x xx x x x x xx x x x x , 所以当x →0时, 2~1sec 2x x -. 4. 利用等价无穷小的性质, 求下列极限: (1)xx x 23tan lim 0→;(2)mn x x x )(sin )sin(lim 0→(n , m 为正整数);(3)x x x x 30sin sin tan lim -→; (4))1sin 1)(11(tan sin lim320-+-+-→x x x x x .解 (1)2323lim 23tan lim 00==→→x x x x x x .(2)⎪⎩⎪⎨⎧<∞>===→→mn m n m n x x x x mn x m n x 0 1lim )(sin )sin(lim00. (3)21cos 21lim sin cos cos 1lim sin )1cos 1(sin lim sin sin tan lim 220203030==-=-=-→→→→x x x x x x xx x x x x x x x x . (4)因为32221)2(2~2sin tan 2)1(cos tan tan sin x x x x x x x x x -=⋅--=-=-(x →0),23232223231~11)1(11x x x x x ++++=-+(x →0), x x x x x ~sin ~1sin 1sin 1sin 1++=-+(x →0), 所以 33121lim )1sin 1)(11(tan sin lim 230320-=⋅-=-+-+-→→x x x x x x x x x .5. 证明无穷小的等价关系具有下列性质: (1) α ~α (自反性);(2) 若α ~β, 则β~α(对称性); (3)若α ~β, β~γ, 则α~γ(传递性). 证明 (1)1lim =αα, 所以α ~α ;(2) 若α ~β, 则1lim =βα, 从而1lim=αβ. 因此β~α ;(3) 若α ~β, β~γ, 1lim limlim =⋅=βαγβγα. 因此α~γ. 习题1-81. 研究下列函数的连续性, 并画出函数的图形:(1)⎩⎨⎧≤<-≤≤=21 210 )(2x x x x x f ;解 已知多项式函数是连续函数, 所以函数f (x )在[0, 1)和(1, 2]内是连续的. 在x =1处, 因为f (1)=1, 并且1lim )(lim 211==--→→x x f x x , 1)2(lim )(lim 11=-=++→→x x f x x .所以1)(lim 1=→x f x , 从而函数f (x )在x =1处是连续的.综上所述,函数f (x )在[0, 2]上是连续函数.(2)⎩⎨⎧>≤≤-=1|| 111 )(x x x x f .解 只需考察函数在x =-1和x =1处的连续性. 在x =-1处, 因为f (-1)=-1, 并且)1(11lim )(lim 11-≠==---→-→f x f x x ,)1(1lim )(lim 11-=-==++-→-→f x x f x x ,所以函数在x =-1处间断, 但右连续. 在x =1处, 因为f (1)=1, 并且1lim )(lim 11==--→→x x f x x =f (1), 11lim )(lim 11==++→→x x x f =f (1),所以函数在x =1处连续.综合上述讨论, 函数在(-∞, -1)和(-1, +∞)内连续, 在x =-1处间断, 但右连续. 2. 下列函数在指出的点处间断, 说明这些间断点属于哪一类, 如果是可去间断点, 则补充或改变函数的定义使它连续:(1)23122+--=x x x y , x =1, x =2;解 )1)(2()1)(1(23122---+=+--=x x x x x x x y . 因为函数在x =2和x =1处无定义, 所以x =2和x =1是函数的间断点.因为∞=+--=→→231lim lim 2222x x x y x x , 所以x =2是函数的第二类间断点;因为2)2()1(limlim 11-=-+=→→x x y x x , 所以x =1是函数的第一类间断点, 并且是可去间断点. 在x =1处, 令y =-2, 则函数在x =1处成为连续的. (2)x x y tan =, x =k , 2ππ+=k x (k =0, ±1, ±2, ⋅ ⋅ ⋅);解 函数在点x =k π(k ∈Z)和2ππ+=k x (k ∈Z)处无定义, 因而这些点都是函数的间断点.因∞=→x x k x tan lim π(k ≠0), 故x =k π(k ≠0)是第二类间断点;因为1tan lim0=→xx x , 0tan lim2=+→x x k x ππ(k ∈Z), 所以x =0和2ππ+=k x (k ∈Z) 是第一类间断点且是可去间断点.令y |x =0=1, 则函数在x =0处成为连续的;令2 ππ+=k x 时, y =0, 则函数在2ππ+=k x 处成为连续的.(3)xy 1cos 2=, x =0;解 因为函数x y 1cos 2=在x =0处无定义, 所以x =0是函数xy 1cos 2=的间断点.又因为xx 1cos lim 20→不存在, 所以x =0是函数的第二类间断点.(4)⎩⎨⎧>-≤-=1 311x x x x y , x =1.解 因为0)1(lim )(lim 11=-=--→→x x f x x 2)3(lim )(lim 11=-=++→→x x f x x , 所以x =1是函数的第一类不可去间断点.3. 讨论函数x x x x f nnn 2211lim )(+-=∞→的连续性, 若有间断点, 判别其类型. 解 ⎪⎩⎪⎨⎧<=>-=+-=∞→1||1|| 01|| 11lim)(22x x x x x x x x x f nn n .在分段点x =-1处, 因为1)(lim )(lim 11=-=---→-→x x f x x , 1lim )(lim 11-==++-→-→x x f x x , 所以x =-1为函数的第一类不可去间断点.在分段点x =1处, 因为1lim )(lim 11==--→→x x f x x , 1)(lim )(lim 11-=-=++→→x x f x x , 所以x =1为函数的第一类不可去间断点.4. 证明: 若函数f (x )在点x 0连续且f (x 0)≠0, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0.证明 不妨设f (x 0)>0. 因为f (x )在x 0连续, 所以0)()(lim 00>=→x f x f x x , 由极限的局部保号性定理, 存在x 0的某一去心邻域)(0x U , 使当x ∈)(0x U时f (x )>0, 从而当x ∈U (x 0)时, f (x )>0. 这就是说, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0. 5. 试分别举出具有以下性质的函数f (x )的例子:(1)x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n1±, ⋅ ⋅ ⋅是f (x )的所有间断点, 且它们都是无穷间断点;解 函数x x x f ππcsc )csc()(+=在点x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n1±, ⋅ ⋅ ⋅处是间断的且这些点是函数的无穷间断点.(2)f (x )在R 上处处不连续, 但|f (x )|在R 上处处连续;解 函数⎩⎨⎧∉∈-=QQx x x f 1 1)(在R 上处处不连续, 但|f (x )|=1在R 上处处连续.(3)f (x )在R 上处处有定义, 但仅在一点连续.解 函数⎩⎨⎧∉-∈=Q Qx x x x x f )(在R 上处处有定义, 它只在x =0处连续.习题1-91. 求函数633)(223-+--+=x x x x x x f 的连续区间, 并求极限)(lim 0x f x →, )(lim 3x f x -→及)(lim 2x f x →.解 )2)(3()1)(1)(3(633)(223-++-+=-+--+=x x x x x x x x x x x f , 函数在(-∞, +∞)内除点x =2和x =-3外是连续的, 所以函数f (x )的连续区间为(-∞, -3)、(-3, 2)、(2, +∞). 在函数的连续点x =0处, 21)0()(lim 0==→f x f x .在函数的间断点x =2和x =-3处, ∞=-++-+=→→)2)(3()1)(1)(3(lim)(lim 22x x x x x x f x x , 582)1)(1(lim )(lim 33-=-+-=-→-→x x x x f x x .2. 设函数f (x )与g (x )在点x 0连续, 证明函数ϕ(x )=max{f (x ), g (x )}, ψ(x )=min{f (x ), g (x )} 在点x 0也连续.证明 已知)()(lim 00x f x f x x =→, )()(lim 00x g x g x x =→.可以验证] |)()(|)()([21)(x g x f x g x f x -++=ϕ,] |)()(|)()([21)(x g x f x g x f x --+=ψ.因此 ] |)()(|)()([21)(00000x g x f x g x f x -++=ϕ,] |)()(|)()([21)(00000x g x f x g x f x --+=ψ.因为] |)()(|)()([21lim )(lim 00x g x f x g x f x x x x x -++=→→ϕ] |)(lim )(lim |)(lim )(lim [210000x g x f x g x f x x x x x x x x →→→→-++=] |)()(|)()([210000x g x f x g x f -++==ϕ(x 0),所以ϕ(x )在点x 0也连续.同理可证明ψ(x )在点x 0也连续.3. 求下列极限: (1)52lim 20+-→x x x ;(2)34)2(sin lim x x π→;(3))2cos 2ln(lim 6x x π→;(4)xx x 11lim 0-+→;(5)145lim 1---→x x x x ;(6)a x a x a x --→sin sin lim ;(7))(lim 22x x x x x --++∞→.解 (1)因为函数52)(2+-=x x x f 是初等函数, f (x )在点x =0有定义, 所以 55020)0(52lim 220=+⋅-==+-→f x x x .(2)因为函数f (x )=(sin 2x )3是初等函数, f (x )在点4π=x 有定义, 所以1)42(sin )4()2(sin lim 334=⋅==→πππf x x .(3)因为函数f (x )=ln(2cos2x )是初等函数, f (x )在点6π=x 有定义, 所以0)62cos 2ln()6()2cos 2ln(lim 6=⋅==→πππf x x .(4))11(lim)11()11)(11(lim 11lim 000++=++++-+=-+→→→x x x x x x x x x x x x 211101111lim=++=++=→x x .(5))45)(1()45)(45(lim 145lim 11x x x x x x x x x x x x +--+---=---→→)45)(1(44lim 1x x x x x +---=→214154454lim 1=+-⋅=+-=→x x x .。

流体力学课后习题答案(孔珑编)中国电力出版社

流体力学课后习题答案(孔珑编)中国电力出版社
( 100 115) 103 =1.28+ =0.53kg m -3 20
2-3 解:如图示,在 1-2 等压面处 列平衡方程
P 1 P A H2O gh 1
P2 Pa Hg gh2
因为 P1 P2 , 所以, PA H2O gh1 =Pa Hg gh2 , 所以 PA =Pa Hg gh2 -H2O gh1
h1 h2 h (548- 304) 10-2 h 0.244
所以, Hg gh=PA -PB H O g (h 2.44) ,所以
2
h
PA - PB H2O g 2.44 (2.744 1.944) 105+103 9.81 2.44 =0.8409m ( Hg - H2O ) g ( 13.6 -1 ) 103 9.81
2 4
2 d 4
64
当 F 0 时,即 ( gh 所以, d 2 2 (r02 故
2 gh d2 2 r0 8
2 r02 d 2
2 ) 4

2 d 4
64
0
d2 ) 2 ghd 2 , 8
2 9.81 0.5 44.744rad s 1 , 2 1.2 0.432 8
克服摩擦需要消耗的功率 P M 所以内轴的圆周角速度 所以内轴转速 n
b 2 D 3 4
4 P 4 50.7 0.8 103 9.37rad s 1 3 3 bD 0.245 3.14 0.3 0.2
60 60 9.372 89.50rpm 2 2 3.14
1-13 解:润滑油的动力粘度 , 活塞表面所受的摩擦阻力 F A 所以活塞运动所消耗的功率

自动控制元件作业答案

自动控制元件作业答案

《自动控制元件》作业第一章 直流伺服电动机1-1直流伺服电动机的电磁转矩和控制电流由什么决定?答:a :由T em =C m ΦI a 知电磁转矩由每极磁通量和绕组电流大小决定。

b :由T em =T 0 +T 2 =CmΦIa 控制电流由负载转矩(T 2)和空载转矩(T 0)大小决定。

1-2当直流伺服电动机的负载转矩恒定不变时,控制电压升高将使稳态的电磁转矩、控制电流、转速发生怎样的变化?为什么?答:a :电磁转矩T em =T 0 +T 2可见电磁转矩也不变。

由T em =C m ΦI a 知控制电流I a 也不变b :KeKtRaTem Ke Ua n -=知T em 不变可见U a 转速升高理想空载转速变大导致转速n 升高。

1-3已知一台直流电动机,其电枢额定电压Ua=110V ,额定运行时电枢电流Ia=0.4A ,转速n=3600rpm ,它的电枢电阻Ra=50欧姆,负载阻转矩To=15mN.m 。

试问该电动机额定负载转矩是多少?答:Ea= Ua- IaRa=110-0.4×50=90VEa=Ce Φn, Ce=0.105Cm Cm Φ=0.23836000.10590n 105.0=⨯=⨯Ea T em =T 0 +T 2=CmΦI a →T 2=CmΦIa -T 0 =0.40.238=0.0952-15×10-3=80.2mN.m1-6当直流伺服电动机电枢电压、励磁电压不变时,如将负载转矩减少,试问此时电动机的电枢电流、电磁转矩、转速将怎样变化?并说明由原来的状态到新的稳态的物理过程。

答:磁转矩T em =T 0 +T 2可见T 2 ↓电磁转矩也↓。

由T em =C m ΦI a 知控制电流I a ↓Ea= Ua- IaRa 可见I a ↓知Ea↑,由Ea=Ce Φn 知Ea↑知n ↑电枢电流减少;电磁转矩减少;转速升高。

第二章 直流测速发电机2-4某直流测速发电机,其电枢电压U=50V ,负载电阻R L =3000Ω,电枢电阻Ra=180Ω,转速n=3000rpm ,求该转速下的空载输出电压Uo 和输出电流Ia 。

数字电子技术课后习题答案

数字电子技术课后习题答案

ABACBC
BC
A
00 01 11 10
00
1
0
1
11
0
1
0
Y ABC
❖ 3.13某医院有一、二、三、四号病室4间,每室设有 呼叫按钮,同时在护士值班室内对应的装有一号、 二号、三号、四号4个指示灯。
❖ 现要求当一号病室的按钮按下时,无论其它病室的 按钮是否按下,只有一号灯亮。当一号病室的按钮 没有按下而二号病室的按钮按下时,无论三、四号 病室的按钮是否按下,只有二号灯亮。当一、二号 病室的按钮都未按下而三号病室的按钮按下时,无 论四号病室的按钮是否按下,只有三号灯亮。只有 在一、二、三号病室的按钮均未按下四号病室的按 钮时,四号灯才亮。试用优先编码器74148和门电路 设计满足上述控制要求的逻辑电路,给出控制四个 指示灯状态的高、低电平信号。
HP RI/BIN
I0
0/ Z1 0 10 ≥1
I1
1/ Z1 1 11
I2
2/ Z1 2 12 18
YS
I3
3/ Z1 3 13
I4
4/ Z1 4 14
YEX
I5
5/ Z1 5 15
I6
6/ Z1 6 16
I7
7/ Z1 7 17
Y0
V18
Y1
ST
E N
Y2
(b)
74148
(a)引脚图;(b)逻辑符号
A
00 01 11 10
00
0
0
1
11
1
0
1
Y AB BC AC
由于存在AC 项,不存在相切的圈,故无冒险。
❖ 4.1在用或非门组成的基本RS触发器中,已知 输入SD 、RD的波形图如下,试画出输出Q, Q

数据处理分析课后答案

数据处理分析课后答案

化工数据分析与处理(课后作业)第一章误差原理与概率分布1、某催化剂车间用一台包装机包装硅铝小球催化剂,额定标准为每包净重25公斤,设根据长期积累的统计资料,知道包装机称得的包重服从正态分布,又其标准差为σ=0.75公斤,某次开工后,为检验包装机的工作是否正常,随机抽取9包催化剂复核其净重分别为:解:先做原假设 假设H 0:μ=μ0构造统计量:Z =nx /σμ--~N(0,1)-x =∑x i /n=25.45σ=0.75 μ=μ0=25 得:Z =1.8查表得:Φ ( 1.8 ) = 0.9641给出适当的α ,取α=0.05,1- α = 0.95 < 0.9641 落在大概率解范围内接受H 0则 μ=μ0 ,即包装机目前工作正常。

均值的0.95置信区间。

解:因为P =1-α=0.95 所以α=1-0.95=0.05σ不知,所以只能用t 分布 即用S 代替σ S 2=1)(--∑-n x x i =0.048515789 S=0.220263-x =3.21令T =nS x /μ--~t(n-1,2α)则有:P(-At <T <At)=1-α=1-0.05 n-1=20-1=192α=0.025 查表得:At (19,0.025)=2.0930估计区间为:P(-x -At(n-1, 2α)*n S <μ<-x +At(n-1, 2α)*nS=0.95所以:3.21-2.0930*200.220263<μ<3.21+2.0930*200.220263即:3.21-0.100425<μ<3.21+0.100425所以:3.109575<μ<3.3104253、某厂化验室用A,B 两种方法测定该厂冷却水中的含氯量(ppm ),每天取样一次,下面是七天的记录:试问:这两种方法测量的结果有无显著的差异?一般可取显著水平α=0.01. 解:因为是用两种方法来测同一个溶液,故把所测氯含量为母体。

检验假设H0:μ1=μ2的问题。

(完整版)电路原理课后习题答案

(完整版)电路原理课后习题答案

因此, 时,电路的初始条件为
t〉0后,电路的方程为
设 的解为
式中 为方程的特解,满足
根据特征方程的根
可知,电路处于衰减震荡过程,,因此,对应齐次方程的通解为
式中 。由初始条件可得
解得
故电容电压
电流
7-29RC电路中电容C原未充电,所加 的波形如题7—29图所示,其中 , 。求电容电压 ,并把 :(1)用分段形式写出;(2)用一个表达式写出。
题4-17图
解:首先求出 以左部分的等效电路.断开 ,设 如题解4-17图(a)所示,并把受控电流源等效为受控电压源。由KVL可得
故开路电压
把端口短路,如题解图(b)所示应用网孔电流法求短路电流 ,网孔方程为
解得
故一端口电路的等效电阻
画出戴维宁等效电路,接上待求支路 ,如题解图(c)所示,由最大功率传输定理知 时其上获得最大功率。 获得的最大功率为
(a)(b)
题3—1图
解:(1)每个元件作为一条支路处理时,图(a)和(b)所示电路的图分别为题解3-1图(a1)和(b1)。
图(a1)中节点数 ,支路数
图(b1)中节点数 ,支路数
(2)电压源和电阻的串联组合,电流源和电阻的并联组合作为一条支路处理时,图(a)和图(b)所示电路的图分别为题解图(a2)和(b2)。
电容电流
t=2 ms时
电容的储能为
7—20题7—20图所示电路,开关合在位置1时已达稳定状态,t=0时开关由位置1合向位置2,求t0时的电压 .
题7-20图
解:
用加压求流法求等效电阻
7-26题7—26图所示电路在开关S动作前已达稳态;t=0时S由1接至2,求t0时的 .
题7-26图
解:由图可知,t>0时
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信息论基础(于秀兰 陈前斌 王永)课后作业答案注:X 为随机变量,概率P(X =x)是x 的函数,所以P(X)仍为关于X 的随机变量,文中如无特别说明,则以此类推。

第一章1.6[P (xy )]=[P(b 1a 1)P(b 2a 1)P(b 1a 2)P(b 2a 2)]=[0.360.040.120.48] [P (y )]=[P(b 1)P(b 2)]=[0.480.52] [P (x|y )]=[P(a 1|b 1)P(a 2|b 1)P(a 1|b 2)P(a 2|b 2)]=[0.750.250.0770.923]第二章2.1(1)I (B )=−log P (B )=−log 18=3(bit) 注:此处P (B )表示事件B 的概率。

(2)设信源为X ,H (X )=E [−logP (X )]=−14log 14−2∙18log 18−12log 12=1.75(bit/symbol) (3)ξ=1−η=1−1.75log4=12.5%2.2(1)P(3和5同时出现)=1/18I =−log118≈4.17(bit) (2)P(两个2同时出现)=1/36I =−log 136≈5.17(bit) (3)向上点数和为5时(14,23,41,32)有4种,概率为1/9,I =−log 19≈3.17(bit) (4)(5)P(两个点数至少有一个1)=1−5∙5=11 I =−log 1136≈1.71(bit) (6)相同点数有6种,概率分别为1/36;不同点数出现有15种,概率分别为1/18;H =6∙136∙log36+15∙118∙log18≈4.34(bit/symbol)2.9(1)H (X,Y )=E [−logP (X,Y )]=−∑∑P(x i ,y j )logP(x i ,y j )3j=13i=1≈2.3(bit/sequence)(2)H (Y )=E [−logP (Y )]≈1.59(bit/symbol)(3)H (X |Y )=H (X,Y )−H (Y )=0.71(bit/symbol)2.12(1)H (X )=E [−logP (X )]=−2log 2−1log 1≈0.92(bit/symbol) Y 的分布律为:1/2,1/3,1/6;H (Y )=E [−logP (Y )]≈1.46(bit/symbol)(2)H (Y |a 1)=E [−logP (Y|X )|X =a 1]=−∑P (b i |a 1)logP (b i |a 1)i=−34log 34−14log 14≈0.81(bit/symbol) H (Y |a 2)=E [−logP (Y|X )|X =a 2]=−∑P (b i |a 2)logP (b i |a 2)i=−12log 12−12log 12=1(bit/symbol) (3)H (Y |X )=∑P (a i )H (Y |a i )i =23∙0.81+13∙1≈0.87(bit/symbol)2.13(1)H (X )=H (0.3,0.7)≈0.88(bit/symbol)二次扩展信源的数学模型为随机矢量X 2=(X 1X 2),其中X 1、X 2和X 同分布,且相互独立,则H (X 2)=2H (X )=1.76(bit/sequence)平均符号熵H 2(X 2)=H (X )≈0.88(bit/symbol)(2)二次扩展信源的数学模型为随机矢量X 2=(X 1X 2),其中X 1、X 2和X 同分布,且X 1、X 2相关,H (X 2|X 1)=E [−logP (X 2|X 1)]=−∑∑P (x 1,x 2)logP (x 2|x 1)x 2x 1=−110log 13−210log 23−2140log 34−740log 14≈0.84(bit/symbol) H (X 2)= H (X 1,X 2)=H (X 2|X 1)+H (X 1)=0.84+0.88=1.72(bit/sequence)H 2(X 2)=H (X 2)/2=0.86(bit/symbol)2.14(1)令无记忆信源为X ,H (X )=H (14,34)=14×2+34×0.415≈0.81(bit/symbol ) (2)I (X 100)=−logP (X 100=x 1x 2…x 100)=−log [(14)m (34)100−m]=2m +(2−log3)(100−m )=200−(100−m )log3 (bit)(3)H (X 100)=100H (X )=81(bit/sequence)2.15(1)因为信源序列符号间相互独立,且同分布,所以信源为一维离散平稳信源。

(2)H(X)=H(0.2,0.8)≈0.72(bit/symbol)H(X2)=2H(X)=1.44(bit/sequence)H(X3|X1X2)=H(X3)=H(X)=0.72(bit/symbol)H∞=H(X)=0.72(bit/symbol)2.16(1)H(X2|X1)=E[−logP(X2|X1)]=−∑∑P(x1,x2)logP(x2|x1)x2x1=−610log910−230log110−230log210−830log810≈0.55(bit/symbol) H(X3|X2X1)= H(X3|X2)=H(X2|X1)≈0.55(bit/symbol)H(X4|X3X2X1)= H(X4|X3)=H(X2|X1)≈0.55(bit/symbol)(2)H∞=H(X2|X1)≈0.55(bit/symbol)ξ=1−η=1−0.55log2=45%(3)H(X)=H(23,13)≈0.92(bit/symbol)H∞≤H(X),二维离散平稳信源的极限熵不大于其单符号信源的熵,说明离散单符号信源扩展后的单符号平均熵是非增的。

2.18(1)a iϵA,A是状态集;P(x i+1|s i=E a)表示i时刻状态为E a,i+1时刻输出x i+1。

该马尔科夫链的状态转移矩阵为P=[P(E aj |E ai)]=[P(x i+1|x i)]=[P(x i+1|s i=E a)]=[1/21/41/42/301/32/31/30],P2=[7/125/245/245/95/181/65/91/65/18],所以该链为齐次遍历马尔科夫链。

(2)令P(x i=k)=p i(k),则[p1(1)p1(2)p1(3)]=[1/21/41/4],[p2(1)p2(2)p2(3)]=[p1(1)p1(2)p1(3)]P=[111][1214142123130]=[712524524]因为[p1(1)p1(2)p1(3)]≠[p2(1)p2(2)p2(3)],所以该信源不是离散平稳信源。

(3)当信源的输出序列足够长,马尔科夫链达到平稳分布时,该信源可以看作离散平稳信源。

(4)H(X i+1|s i=E1)=−∑P(x i+1=a|s i=E1)logP(x i+1=a|s i=E1)a=−12log12−2∙14log14=1.5(bit/symbol)同理得:H(X i+1|s i=E2)≈0.92(bit/symbol)H(X i+1|s i=E3)≈0.92(bit/symbol)设极限分布为[P(E1)P(E2)P(E3)],则P(E1)=12P(E1)+23P(E2)+23P(E3)P(E2)=14P(E1)+13P(E3)P(E3)=1P(E1)+1P(E2)P(E1)+P(E2)+P(E3)=1解得P(E1)=4/7,P(E2)=3/14,P(E3)=3/14H∞=H(X i+1|s i)=47×1.5+2×314×0.92≈1.25(bit/symbol)(5)H0=log3≈1.59(bit/symbol)H1=H(12,14,14)=1.5(bit/symbol)ξ1=1−1.51.59≈5.66%H2=H(712524524)≈1.40(bit/symbol)ξ2=1−1.4≈11.95%[p3(1)p3(2)p3(3)]=[p2(1)p2(2)p2(3)]P=[712524524][1214142123130]=[413131]H 2=H(41723114431144)≈1.42(bit/symbol) ξ3=1−1.421.59≈10.69%2.20(1)状态转移矩阵P =[P(E j |E i )]=[0.80.200000.50.50.50.500000.20.8] (2)由P 知此马尔科夫链存在极限分布,设极限分布为[P(E 1)P(E 2)P(E 3)P(E 4)],则P (E 1)=0.8P(E 1)+0.5P(E 3)P (E 2)=0.2P(E 1)+0.5P(E 3)P (E 3)=0.5P(E 2)+0.2P(E 4)P (E 4)=0.5P(E 2)+0.8P(E 4)P (E 1)+P (E 2)+P (E 3)+P(E 4)=1解得P (E 1)=5/14,P (E 2)=1/7,P (E 3)=1/7,P (E 4)=5/14(3)H (X i+1|s i =E 4)=H (X i+1|s i =E 1)=−0.8log0.8−0.2log0.2≈0.72(bit/symbol)H (X i+1|s i =E 3)=H (X i+1|s i =E 2)=−2∗0.5log0.5=1(bit/symbol)H ∞=H (X i+1|s i )=2×5×0.72+2×1×1=0.8(bit/symbol) (4)P (0)=∑P (0|E i )P(E i )i =0.8×514+0.5×17+0.5×17+0.2×514=0.5 P (1)=0.5(5)初始时刻的P (0),P (1)和(4)中不一样,所以初始时刻的信源不是平稳信源。

相关文档
最新文档