153分式方程时精品PPT课件
合集下载
人教版八年级数学上册《153分式方程》课件

解:设江水每小时的流速是x千米,根据 题意列方程
72 48 20x 20x
请完成下面的过程
例3.某人骑自行车比步行每小时多走8千 米, 如果他步行12千米所用时间与骑车 行36千米所用的时间相等,求他步行40 千米用多少小时?
解:设他步行1千米用x小时,根据题意列 方程
12 36 x x8
请完成下面的过程
练习:解方程
2.
x x
21 2
8 x2 4
x0
3. 3 2 1 x
无解
4x x4
4.若方程
3 2 1有增根,则增根
2x4 x2
应是
5.解关于x的方程
2 ax 3 x2 x24 x2
产生增根,则常数a= 。
x1 A B 6、 已知 x22xxx2 求A、B
复习回顾二:
列分式方程解应用题的一般步骤 1.审:分析题意,找出研究对象,建立等量关系. 2.设:选择恰当的未知数,注意单位. 3.列:根据等量关系正确列出方程. 4.解:认真仔细. 5.验:不要忘记检验. 6.答:不要忘记写.
例4. 甲乙两人分别从相距36千米的A、B两地相向而行,
甲从A出发到1千米时发现有东西遗忘在A地,立即返回,
取过东西后又立即从A向B行进,这样两人恰好在AB中点
处相遇。已知甲比乙每小时多走0.5千米,求二人的速度
各是多少?
36千米
A 1千米
B
分析:等量关系
t 甲=t 乙
18 1 2 = 18
x 0.5 x
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月2021/11/72021/11/72021/11/711/7/2021 7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观察是 思考和识记之母。”2021/11/72021/11/7November 7, 2021 8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。 2021/11/72021/11/72021/11/72021/11/7
72 48 20x 20x
请完成下面的过程
例3.某人骑自行车比步行每小时多走8千 米, 如果他步行12千米所用时间与骑车 行36千米所用的时间相等,求他步行40 千米用多少小时?
解:设他步行1千米用x小时,根据题意列 方程
12 36 x x8
请完成下面的过程
练习:解方程
2.
x x
21 2
8 x2 4
x0
3. 3 2 1 x
无解
4x x4
4.若方程
3 2 1有增根,则增根
2x4 x2
应是
5.解关于x的方程
2 ax 3 x2 x24 x2
产生增根,则常数a= 。
x1 A B 6、 已知 x22xxx2 求A、B
复习回顾二:
列分式方程解应用题的一般步骤 1.审:分析题意,找出研究对象,建立等量关系. 2.设:选择恰当的未知数,注意单位. 3.列:根据等量关系正确列出方程. 4.解:认真仔细. 5.验:不要忘记检验. 6.答:不要忘记写.
例4. 甲乙两人分别从相距36千米的A、B两地相向而行,
甲从A出发到1千米时发现有东西遗忘在A地,立即返回,
取过东西后又立即从A向B行进,这样两人恰好在AB中点
处相遇。已知甲比乙每小时多走0.5千米,求二人的速度
各是多少?
36千米
A 1千米
B
分析:等量关系
t 甲=t 乙
18 1 2 = 18
x 0.5 x
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月2021/11/72021/11/72021/11/711/7/2021 7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观察是 思考和识记之母。”2021/11/72021/11/7November 7, 2021 8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。 2021/11/72021/11/72021/11/72021/11/7
分式方程(第二课时) 课件(共26张PPT) 初中数学人教版八年级上册

方程两边同时乘以6x,得 2x+x+3=6x .解得 x=1.
检验:当x=1时,6x≠0.
所以原分式方程的解为 x=1.
由上可知,若乙队单独施工1个月可以完成全部任务,对比甲 队1个月完成任务的 1 ,可知乙队的施工速度快.
3
探究新知
【问题2】某次列车平均提速 v km/h.用相同的时间,列车提速前行驶 s km,提速后比提速前多行驶 50 km,提速前列车的平均速度为多少?
知识练习
解分式方程:(1) 7 1 x 1 ; (2) x 1 x 1 1.
x2 2x
x 1 x2 1
解:(1) 7 1 x 1 , x2 2x
解:(2) x 1 x 1 1, x 1 x2 1
去分母得: 7 x 2 1 x ,
去分母得: x 12 x 1 x2 1 ,
B.300
C.400
D.500
解析:设改造后每天生产的产品件数为 x,则改造前每天生产的
产品件数为 x 100 ,
根据题意,得: 600 400 , x x 100
解得: x 300 , 经检验 x 300 是分式方程的解,且符合题意, 答:改造后每天生产的产品件数 300.故选:B.
练习 3 A,B 两种机器人都被用来搬运化工原料,A 型机器人比 B
个月的工程量 = 总工程量(记为1).
1 3
+
1 6
1
+ 2x
探究新知
甲队施工1个月的工程量 + 甲队施工半个月的工程量 + 乙队施工半 个月的工程量 = 总工程量(记为1).
解:设乙队单独施工1个月能完成总工程的 根据工程的实际进度,得 1 1 1 1
八级数学上册 15.3 分式方程课件 (新版)新人教版版

程的根;2、是否符合意) 5:写答案
初中数学
例2. 甲、乙两人做某种机器零件,已知甲每小时比 乙多做6个,甲做90个零件所用的时间和乙做60个零件 所用时间相等,求甲、乙每小时各做多少个零件?
解:设甲每小时做x个零件则乙每小时做( x -6)个零件,
依题意得: 等量关系:甲用时间=乙用时间
90 60 x x6
15.3 分式方程
初中数学
解分式方程的思路是:
分式 方程
去分母
整式 方程
解分式方程的一般步骤
1、 在方程的两边都乘以最简公分母,约去分母, 化成整式方程.
2、解这个整式方程.
3、 把整式方程的解代入最简公分母,如果最简 公分母的值不为0,则整式方程的解是原分式方程的 解;否则,这个解不是原分式方程的解,必须舍去.
初中数学
练习2:甲、乙二人同时从张庄出发,步 行15千米到李庄。甲比乙每小时多走1千 米,结果比乙早到半小时。二人每小时 各走多少千米? 解:设甲速度为x千米/时,则乙速度为 _(__x_-_1_) __千米/时
15 15 0.5 x 1 x
初中数学
练习1:某农场开挖一条长960米的渠道,开工后工作 效率比计划提高50%,结果提前4天完成任务。原计划 每天挖多少米?
4、写出原方程的根. 初中数学一化二解三检验
解方程
x 1 4 1 x 1 x2 1
解:方程两边都乘以 (x+1) ( x – 1 ) , 得
( x + 1 )2-4 = x2-1
解得
x=1
检验: x = 1 时(x+1)(x-1)=0,x=1不 是原分式方程的解.
∴原方程无解.
初中数学
,乙队半个月完成
初中数学
例2. 甲、乙两人做某种机器零件,已知甲每小时比 乙多做6个,甲做90个零件所用的时间和乙做60个零件 所用时间相等,求甲、乙每小时各做多少个零件?
解:设甲每小时做x个零件则乙每小时做( x -6)个零件,
依题意得: 等量关系:甲用时间=乙用时间
90 60 x x6
15.3 分式方程
初中数学
解分式方程的思路是:
分式 方程
去分母
整式 方程
解分式方程的一般步骤
1、 在方程的两边都乘以最简公分母,约去分母, 化成整式方程.
2、解这个整式方程.
3、 把整式方程的解代入最简公分母,如果最简 公分母的值不为0,则整式方程的解是原分式方程的 解;否则,这个解不是原分式方程的解,必须舍去.
初中数学
练习2:甲、乙二人同时从张庄出发,步 行15千米到李庄。甲比乙每小时多走1千 米,结果比乙早到半小时。二人每小时 各走多少千米? 解:设甲速度为x千米/时,则乙速度为 _(__x_-_1_) __千米/时
15 15 0.5 x 1 x
初中数学
练习1:某农场开挖一条长960米的渠道,开工后工作 效率比计划提高50%,结果提前4天完成任务。原计划 每天挖多少米?
4、写出原方程的根. 初中数学一化二解三检验
解方程
x 1 4 1 x 1 x2 1
解:方程两边都乘以 (x+1) ( x – 1 ) , 得
( x + 1 )2-4 = x2-1
解得
x=1
检验: x = 1 时(x+1)(x-1)=0,x=1不 是原分式方程的解.
∴原方程无解.
初中数学
,乙队半个月完成
八年级数学人教版(上册)15.3.1分式方程及其解法(共25张PPT)

0 ,方程 无意义
探究新知
在去分母时,将分式方程转化为整式方程的过程中 出现的不适合于原方程的根 .
特征:增根使最简公分母为零 判断方法:验根时把整式方程的根代入最简公分母
交流讨论
问题1:产生 “ 增根 ” 的原因在哪里呢?
分式方程的求根过程不一定是同解变形,所以分 式方程一定要验根!
问题2:“ 方程有增根 ” 和 “ 方程无解 ” 一样吗?
否为零?
方程的解
例题解析
方程两边同乘以x(x-3),得 2x=3(x-3)
解得x=9.
检验:当x=9时,x(x-3) ≠0.
所以,原分式方程的解为x=9.
解得x=-2. 检验:当x=-2时,(x+2)(x-2) =0. 因此x=-2不是原分式方程的解.
所以,原分式方程无解.
x = -2 时, 分式方程 的分母为
当堂达标
C
C
C C
C
x=3是增根,原分式方程无解 .
去分母时,原方程的整式部分漏乘. 约去分母后,分子是多项式时, 要注意添括号. 忘记检验 . 注意去括号时前面的负号 .
例题解析
课堂小结:
说能出你这节课的收获和体验让大家与
你分享吗?
解分式方程的步骤
①去分母 : 化分式方程为整式方程 . 即把分式方 程两边同乘以最简公分母 . ②解这个整式方程 . ③检验 :把整式方程的解 ( 根 ) 代入最简公分母, 若结果为 0 ,则必须舍去,否则,它是原方程的 根. ④写结论 .
将x=0代入得3× (0-1)+6×0=0+k . 解得k=-3 . 将x=1代入得3× (1-1)+6×1=1+k . 解得k=5. 所以k=-3或k=5
探究新知
在去分母时,将分式方程转化为整式方程的过程中 出现的不适合于原方程的根 .
特征:增根使最简公分母为零 判断方法:验根时把整式方程的根代入最简公分母
交流讨论
问题1:产生 “ 增根 ” 的原因在哪里呢?
分式方程的求根过程不一定是同解变形,所以分 式方程一定要验根!
问题2:“ 方程有增根 ” 和 “ 方程无解 ” 一样吗?
否为零?
方程的解
例题解析
方程两边同乘以x(x-3),得 2x=3(x-3)
解得x=9.
检验:当x=9时,x(x-3) ≠0.
所以,原分式方程的解为x=9.
解得x=-2. 检验:当x=-2时,(x+2)(x-2) =0. 因此x=-2不是原分式方程的解.
所以,原分式方程无解.
x = -2 时, 分式方程 的分母为
当堂达标
C
C
C C
C
x=3是增根,原分式方程无解 .
去分母时,原方程的整式部分漏乘. 约去分母后,分子是多项式时, 要注意添括号. 忘记检验 . 注意去括号时前面的负号 .
例题解析
课堂小结:
说能出你这节课的收获和体验让大家与
你分享吗?
解分式方程的步骤
①去分母 : 化分式方程为整式方程 . 即把分式方 程两边同乘以最简公分母 . ②解这个整式方程 . ③检验 :把整式方程的解 ( 根 ) 代入最简公分母, 若结果为 0 ,则必须舍去,否则,它是原方程的 根. ④写结论 .
将x=0代入得3× (0-1)+6×0=0+k . 解得k=-3 . 将x=1代入得3× (1-1)+6×1=1+k . 解得k=5. 所以k=-3或k=5
人教版八年级上册数学课件:15.3 分式方程

名师解读 一般步骤可简化为“一去”,即去分母化分式方程为整式 方程;“二解”,即解整式方程;“三验”,即验根;“四答”,即写出答案.
知识点一 知识点二 知识点三
知识点三 分式方程的应用 列分式方程解应用题的基本思路. (1)审:了解已知量与未知量各是什么; (2)设:设出未知数; (3)找:找出相等关系,列出分式方程; (4)解:解这个分式方程; (5)验:检验,看方程的解是否满足方程和符合题意; (6)答:写出答案. 名师解读 列分式方程解应用题的关键是用分式表示一些基本的 数量关系,列分式方程解应用题一定要验根,还要保证其结果符合 实际意义.
15.3 分式方程
知识点一 知识点二 知识点三
知识点一 分式方程的定义 分母中含未知数的方程叫做分式方程. 名师解读 理解分式方程要注意,所给的式子必须具备三个特 征:(1)含有分母;(2)分母中含有未知数;(3)是方程.
知识点一 知识点二 知识点三
知识点二 分式方程的解法 (1)解分式方程的基本思路是将分式方程化为整式方程,具体做法 是“去分母”,即方程两边乘最简公分母,这也是解分式方程的一般方 法. (2)解分式方程的一般步骤:
拓展点一 拓展点二 拓展点三 拓展点四
解两边分别通分,得(������-45)-(������������-3) = (������-25)-(������������-1). 当分子为零,即 5-x=0 时, 解得 x=5; 当分子不为零,而分母相等时,得 (x-4)(x-3)=(x-2)(x-1),解得 x=52, 检验:x=5,x=52时,各分母都不为 0. 故 x=5,x=52都是原分式方程的解.
C.m>-94
D.m>-94且 m≠-34
解析:去分母得 x+m-3m=3x-9,整理得 2x=-2m+9,解得 x=-2���2���+9.
知识点一 知识点二 知识点三
知识点三 分式方程的应用 列分式方程解应用题的基本思路. (1)审:了解已知量与未知量各是什么; (2)设:设出未知数; (3)找:找出相等关系,列出分式方程; (4)解:解这个分式方程; (5)验:检验,看方程的解是否满足方程和符合题意; (6)答:写出答案. 名师解读 列分式方程解应用题的关键是用分式表示一些基本的 数量关系,列分式方程解应用题一定要验根,还要保证其结果符合 实际意义.
15.3 分式方程
知识点一 知识点二 知识点三
知识点一 分式方程的定义 分母中含未知数的方程叫做分式方程. 名师解读 理解分式方程要注意,所给的式子必须具备三个特 征:(1)含有分母;(2)分母中含有未知数;(3)是方程.
知识点一 知识点二 知识点三
知识点二 分式方程的解法 (1)解分式方程的基本思路是将分式方程化为整式方程,具体做法 是“去分母”,即方程两边乘最简公分母,这也是解分式方程的一般方 法. (2)解分式方程的一般步骤:
拓展点一 拓展点二 拓展点三 拓展点四
解两边分别通分,得(������-45)-(������������-3) = (������-25)-(������������-1). 当分子为零,即 5-x=0 时, 解得 x=5; 当分子不为零,而分母相等时,得 (x-4)(x-3)=(x-2)(x-1),解得 x=52, 检验:x=5,x=52时,各分母都不为 0. 故 x=5,x=52都是原分式方程的解.
C.m>-94
D.m>-94且 m≠-34
解析:去分母得 x+m-3m=3x-9,整理得 2x=-2m+9,解得 x=-2���2���+9.
人教版数学八上 15.3 分式方程(第一课时) 课件(共18张PPT)

将分式方程转化为整式方程
2.解这个整式方程
3.检验(代入最简公分母看是否为0,为0 无解)
4.得出结论
得到整式方程的解 舍去无意义的根 得到原方程的解
口诀:一化二解三检验
(1) 1 2 2x x 3
(2) x 2x 1 x 1 3x 3
2
4
(3)
x 1
x2
1
判断下列解方程过程是否正确,如有错误,请改正.
解 : 方 程 两 边 同 乘( x 1)(3x 3), 得 : 解:方程两边同乘3(x 1),得:
x(3x 3) 2x( x 1) 1 解 得 :x 1
× 3x 2x 3(x 1) 解得:x 3
检 验 : 当x 1时 ,( x 1)(3x 3) 0,
2 x1 4 解 得 :x 3
2 检 验 : 当x 3 时 ,( x 1)(x 1) 0
2
2( x 1) 4
× 解得:x 1
检验:当x 1时,( x 1)( x 1) 0
x 1不是原分式方程方程无解。
(1) 1 2 ; 2x x 3
解:方程两边同乘2x( x 3),得
x 3 4x
解得:x 1 检验:当x 1时,2x( x 3) 0, x 1是原分式方程的解。
×
判断下列解方程过程是否正确,如有错误,请改正.
(2) x 2x 1; x 1 3x 3
在解分式方程时,应注意:
(1)解分式方程需要检验; (2)去分母时不要漏乘不含分母的项; (3)分母中有多项式应先因式分解,
再找最简公分母; (4)去分母时多项式要加括号。
(1) 2 3 x3 x
人教版数学八年级上册 15.3 分式方程 课件(共26张PPT)

这种数学思想方法把它叫做 “转化” 数学思想。
今
日 课本P154习题15.3 作 第1题。
业
15.3.分式方程(第2课时)
下面我们再讨论一个分式方程:
1 10
x 5 x2 25
解:方程②两边同乘(x+5)(x-5),得
x+5=10, 解得 x=5.
x=5是原分式方 程的解吗?
检验:将x=5代入原方程中,分母x-5和x2-25的值都为0,
15.3分式方程(第1课时)
一艘轮船在静水中的最大航速为30千米/时, 它沿江以最大航速顺流航行90千米所用时间,与 以最大航速逆流航行60千米所用时间相等,江水 的流速为多少?
解:设江水的流速为 v 千米/时,根据题意,得
90 60 30 v 30 v
分母中含未知数的 方程叫做?.
90 60 30 v 30 v
)D
A. 3y-6 B. 3y C. 3 (3y-6) D. 3y (y-2)
2. 解分式方程
x 8 5x 8 时,去分母后得
x 7 14 2x
到的整式方程是( A )
A.2(x-8)+5x=16(x-7)
B.2(x-8)+5x=8
C.2(x-8)-5x=16(x-7)
D.2(x-8)-5x=8
4.写出原方程的根. 简记为:“一化二解三检验”.
尝试应用
1、关x的方程 axx1 =4
的解是x=
1 2
,
则a= 2 .
2、如果
1 x2
3
1 x 2x
有
增根,那么增根为 x=2 .
温馨提示:使最简公分母的值为零解叫做增根
3、若分式方程
a 4 0 x2 x24
今
日 课本P154习题15.3 作 第1题。
业
15.3.分式方程(第2课时)
下面我们再讨论一个分式方程:
1 10
x 5 x2 25
解:方程②两边同乘(x+5)(x-5),得
x+5=10, 解得 x=5.
x=5是原分式方 程的解吗?
检验:将x=5代入原方程中,分母x-5和x2-25的值都为0,
15.3分式方程(第1课时)
一艘轮船在静水中的最大航速为30千米/时, 它沿江以最大航速顺流航行90千米所用时间,与 以最大航速逆流航行60千米所用时间相等,江水 的流速为多少?
解:设江水的流速为 v 千米/时,根据题意,得
90 60 30 v 30 v
分母中含未知数的 方程叫做?.
90 60 30 v 30 v
)D
A. 3y-6 B. 3y C. 3 (3y-6) D. 3y (y-2)
2. 解分式方程
x 8 5x 8 时,去分母后得
x 7 14 2x
到的整式方程是( A )
A.2(x-8)+5x=16(x-7)
B.2(x-8)+5x=8
C.2(x-8)-5x=16(x-7)
D.2(x-8)-5x=8
4.写出原方程的根. 简记为:“一化二解三检验”.
尝试应用
1、关x的方程 axx1 =4
的解是x=
1 2
,
则a= 2 .
2、如果
1 x2
3
1 x 2x
有
增根,那么增根为 x=2 .
温馨提示:使最简公分母的值为零解叫做增根
3、若分式方程
a 4 0 x2 x24
人教版初中数学八年级上册第十五章15.3 分式方程 课件(共12张PPT)

去分母
解整式方程 检验
是 x =a不是分式 方程的解
=4 1-x2
;
(3)1 + 2 =1; (4)1 >5.
3x x2
x
(5)x 1 2; (6)x2 4 0. x
例题分析
解分式方程:x 3 2 3x 3 4x 8x
根据你的经验, 思考:上面的分式方程应该怎样解?
类比一元一次方程的解法
去分母
分式方程
整式方程
模仿练习
解分式方程: 3 1 3x x 1 x 1
注意: 由于去分母后所得的整式方程的解不一 定是原分式方程的解,所以一定要检验.
那么,怎样对方程的解进行检验呢?
变式练习
x 3 2 3x 3 4x 8x
3 1 3x x 1 x 1
提示:对比观察上面两个方程与下面两个方程 在结构上的不同,思考下面的方程怎样解?
解分式方程: 2 3 x3 x
观察:方程 3 1 3x 和 2 3 与上面的方程 x 1 x 1 x 3 x
有什么共同特征?
像这样,分母中含未知数的方程叫做分式方程.
你能再写出几个分式方程吗?
概念辨析
练习:下列式子中,属于分式方程的是 (2)(3,)(5)
属于整式方程的是 (1)(6. )
(1)x 3
+
x-1 =1; 2
(2)1-2x
反思小结
1、分式方程的概念?解分式方程的一般步骤与 注意事项?
2、你在解分式方程时有过哪些失误的地方?应 该怎样改正?
3、你还有哪些方法上的收获?
过关检测
解分式方程: x 1
3
x 1 (x 1)(x 2)
相信自己
提高练习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习回顾
解下列方程:
(1) 1 2x
=
2; x+3
(2)x2-1
=
4 x2 -1
.
学习目标
1、会列出分式方程解决简单的实际 问题. 2、能根据实际问题的意义检验所得 的结果是否合理.
合作学习
甲、乙两人做某种机器零件,已知甲每小 时比乙多做6个,甲做90个零件所用的时 间和乙做60个零件所用的时间相等,求甲、 乙每小时各做多少个零件?
度为x km/hቤተ መጻሕፍቲ ባይዱ先考虑下面的填空: s
提速前列车行驶s km所用的时间为 xh,提速后列车
的平均速度为(x+kvm)/h,提速后列车运行 (sk+m50)
所用时间为 sx++5vh0. 根据行驶时间的等量关系可以列出
方程:
s x
=
s+50 x+v
合作学习
去分母得:s(x+v)=x (s+50)
去括号,得sx+sv=sx+50x.
反馈练习
解:设甲工厂每天加工x件产品,则乙工厂
每天加工1.5x件产品,依题意得
,
1200 1200 10
解得x:x=1.450x .
经检验x=40是原方程的解,所以1.5x=60.
答:甲工厂每天加工40件产品,乙工厂每
天加工60件产品.
反馈练习
某市从今年1月1日起调整居民用水价格,每吨 水费上涨三分之一,小丽家去年12月的水费是 15元,今年2月的水费是30元.已知今年2月的 用水量比去年12月的用水量多5吨,求该市今 年居民用水的价格?
分析: 甲队1个月完成总工程的 3,设乙队如果
1
单独施工1个月完成总工程的 x,那么甲队
1
半个月完成总工1 程的___6__,乙队半个月完
成总工程的__2_x__,两队半个月完成总工程 的_(_16__2_1x_)_ .
合作学习
解: 设乙队如果单独施工1个月完成总工程 的 1.依题意得
x
1 1 1 1, 3 6 2x 方程两边同乘6x,得2x+x+3=6x, 解得 x=1.
检验:x=1时6x≠0,x=1是原分式方程的解
答:由上可知,若乙队单独施工1个月可以完成全部任务,
而甲队1个月完成总工程的 1,可知乙队施工速度快.
3
合作学习
例2 某列车平均提速v km/h,用相同的时间,
列车提速前行驶s km,提速后比提速前多行驶
50 km,提速前列车的平均速度为多少?
分析:这里的v,s表示已知数据,设提速前列车的平均速
整. 3、列:根据数量和相等关系,正确列出方程. 4、解:认真仔细解这个分式方程. 5、验:检验. 6、答:注意单位和语言完整.
合作学习
例1 两个工程队共同参与一项筑路工程,甲队单 独施工1个月完成总工程的三分之一,这时增加了 乙队,两队又共同工作了半个月,总工程全部完 成.哪个队的施工速度快?
1
合作学习
解:设甲每小时做x个零件,则乙每小时做 (x-6)个零件,依题意得:
90 60 x x6
解得x=18
经检验x=18是原分式方程的 解 由.x=18得x-6=12
答:甲每小时做18个,乙每小时做12个.
合作学习
列分式方程解应用题的一般步骤
1、审:分析题意,找出数量关系和相等关系. 2、设:选择恰当的未知数,注意单位和语言完
解:设该市去年用水的价格为x元/吨.
(1
30 1)
x
15 x
5
3
解得 x=1.5
经检验x=1.5是原分式方程的解.(1
1)x 3
2
答:该市今年居民用水的价格为2元/吨
提问与解答环节
Questions And Answers
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
解法1:设共有x间出租房. 102000 96000 500
x
x
解法2:设第一年每间房屋的租金为x元.
96000 102000 x x 500
反馈练习
为了提高产品的附加值,某公司计划将研发 生产的1 200件新产品进行精加工后再投放 市场,现有甲、乙两个工厂都具备加工能力, 公司派出相关人员分别到这两间工厂了解情 况,获得如下信息: 信息一:甲工厂单独加工完成这批产品比乙 工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天加工的数量是甲工厂每 天加工数量的1.5倍. 根据以上信息,求甲、乙两个工厂每天分别 能加工多少件新产品?
分式方程
复习回顾
分母中含有未知数的方程叫做分式方程.
解分式方程的一般步骤:
1、在方程的两边都乘最简公分母,约去分母,化成 整式方程. 2、解这个整式方程. 3、把整式方程的解代入最简公分母,如果最简公分 母的值不为0,则整式方程的解是原分式方程的解; 否则,这个解不是原分式方程的解,必须舍去. 4、写出原方程的解. 一化二解三检验
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
移项、合并同类项,得 50x=xv.
解得
x sv . 50
检验:由于v,s都是正数, 是原分x 式 sv方程的解.
x
5s时v0. x(x+v)≠0,
50
答:提速前列车的平均速度为
sv 50
km/h.
反馈练习 某单位将沿街的一部分房屋出租,每间房屋 的租金第二年比第一年多500元,所有房屋 的租金第一年为9.6万元,第二年为10.2万元. (1)分别求两年每间出租房屋的租金? (2)求出租房屋的总间数?