人教版初二数学下册《分式方程PPT课件》优秀公开课

合集下载

初中八年级下册数学 《分式方程》分式与分式方程PPT(第3课时)优质课件PPT

初中八年级下册数学 《分式方程》分式与分式方程PPT(第3课时)优质课件PPT

汽车的速度.
解:设大汽车的速度为2x千米/小时,小汽车的速度为5x千米/小时.得
135-2x
5
135 =
1 2
5x
2x
5x
解得x=9.
经检验x=9是原方程的解.
则2x=18,5x=45.
答:大汽车的速度是18千米 /小时,小汽车的速度是45千米/小时.
2021/02/21
12
强化训练
2.阅读材料,并回答问题 .
2021/02/21
10
活动探究
一项工程, 需要在规定日期内完成,如果甲队独做,恰好如期完成,如果乙队 独做,就要超过规定3天,现在由甲、乙两队合作2天,剩下的由乙队独做,也刚好 在规定日期内完成,问规定日期是几天?
解:设规定日期是x天,则甲队独做需x天,乙队独做需(x+3)天,
根据题意,得
2 x
2021/02/21
8
活动探究
问题2:某市从今年1月1日起调整居民用水价格,每立方米水费涨价1/3.小丽家去
年12月份的水费15元,而今年7月份的水费是30元.已知小丽家今年7月份的用水量比去
年12月份的用水量多5立方米,求该市今年居民用水的价格.
解:设该市去年居民用水的价格为x元/立方米,则今年的水价为1

(填序号)
3.甲、乙、丙班学生参加植树造林,已知甲班每天比乙班多植 5 棵树,甲班植 80 棵
树所用的天数与乙班8植 0 = 7070棵树所用的天数相等,若设甲班每天植树 x 棵,则根据题意可列
出的方程为
x x5

2021/02/21
3
活动探究
探究点一 问题1:某单位将沿街的一部分房屋出租,每间房屋的租金第二年比第一年 多500元,所有房屋的租金第一年为9.6万元,第二年为10.2万元. (1)你能找出这一情境中的等量关系吗? (2)根据这一情境你能提出哪些问题? (3)你能利用方程求出这两年每间房屋的租金各是多少? 解:(1)第二年每间房屋的租金=第一年每间房屋的租金+500元; 第一年出租房屋间数=第二年出租的房屋间数 出租房屋间数=所有出租房屋的租金÷每间房屋的租金.

分式方程ppt课件

分式方程ppt课件
36
36
根据题意,得 x =
+2,
(1+50%)x
解得 x=6.
经检验,x=6 是方程的解.
答:该施工队原计划每天改造 6 m.
知3-练
例 5 [情境题 校园文化]为了进一步丰富校园文体活动,
某中学准备一次性购买若干个足球和排球,用480 元
购买足球的数量和用390 元购买排球的数量相同,已
知足球的单价比排球的单价多15 元.





③ =x;④
+3=




其中是分式方程的是________(填序号).
③④
知识点 2 分式方程的解法
知2-讲
1. 解分式方程的基本思路:去分母,把分式方程转化为整
式方程.
2. 解分式方程的一般步骤
知2-讲
3. 检验分式方程解的方法
(1)直接检验法:将整式方程的解代入原分式方程,这
车的速度.
知3-练
思路引导:
知3-练
解:设大型客车的速度为x km/h,


则小型客车的速度为1.2x km/h,12 min= h.


根据题意,得 -


= ,解得x
.
经检验,x = 6 0 是方程的解.
答:大型客车的速度是60 km/h.
= 6 0.
知3-练
3-1.[中考·广州] 随着城际交通的快速发展, 某次动车平

;(3) =1;
- +





(4)

;(5) -2=x(a为非零常数).

+ -
解题秘方:利用判别分式方程的依据——分母中含有

分式方程的ppt课件

分式方程的ppt课件
这些解法的共同特点是先去分母,将分式方程转化
为整式方程,再解整式方程.
问题2
你能试着解分式方程
90 30+v
=
60 30-v
吗?
问题3 这些解法有什么共同特点?
总结:
这些解法的共同特点是先去分母,将分式方程转化
为整式方程,再解整式方程.
思考:
(1)如何把分式方程转化为整式方程呢? (2)怎样去分母? (3)在方程两边乘以什么样的式子才能把每一个分母
解:移项、合并,得 50x =sv.
解得
x=
sv 50
.
检验:由于v,s 都是正数,当x
=
sv
时x(x+v)≠0,
所以,x
=
sv 50
50 是原分式方程的解,且符合题意.
sv
答:提速前列车的平均速度为 50 km/h.
探究列分式方程解实际问题的步骤
上面例题中,出现了用一些字母表示已知数据的形 式,这在分析问题寻找规律时经常出现.例2中列出的 方程是以x 为未知数的分式方程,其中v,s是已知常数,
思考: (1)这个问题中的已知量有哪些?未知量是什么? (2)你想怎样解决这个问题?关键是什么?
表达问题时,用字母不仅可以表示未知数(量), 也可以表示已知数(量).
探究列分式方程解实际问题的步骤
例2 某次列车平均提速v km/h.用相同的时间, 列车提速前行驶s km,提速后比提速前多行驶50 km, 提速前列车的平均速度为多少?
八年级 上册
15.3 分式方程 (第2课时)
课件说明
• 本课是在学生已经学习了分式方程的概念并能够 解简单的分式方程的基础上,进一步巩固可化为 一元一次方程的分式方程的解法,归纳出解分式 方程的一般步骤,能够列分式方程解决简单的实 际问题.

最新人教版八年级下册数学精品课件16.3分式方程2

最新人教版八年级下册数学精品课件16.3分式方程2
s s 50 x xv
方程两边同乘x(x+v) , 得 s(x+v) =x(s+50)
去括号, 得
sx+sv =xs+50x
移项、合并,得 解得
50x
x
=

ssvv
检sv验是:原由分于式都方是程正的数解,。x
sv 50
时x(x+v)5≠00

50
答:提速前列车的平均速度为
sv 千米/时。
最新人教版数学精品课5件0设
最新人教版数学精品课件设
一项工程,需要在规定日期内完成, 如果甲队独做,恰好如期完成,如果乙队 独做,就要超过规定3天,现在由甲、乙两 队合作2天,剩下的由乙队独做,也刚好在 规定日期内完成, 问规定日期是几天?
解:设规定日期为x天,根据题意列方程
2 x 1. x x3
x=1
检验:x=1时,6x≠0,x=1是原方程的解。
由以上可知,若乙队单独工作一个月可以完 成全部任务,对比甲队1个月完成任务的,可知 乙队施工速度快。
答:乙队的速度快。
最新人教版数学精品课件设
例2. 从2004年5月起某列车平均提速v千米/时,
用相同的时间,列车提速前行驶s千米,提速
后比提速前多行驶50千米,提速前列车的平均 速度解:为根多据少行?驶时间的等量关系,得
2. 某工人师傅先后两次加工零件各1500个,当第二 次加工时,他革新了工具,改进了操作方法,结 果比第一次少用了18个小时.已知他第二次加工效 率是第一次的2.5倍,求他第二次加工时每小时加 工多少零件?
最新人教版数学精品课件设
最新人教版数学精品课件设
解:设乙队单独施工完成总工程需x个月,

《分式方程》分式PPT优秀课件

《分式方程》分式PPT优秀课件

90 60 30 v 30 v
v6
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
思考 某次列车平均提速v km/h.用相同的时间,列车提速前行驶 s km,提速后比提速前多行驶50 km,提速前列车的平均
速度为多少? 路程= 速度·时间
路程
提速前 s
提速后 s+50
表达问题时,用字 母不仅可以表示未 知数(量) ,也可以 表示已知数(量).
找相等关系.
1
1
3
6
甲队施工1个月的工程量+甲队施工半个月的工程量
+乙队施工半个月的工程量=总工程量(记为1).
1 2x
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
典型例题
两个工程队共同参与一项筑路工程,甲队单独施工1个月完成
总工程的 1 ,这时增加了乙队,两队又共同工作了半个月,总 3
15.3 分式方程
学习目标
1.会列分式方程解决实际问题;
分 式
2.能根据题意找出正确的等量关系,列出分式方程并求解,会根据实

际意义验证结果是否合理;
程 的
3.通过分式方程的应用学习,培养学生的数学应用意识,提高分析问

题解决问题的能力;

4.通过解决实际问题,使学生感受到数学知识能够解决生活中的问题,
提升学生对数学的热爱.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
回顾
一艘轮船在静水中的最大航速为30 km/h,它以最大航速 沿江顺流航行90 km所用的时间,与以最大航速逆流航行 60 km所用的时间相等,则江水的流速为多少?
V顺水= V船速+ V水速 V逆水= V船速 – V水速 路程= 速度·时间 S= v·t

分式方程ppt课件

分式方程ppt课件
0时,分式方程无实根。
适用于分子、分母均为二次多项式的分 式方程。
因式分解法
将分式方程的分子或分母进行因式分解,从而简化方程。 因式分解法可以方便地找到分式方程的解,特别是当分子或分母含有公因式时。
适用于分子、分母均可因式分解的分式方程。
03
分式方程应用举例
工程问题
工作总量 = 工作时间 × 工作 效率
工作时间 = 工作总量 ÷ 工作 效率
工作效率 = 工作总量 ÷ 工作 时间
举例:一项工程,甲单独做需 要20天完成,乙单独做需要30 天完成。如果两人合作,需要 多少天完成?
行程问题
速度 = 路程 ÷ 时间
举例:甲、乙两地相距360千米,一辆汽车从甲地开 往乙地,每小时行驶60千米。问这辆汽车需要多少小
方程的解。
04
对于第三个练习题,找到公共分母$x^2-1$,两边乘 以公共分母,得到整式方程$(x+1)(x-1)-4=x^2-1$, 解得$x=3$,经检验$x=3$是原方程的解。
THANKS
感谢观看
分式方程ppt课件
目 录
• 分式方程基本概念 • 分式方程解法 • 分式方程应用举例 • 分式方程与实际问题结合 • 分式方程求解技巧与注意事项 • 分式方程练习题与答案解析
01
分式方程基本概念
分式方程定义
分式方程是指分母里含有未知数 的有理方程。
分式方程是方程中的一种,且分 母里含有未知数的(有理)方程
之几?
经济问题
利润 = 售价 - 进价
利润率 = 利润 ÷ 进 价 × 100%
售价 = 进价 × (1 + 利润率)
进价 = 售价 ÷ (1 + 利润率)

人教版八年级数学《分式方程的应用》课件

人教版八年级数学《分式方程的应用》课件
2024/1/25
分式方程的定义
分母中含有未知数的方程叫做分 式方程。
分式方程的重要性
分式方程是初中数学的重要内容 之一,它不仅是学生后续学习的 基础,而且在解决实际问题中有 着广泛的应用。
4
教学目标与要求
01
知识与技能
掌握分式方程的基本解法,理 解分式方程的应用背景,能够 运用分式方程解决简单的实际
2024/1/25
错题二
某果园有100棵橙子树,每一棵树平均结600个橙子。现准备多种一些橙子树以提高产 量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。根据经验
估计,每多种一棵树,平均每棵树就会少结5个橙子。
24
错题剖析及纠正方法
(1) 增种多少棵橙子树,可以使果园橙子 的总产量达到60375个?
的解决方案。
构造新模型
02
根据问题的特点,构造新的数学模型或方程,使问题更容易解
决。
转化与化归
03
将复杂问题转化为简单问题,或将陌生问题转化为熟悉问题,
利用已知方法求解。
18
05
巩固练习与提高训练
2024/1/25
19
基础练习题选讲
01
题目一:某工厂生产A、B两种 配套产品,其中每天生产x吨A 产品,需生产x+2吨B产品。已 知生产A产品的成本与产量的 平方成正比。经测算,生产1 吨A产品需要4万元,而B产品 的成本为每吨8万元。求生产A 、B两种配套产品的平均成本
02
解析
首先观察方程,发现最简公分 母是 x-2。然后去分母,将方 程转化为整式方程 x+1-3=x-2 。解得 x=2,经检验,x=2 是
原方程的解。
2024/1/25

分式方程优质课ppt课件

分式方程优质课ppt课件

④结论 :确定分式方程的解.
精选ppt课件
24
首页 上页 下页 返回
1、你学到了哪些知识? 要注意什么问题?
2、在学习的过程 中 你有什么体会?
精选ppt课件
25
首页 上页 下页 返回
作业
课本《黄冈经典教程练与测》 16.3分式方程
精选ppt课件
26
首页 上页 下页 返回
精选ppt课件
27
首页 上页 下页 返回
所以,x=4是原方程的根.
精选ppt课件
9
首页 上页 下页 返回
探究分式方程的解法
2、归 纳 上述解分式方程的过程,实质上是将
方程的两边乘以同一个整式,约去分母, 把分式方程转化为整式方程来解.所乘的 整式通常取方程中出现的各分式的最简公 分母.
请动手做一做:
12 解方程:
x 1 x 1 2 精选ppt课件
7
首页 上页 下页 返回
探究分式方程的解法
1、思 考 : 怎样解分式方程呢?
100 60 v20 20v
1)、回顾一下一元一次方程时是怎么去分母 的,从中能否得到一点启发?
2)有没有办法可以去掉分式方程的分母把它 转化为整式方程呢?
精选ppt课件
8
首页 上页 下页 返回
温故知新 例题讲解
x 1 x
17
首页 上页 下页 返回
3、解分式方程一般需要哪几个步骤?
①去分母,化为整式方程:
⑴把各分母分解因式;
⑵找出各分母的最简公分母;
⑶方程两边各项乘以最简公分母;
②解整式方程. ③检验.
必须检验
把未知数的值代入最简公分母,看结果是不 是零,若结果不是0,说明此根是原方程的根; 若结果是0,说明此根是原方程的增根,必须 舍去
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
列得方程:
60 小时. 逆流航行60千米所用时间为______ 20 v 100 60
20 v

20 v
分式方程:分母含有未知数的方程.

找一找:



① ③
);
1. 下列方程中属于分式方程的有(
属于一元分式方程的有( ① 2 x 1 3x 1 x
① ). ② x 1 y 1 2x 1 3 4
解分式方程

得 (x-1)2 =5x+9 +1·(x+1)(x-1)
② 解整式方程,得 x = -1
x2-2x+1=5x+9+x2-1 ③ 检验:把x = -1 代入原方程 -7x=7 结果使原方程的最简公分母x2-1=0 ,分式 x=-1
无意义,因此x = -1不是原方程的根.
∴ 原方程无解 .
增根

4 3 7 ③ x y
x2 +2x-1=0
各分母的 最简公分 怎样才能解这个方程呢?说说你的想法 . 母 两边同乘以 (20 v)(20 v) 得:
100 60 20 v 20 v
这个是什么?
100(20 v) 60(20 v)
解得: v=5
检验:将v=5代入原方程,左边=4=右边,因些 v=5是分式方程的解.
解方程
(1)
3 x-1 =
4 x
随 堂 练 习
x 5 (2) + =4 2x-3 3-2x 思考题:
x-3 解关于x的方程 x-1 (A)-2 (B)-1
=
m 产生增根,则常数m的值等于( x-1 (C ) 1 (D) 2
)
练习:
1、分式方程 1 2x 1 的最简公分母是 X-1 .
x 1 2、如果 1 3 1 x 有增根,那么增根为 X=2 . x 2 2 x
增根与验根
• 在上面的方程中,x=-1不是原方程的根, 因为它使得原分式方程的分母为零,我 们你它为原方程的 增根. • 产生增根的原因是,我们在方程的两边 同乘了一个可能使分母为零的整式. • 因此解分式方程可能产生增根,所以解 分式方程 必须检验.
一. 通过例题的讲解和练习的操作,你 能总结出解分式方程的一般步骤吗?
16.3 分式方程(一)
情景问题:
一艘轮船在静水中的最大航速为20千米/时,它沿江 最大航速顺流航行100千米所用时间,与以最大航速逆 流航行60千米所用时间相等,江水的水流速度为多少? 设江水的水流速度为v千米/时, 分析: (20+v)千米/时, 轮船顺流航行的速度为_____ (20-v) 逆流航行的速度为_____ 千米/时, 100 顺流航行100千米所用时间为______小时, 20 v
解一元一次方程的一般步骤是什么?
解分式方程
• 解: • 在方程两边都乘以最简公分母(x+1)(x-1)得, • x+1=2 • 解这个整式方程,得x=1.
把x=1代入原分式方程检验,结果x=1使分式方程式
的分母的值为0 ,这两个分式没有意义, 因此x=1不是原分式方程的根。
x 1 5x 9 +1 x 1 x2 1 解 方程两边同乘以最简公分母(x+1)(x-1),
分式方程 去 分 母 整式方程
解整式方程
检验
解下列程:
3 x (1) 1 ( x 1)(x 2) x 1

3 2 ( 2) x x 3
想一想
2
解分式方程容易犯的错误主要有:
• (1)去分母时,原方程的整式部 分漏乘. • (2)约去分母后,分子是多项式 时, 要注意添括号. • (3)增根不舍掉. • (4)……
1 =4 的解是x= 1 ,则a= 2 . 3、关于x的方程 ax x
4、若分式方程
-1 a= . 分析: 原分式方程去分母,两边同乘以(x2 -4), 得 a(x+2)+4=0 ① 把x=2代入整式方程①, 得 4a+4=0, a=-1 ∴ a=-1时,x=2是原方程的增根.
a 4 0 有增根x=2,则 x 2 x2 4
解分式方程的一般步骤: (1)在方程的两边都乘以最简公分母,化成 整式 ____________ 方程;
整式 (2)解这个____________ 方程;
这个整式 方程的根代入 (3)检验:把__________ 不为零 最简公分母中 如果值_________, ____________. 就 为零 是原方程的根;如果值__________, 就是 舍去 增根.应当__________.
相关文档
最新文档