初中数学公开课教案
初中数学平行线公开课教案

初中数学平行线公开课教案一、教学目标1. 让学生理解平行线的定义和性质,能够识别和判断平行线。
2. 培养学生运用平行线的知识解决实际问题的能力。
3. 提高学生的逻辑思维能力和团队协作能力。
二、教学内容1. 平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。
2. 平行线的性质:平行线之间的距离相等;平行线与横穿它们的直线所成的角相等。
3. 平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
4. 平行线的应用:解决实际问题,如计算平行线之间的距离,求平行线的方程等。
三、教学重点与难点1. 教学重点:平行线的定义、性质和判定。
2. 教学难点:平行线的判定和应用。
四、教学方法1. 采用问题驱动法,引导学生探索平行线的性质和判定。
2. 利用多媒体动画展示平行线的特点,增强学生的直观感受。
3. 组织小组讨论,培养学生的团队协作能力。
4. 结合实际例子,让学生运用平行线的知识解决问题。
五、教学过程1. 导入:通过展示实际场景,如公交站牌上的线路图,引出平行线的概念。
2. 讲解:讲解平行线的定义、性质和判定,结合多媒体动画展示,让学生直观理解。
3. 练习:布置一些判断平行线的问题,让学生独立解答。
4. 小组讨论:让学生分组讨论,总结平行线的性质和判定方法。
5. 应用:结合实际问题,让学生运用平行线的知识解决问题。
6. 总结:对本节课的内容进行总结,强调平行线的重要性和应用价值。
7. 作业:布置一些有关平行线的练习题,巩固所学知识。
六、教学评估1. 课堂问答:通过提问学生,了解他们对平行线定义、性质和判定的理解程度。
2. 练习题:布置一些有关平行线的练习题,评估学生对知识的掌握情况。
3. 小组讨论:观察学生在小组讨论中的表现,了解他们的团队协作能力和解决问题的能力。
七、教学拓展1. 邀请数学家或相关专业人士进行讲座,分享平行线在现实生活中的应用。
2. 组织学生进行数学竞赛,提高他们对平行线知识的学习兴趣。
初中数学九年级市公开课获奖教案省名师优质课赛课一等奖教案

初中数学九年级教案一、教学目标1. 知识与技能目标:- 学习正数和负数的概念及表示方法;- 掌握正数和负数的加法和减法运算;- 学习解一元一次方程;- 掌握常用的比例关系,并运用比例解决实际问题。
2. 过程与方法目标:- 培养学生观察、实验和探究的能力;- 培养学生逻辑思维和分析问题的能力;- 培养学生合作学习和交流的能力;- 培养学生运用数学知识解决实际问题的能力。
3. 情感态度和价值观目标:- 培养学生对数学的兴趣和积极的学习态度;- 培养学生的创新精神和实践能力;- 培养学生的合作意识和团队精神。
二、教学重点与难点1. 教学重点:- 正数和负数的概念及表示方法;- 正数和负数的加法和减法运算;- 解一元一次方程;- 比例关系的应用。
2. 教学难点:- 正数和负数的概念理解和表示方法的掌握;- 解一元一次方程的思维方式和方法;- 将比例关系应用到实际问题的解决中。
三、教学过程1. 概念与基础知识讲解正数和负数是数学中的基本概念,学生首先需要理解正数和负数的概念及其表示方法。
在此基础上,教师可以通过实际生活中的例子来引导学生理解正数和负数的意义,如温度的正负,盈亏的正负等。
接下来,教师可介绍正数和负数的加法和减法运算,让学生通过具体的例子来进行运算练习。
2. 一元一次方程的解法讲解一元一次方程是初中数学的重要内容,需要学生掌握解一元一次方程的思维方式和方法。
在讲解中,教师可以通过具体的实例来说明方程的意义,如“一个数加上5等于12,这个数是多少?”等。
通过操纵和移项,教师可以引导学生掌握解方程的方法,并进行相关练习。
3. 比例关系的学习与应用比例关系是数学中常见的数学关系之一,学生需要学会识别和建立比例关系,并能够运用比例进行实际问题的解决。
在讲解中,教师可以通过具体的实例来引导学生理解比例的含义和运算。
接着,教师可以给学生一些实际问题,让他们应用比例关系进行解答,并进行实际操作和讨论。
四、教学方法与手段1. 合作学习:通过小组合作学习的形式,让学生相互合作,共同探讨问题和解决方法,培养他们的合作意识和团队精神。
初中数学教学设计优秀5篇

初中数学教学设计优秀5篇初中数学教学设计篇一一、案例实施背景本节课是20xx-20xx学年度第一学期开学第七周笔者在长青中学的多媒体教室里上的一节公开课,课堂中数学优秀生、中等生及后进生都有,所用教材为北师大版义务教育教科书七年级数学(上册)。
二、案例主题分析与设计本节课是北师大版义务教育教科书七年级数学(上册)——科学记数法,它是在学习乘方的基础上,研究更简便的记数方法,是第二章有理数及其运算的重要组成部分。
《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。
本节课将以“生活·数学”、“活动·思考”、“表达·应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。
三、案例教学目标1、知识与技能:掌握科学记数法的方法,能将一些大数写成科学记数法。
2、过程与方法:在寻找科学记数法的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
3、情感态度与价值观:通过科学记数法的总结,使学生形成数形结合的数学思想方法,以及知识的迁移能力、创新意识和创新精神。
四、案例教学重、难点1、重点:正确运用科学记数法表示较大的数2、难点:正确掌握10的幂指数特征,将科学记数法表示的数写成原数五、案例教学用具1、教具:多媒体平台及多媒体课件、图片六、案例教学过程一、创设情境,兴趣导学:1、展示学生收集的非常大的数,与同学交流,你觉得记录这些数据方便吗?2、展示课本第63页图片,现实中,我们会遇到一些比较大的数,如世界人口数、地球的半径、光速等,读写这样大的数有一定的困难。
人教初中数学《弧长和扇形面积 》教案 (公开课获奖)

弧长和扇形面积教学内容24.4弧长和扇形面积〔2〕.教学目标1.了解母线的概念.2.掌握圆锥的侧面积计算公式,并会应用公式解决问题.3.经历探索圆锥侧面积计算公式的过程,开展学生的实践探索能力.教学重点1.经历探索圆锥侧面积计算公式的过程.2.了解圆锥的侧面积计算公式,并会应用公式解决问题.教学难点圆锥侧面积计算公式的推导过程.教学过程一、导入新课师:大家见过圆锥吗?你能举出实例吗?生:见过,如漏斗、蒙古包.师:你们知道圆锥的外表是由哪些面构成的吗?请大家互相交流.生:圆锥的外表是由一个圆面和一个曲面围成的.师:圆锥的曲面展开图是什么形状呢?应怎样计算它的面积呢?本节课我们将解决这些问题.二、新课教学1.圆锥的母线.圆锥是由一个底面和一个侧面围成的几何体,如图,我们把连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.2.探索圆锥的侧面公式.思考:圆锥的侧面展开图是什么图形?如何计算圆锥的侧面积?如何计算圆锥的全面积?〔1〕如图,沿一条母线将圆锥侧面剪开并展平,容易得到,圆锥的侧面展开图是一个扇形.〔2〕设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2πr,因此圆锥的侧面积为πrl,圆锥的全面积为πr(r+l).3.利用圆锥的侧面积公式进行计算.例蒙古包可以近似地看作由圆锥和圆柱组成.如果想用毛毡搭建20个底面积为12 m2,高为3.2 m,外围高1.8 m的蒙古包,至少需要多少平方米的毛毡〔n取3.142,结果取整数〕?解:右图是一个蒙古包的示意图.根据题意,下部圆柱的底面积为12 m 2.高h 2=1.8 m ;上部圆锥的高h 1=-=1.4(m). 圆柱的底面圆的半径r =π12≈1.945(m),侧面积为2π××≈22.10(m 2).圆锥的母线长l =224.1945.1+≈2.404(m),侧面展开扇形的弧长为2π×≈12.28(m),圆锥的侧面积为21××≈14.76(m 2). 因此,搭建20个这样的的蒙古包至少需要毛毡20×+14.76)≈738(m 2). 三、稳固练习教材第114页练习. 四、课堂小结 本节课应该掌握:探索圆锥的侧面展开图的形状,以及面积公式,并能用公式进行计算. 五、布置作业习题24.4 第4、5、7题.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕b a ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 1 2.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标〔一〕教学知识点1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.〔二〕能力训练要求1.经历作〔画〕出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.〔三〕情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两局部能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.AICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,那么可得到一个等腰三角形.[生乙]在甲同学的做法中,A 点可以取直线L 上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形. ……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角. [师]有了上述概念,同学们来想一想. 〔演示课件〕1.等腰三角形是轴对称图形吗?请找出它的对称轴. 2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢? [生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的局部就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的局部互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的局部互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕. 〔演示课件〕等腰三角形的性质:1.等腰三角形的两个底角相等〔简写成“等边对等角〞〕.2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合〔通常称作“三线合一〞〕.[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程〕.〔投影仪演示学生证明过程〕[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为D CA B,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD 〔SSS 〕. 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很标准.下面我们来看大屏幕.〔演示课件〕[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. 〔课件演示〕[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD 〔等边对等角〕.设∠A=x ,那么∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来稳固这节课所学的知识. Ⅲ.随堂练习〔一〕课本练习 1、2、3. 练习1. 如图,在以下等腰三角形中,分别求出它们的底角的度数.D CABDC A B(2)120︒36︒(1)答案:〔1〕72° 〔2〕30°2.如图,△ABC 是等腰直角三角形〔AB=AC ,∠BAC=90°〕,AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和∠C 的度数.答:∠B=77°,∠C=38.5°.〔二〕阅读课本,然后小结.Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等〔等边对等角〕,等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业〔一〕习题13.3 第1、3、4、8题. 〔二〕1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的D C A B性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,那么它的对称轴一定是〔 〕 A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是〔 〕 A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长.解:设三角形的底边长为x cm ,那么其腰长为〔x+2〕cm ,根据题意,得 2〔x+2〕+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算.E DC A B P3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕ba ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.。
2022年初中数学精品教案《直角三角形的性质和判定》公开课专用

第1章直角三角形1.1直角三角形的性质和判定(Ⅰ)第1课时直角三角形的性质和判定1.掌握“直角三角形两个锐角互余”,并能利用“两锐角互余”判断三角形是直角三角形;(重点)2.探索、理解并掌握“直角三角形斜边上的中线等于斜边的一半”的性质.(重点、难点)一、情境导入在小学时我们已经学习过有关直角三角形的知识,同学们可以用手上的三角板和量角器作直角三角形,并和小组成员一同探究直角三角形的性质.二、合作探究探究点一:直角三角形两锐角互余如图,AB∥DF,AC⊥BC于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°解析:∵AC⊥BC于C,∴△ABC是直角三角形,∴∠ABC=90°-∠A=90°-20°=70°,∴∠ABC=∠1=70°,∵AB∥DF,∴∠1+∠CEF=180°,即∠CEF=180°-∠1=180°-70°=110°.故选A.方法总结:熟知直角三角形两锐角互余的性质,并准确识图是解决此类题的关键.探究点二:有两个角互余的三角形是直角三角形如图所示,已知AB∥CD,∠BAF=∠F,∠EDC=∠E,求证:△EOF是直角三角形.解析:三角形内角和定理是解答有关角的问题时最常用的定理,是解决问题的突破口,本题欲证△EOF是直角三角形,只需证∠E+∠F=90°即可,而∠E=12(180°-∠BCD),∠F=12(180°-∠ABC),由AB∥CD可知∠ABC+∠BCD=180°,即问题得证.证明:∵∠BAF=∠F,∠BAF+∠F+∠ABF=180°,∴∠F=12(180°-∠ABF).同理,∠E=12(180°-∠ECD).∴∠E+∠F=180°-12(∠ABF+∠ECD).∵AB∥CD,∴∠ABF+∠ECD=180°.∴∠E+∠F=180°-12×180°=90°,∴△EOF是直角三角形.方法总结:由三角形的内角和定理可知一个三角形的三个内角之和为180°,如果一个三角形中有两个角的和为90°,可知该三角形为直角三角形.探究点三:直角三角形斜边上的中线等于斜边的一半如图,△ABC中,AD是高,E、F分别是AB、AC的中点.(1)若AB=10,AC=8,求四边形AEDF的周长;(2)求证:EF垂直平分AD.解析:(1)根据直角三角形斜边上的中线等于斜边的一半可得DE=AE=12AB,DF=AF=12AC,再根据四边形的周长的公式计算即可得解;(2)根据“到线段两端点距离相等的点在线段的垂直平分线上”证明即可.(1)解:∵AD是高,E、F分别是AB、AC的中点,∴DE=AE=12AB=12×10=5,DF =AF =12AC =12×8=4,∴四边形AEDF的周长=AE +DE +DF +AF =5+5+4+4=18;(2)证明:∵DE =AE ,DF =AF ,∴E 是AD 的垂直平分线上的点,F 是AD 的垂直平分线上的点,∴EF 垂直平分AD .方法总结:当已知条件含有线段的中点、直角三角形等条件时,可联想直角三角形斜边上的中线的性质,连接中点和直角三角形的直角顶点进行求解或证明.探究点四:直角三角形性质的综合运用 【类型一】 利用直角三角形的性质证明线段关系如图,在△ABC 中,AB =AC ,∠BAC =120°,EF 为AB 的垂直平分线,交BC 于F ,交AB 于点E .求证:FC =2BF .解析:根据EF 是AB 的垂直平分线,联想到垂直平分线的性质,因此连接AF ,得到△AFB 为等腰三角形.又可求得∠B =∠C =∠BAF =30°,进而求得∠F AC =90°.取CF 的中点M ,连接AM ,就可以利用直角三角形的性质进行证明.证明:如图,取CF 的中点M ,连接AF 、AM .∵EF 是AB 的垂直平分线,∴AF =BF .∴∠BAF =∠B .∵AB =AC ,∠BAC =120°,∴∠B =∠BAF =∠C =12(180°-120°)=30°.∴∠F AC =∠BAC -∠BAF =90°.在Rt △AFC 中,∠C =30°,M 为CF 的中点,∴∠AFM =60°,AM =12FC =FM .∴△AFM 为等边三角形.∴AF =AM =12FC .又∵BF =AF ,∴BF =12FC ,即FC =2BF .方法总结:当已知条件中出现直角三角形斜边上的中线时,通常会运用到“直角三角形斜边上的中线等于斜边的一半”这个性质,使用该性质时,要注意找准斜边和斜边上的中线.【类型二】 利用直角三角形的性质解决实际问题如图所示,四个小朋友在操场上做抢球游戏,他们分别站在四个直角三角形的直角顶点A 、B 、C 、D 处,球放在EF 的中点O 处,则游戏________(填“公平”或“不公平”).解析:游戏是否公平就是判断点A 、B 、C 、D 到点O 的距离是否相等.四个直角三角形有公共的斜边EF ,且O 为斜边EF 的中点.连接OA 、OB 、OC 、OD .根据“直角三角形斜边上的中线等于斜边的一半”的性质可知,OA =OB =OC =OD =12EF ,即点A 、B 、C 、D 到O 的距离相等.由此可得出结论:游戏公平.方法总结:题目中如果出现“直角三角形”和“中点”这两个条件时,应连接直角顶点与斜边中点,再利用“斜边上的中线等于斜边的一半的性质”解题.【类型三】 利用直角三角形性质解动态探究题如图所示,在Rt △ABC 中,AB =AC ,∠BAC =90°,O 为BC 的中点.(1)写出点O 到△ABC 的三个顶点A 、B 、C 的距离的数量关系;(2)如果点M 、N 分别在线段AB 、AC 上移动,移动中保持AN =BM .请判断△OMN 的形状,并证明你的结论.解析:(1)由于△ABC 是直角三角形,O 是BC 的中点,得OA =OB =OC =12BC ;(2)由于OA 是等腰直角三角形斜边上的中线,因此根据等腰直角三角形的性质,得∠CAO =∠B =∠45°,OA =OB ,又AN =MB ,所以△AON ≌△BOM ,所以ON =OM ,∠NOA =∠MOB ,于是有∠NOM =∠AOB =90°,所以△OMN 是等腰直角三角形.解:(1)连接AO .在Rt △ABC 中,∠BAC =90°,O 为BC 的中点,∴OA =12BC =OB=OC ,即OA =OB =OC ;(2)△OMN 是等腰直角三角形.理由如下:∵AC =BA ,OC =OB ,∠BAC =90°,∴OA =OB ,∠NAO =12∠CAB =∠B =45°,AO ⊥BC ,又AN =BM ,∴△AON ≌△BOM ,∴ON=OM,∠NOA=∠MOB,∴∠NOA +∠AOM=∠MOB+∠AOM,∴∠NOM=∠AOB=90°,∴△MON是等腰直角三角形.方法总结:解决动态探究性问题,要把握住动态变化过程中的不变量,比如角的度数、线段的长和不变的数量关系,比如斜边上的中线等于斜边的一半,直角三角形两锐角互余.三、板书设计1.直角三角形的性质性质一:直角三角形的两锐角互余;性质二:直角三角形斜边上的中线等于斜边的一半.2.直角三角形的判定方法一:一个角是直角的三角形是直角三角形;方法二:两锐角互余的三角形是直角三角形.通过练习反馈的情况来看,学生对于利用已知条件判定一个三角形是否为直角三角形这一考点比较容易上手一些,而往往忽略在直角三角形中告诉斜边上的中点利用中线这一性质解决问题.在今后的教学中应让学生不断强化提高这一点.第4课时“斜边、直角边”1.理解并掌握三角形全等的判定方法——“斜边、直角边”.(重点)2.经历探究“斜边、直角边”判定方法的过程,能运用“斜边、直角边”判定方法解决有关问题.(难点)一、情境导入舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?(2)如果他只带了一个卷尺,能完成这个任务吗?工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”,你相信他的结论吗?二、合作探究探究点一:应用“斜边、直角边”判定三角形全等如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:Rt△ABF≌Rt△DCE.解析:由题意可得△ABF与△DCE都为直角三角形,由BE=CF可得BF=CE,然后运用“HL”即可判定Rt△ABF与Rt△DCE全等.证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE.∵∠A=∠D=90°,∴△ABF与△DCE都为直角三角形.在Rt△ABF和Rt△DCE中,∵⎩⎪⎨⎪⎧BF=CE,AB=CD,∴Rt△ABF≌Rt△DCE(HL).方法总结:利用“HL”判定三角形全等,首先要判定这两个三角形是直角三角形,然后找出对应的斜边和直角边相等即可.探究点二:“斜边、直角边”判定三角形全等的运用【类型一】利用“HL”判定线段相等如图,已知AD,AF分别是两个钝角△ABC和△ABE的高,如果AD=AF,AC=AE.求证:BC=BE.解析:根据“HL”证Rt△ADC≌Rt△AFE,得CD=EF,再根据“HL”证Rt△ABD≌Rt △ABF,得BD=BF,最后证明BC=BE.证明:∵AD,AF分别是两个钝角△ABC 和△ABE的高,且AD=AF,AC=AE,∴Rt△ADC≌Rt△AFE(HL).∴CD=EF.∵AD=AF,AB=AB,∴Rt△ABD≌Rt△ABF(HL).∴BD=BF.∴BD-CD=BF-EF.即BC=BE.方法总结:证明线段相等可通过证明三角形全等解决,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.【类型二】利用“HL”判定角相等或线段平行如图,AB⊥BC,AD⊥DC,AB=AD,求证:∠1=∠2.解析:要证角相等,可先证明全等.即证Rt △ABC ≌Rt △ADC ,进而得出角相等.证明:∵AB ⊥BC ,AD ⊥DC ,∴∠B =∠D =90°,∴△ABC 与△ACD 为直角三角形.在Rt △ABC 和Rt △ADC 中,∵⎩⎪⎨⎪⎧AB =AD ,AC =AC ,∴Rt△ABC ≌Rt △ADC (HL),∴∠1=∠2.方法总结:证明角相等可通过证明三角形全等解决.【类型三】 利用“HL ”解决动点问题如图,有一直角三角形ABC ,∠C=90°,AC =10cm ,BC =5cm ,一条线段PQ =AB ,P 、Q 两点分别在AC 上和过A 点且垂直于AC 的射线AQ 上运动,问P 点运动到AC 上什么位置时△ABC 才能和△APQ 全等?解析:本题要分情况讨论:(1)Rt △APQ ≌Rt △CBA ,此时AP =BC =5cm ,可据此求出P 点的位置.(2)Rt △QAP ≌Rt △BCA ,此时AP =AC ,P 、C 重合.解:根据三角形全等的判定方法HL 可知:(1)当P 运动到AP =BC 时,∵∠C =∠QAP =90°.在Rt △ABC 与Rt △QPA 中,∵⎩⎪⎨⎪⎧AP =BC ,PQ =AB ,∴Rt △ABC ≌Rt △QPA (HL),∴AP =BC =5cm ;(2)当P 运动到与C 点重合时,AP =AC .在Rt △ABC 与Rt △QPA 中,∵⎩⎪⎨⎪⎧AP =AC ,PQ =AB ,∴Rt △QAP ≌Rt △BCA (HL),∴AP =AC =10cm ,∴当AP =5cm 或10cm 时,△ABC 才能和△APQ 全等.方法总结:判定三角形全等的关键是找对应边和对应角,由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.【类型四】 综合运用全等三角形的判定方法判定直角三角形全等如图,CD ⊥AB 于D 点,BE ⊥AC 于E 点,BE ,CD 交于O 点,且AO 平分∠BAC .求证:OB =OC .解析:已知BE ⊥AC ,CD ⊥AB 可推出∠ADC =∠BDC =∠AEB =∠CEB =90°,由AO 平分∠BAC 可知∠1=∠2,然后根据AAS 证得△AOD ≌△AOE ,根据ASA 证得△BOD ≌△COE ,即可证得OB =OC .证明:∵BE ⊥AC ,CD ⊥AB ,∴∠ADC =∠BDC =∠AEB =∠CEB =90°.∵AO 平分∠BAC ,∴∠1=∠2.在△AOD 和△AOE 中,∵⎩⎪⎨⎪⎧∠ADC =∠AEB ,∠1=∠2,OA =OA ,∴△AOD ≌△AOE (AAS).∴OD =OE .在△BOD 和△COE 中,∵⎩⎪⎨⎪⎧∠BDC =∠CEB ,OD =OE ,∠BOD =∠COE ,∴△BOD ≌△COE (ASA).∴OB =OC .方法总结:判定直角三角形全等的方法除“HL ”外,还有:SSS 、SAS 、ASA 、AAS.三、板书设计“斜边、直角边”1.斜边、直角边:斜边和一条直角边分别相等的两个直角三角形全等.简记为“斜边、直角边”或“HL ”.2.方法归纳:(1)证明两个直角三角形全等的常用方法是“HL ”,除此之外,还可以选用“SAS ”“ASA ”“AAS ”以及“SSS”.(2)寻找未知的等边或等角时,常考虑转移到其他三角形中,利用三角形全等来进行证明.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行.在探究直角三角形全等的判定方法——“斜边、直角边”时,要让学生进行合作交流.在寻找未知的等边或等角时,常考虑将其转移到其他三角形中,利用三角形全等来进行证明.此外,还要注重通过适量的练习巩固所学的新知识.。
七年级上册初中数学优质公开课获奖教案设计5篇

七年级上册初中数学优质公开课获奖教案设计5篇七年级上册初中数学教案1一:教材分析:1:教材所处的地位和作用:本课是在接一元一次方程的基础上,讲述一元一次方程的应用,让学生通过审题,根据应用题的实际意义,找出相等关系,列出有关一元一次方程,是本节的重点和难点,同时也是本章节的重难点。
本课讲述一元一次方程的应用题,为学生初中阶段学好必备的代数,几何的基础知识与基本技能,解决实际问题起到启蒙作用,以及对其他学科的学习的应用。
在提高学生的能力,培养他们对数学的兴趣以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。
2:教育教学目标:(1)知识目标:(A)通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系。
(B)通过和;差;倍;分的量与量之间的分析以及公式中有一个字母表示未知数,其余字母表示已知数的情况下,列出一元一次方程解简单的应用题。
(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力。
(3)思想目标:通过对一元一次方程应用题的教学,让学生初步认识体会到代数方法的优越性,同时渗透把未知转化为已知的辩证思想,介绍我国古代数学家对一元一次方程的研究成果,激发学生热爱中国共产党,热爱社会主义,决心为实现社会主义四个现代化而学好数学的思想;同时,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。
3:重点,难点以及确定的依据:根据题意寻找和;差;倍;分问题的相等关系是本课的重点,根据题意列出一元一次方程是本课的难点,其理论依据是关键让学生找出相等关系克服列出一元一次方程解应用题这一难点,但由于学生年龄小,解决实际问题能力弱,对理论联系实际的问题的理解难度大。
二:学情分析:(说学法)1:学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。
初中十公开课教案

初中十公开课教案一、教学目标1. 让学生通过具体例子了解并掌握梯形和圆的面积公式。
2. 培养学生观察、分析及概括能力,能从实际问题中发现数量之间的关系并抽象为具体的公式。
3. 使学生初步了解公式来源于实践又反作用于实践,培养学生的归纳思想方法。
二、教学重难点1. 重点:通过具体例子了解公式、应用公式。
2. 难点:从实际问题中发现数量之间的关系并抽象为具体的公式,注意反应出来的归纳的思想方法。
三、教学过程1. 导入:教师通过展示一些实际问题,引导学生发现这些问题中存在数量关系,进而引出本节课要学习的梯形和圆的面积公式。
2. 新课讲解:教师通过讲解梯形和圆的面积公式的推导过程,让学生理解并掌握这些公式。
同时,引导学生发现公式中的字母所表示的意义以及字母之间的数量关系。
3. 实例演示:教师展示一些实际问题,让学生运用刚刚学到的梯形和圆的面积公式进行解决。
教师在这个过程中对学生进行引导和指导,确保学生能够正确运用公式。
4. 练习巩固:教师布置一些练习题,让学生独立完成。
通过这个过程,学生能够进一步巩固所学知识,提高解题能力。
5. 课堂小结:教师对本节课所学的梯形和圆的面积公式进行总结,强调公式的重要性和应用价值。
6. 课后作业:教师布置一些课后作业,让学生进一步巩固所学知识,提高实际应用能力。
四、教学评价1. 课堂参与度:观察学生在课堂上的参与情况,是否积极思考、提问等。
2. 练习完成情况:检查学生完成的练习题,评估其对梯形和圆的面积公式的掌握程度。
3. 课后作业:查看学生完成的课后作业,评估其对所学知识的巩固程度。
五、教学反思教师在课后要对本次公开课的教学效果进行反思,总结教学中的优点和不足,不断改进教学方法,提高教学质量。
同时,要关注学生的学习反馈,及时调整教学策略,确保学生能够更好地掌握所学知识。
通过以上教学过程,教师能够有效地引导学生学习梯形和圆的面积公式,培养学生观察、分析及概括能力,使学生初步了解公式来源于实践又反作用于实践。
初中数学《科学计数法》公开课优秀教学设计(经典、值得收藏)

(1)我们不妨回顾一下10的n次幂的规律和意义:101=10;
102=10×10=100;
103=10×10×10=1000;
104=10×10×10×10=10000;
……
(n为正整数)
你能发现什么规律呢?
[生]10n表示“1”后面跟“n个0”的比较大的数.
[师]你能得到何种启示呢?
[生]我们可以借用10的幂的形式表示大数.如:1370000000=1.37×1000000000=1.37×109;
五、读一读:陆地面积最大的三个国家。
我国陆地面积居世界第三位,约为959.7万千米2;俄罗斯的陆地面积居世界第一位,约为1707万千米2;加拿大的陆地面积居世界第二位,约为997.6万千米2。
六、课时小结
本节课我们主要研究用科学记数法表示较大的数.同学们经过大胆探索和合作交流,借助身边的事物进一步体会了大数,并用a×10n(1≤a<10, n为正整数)的科学记数法的形式表示了比10大的数.
初中数学《科学计数法》公开课优秀教学设计
授课时间
教学类型
新授
课题
科学计数法
授课教师
授课班级
教学目的和要求
知识目标
1、能了解科学记数法的意义。
2、能掌握用科学记数法表示比较大的数。
能力目标
1、自主交流——探索的方法。
2、能了解科学记数法的意义。
3、能掌握用科学记数法表示比较大的数。
情感目标
1、借助身边的熟悉的事物进一步体会、感受生活中的大数,增强数感,积累数学经验。
2、会用简便的方法—科学记数法表示大数。
教学重点
1、能了解科学记数法的意义。
教学难点
1、能掌握用科学记数法表示比较大的数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学公开课教案
科目数学年级七年级课题一元一次方程的应用
教学目标借助“线段图”分析行程问题中的数量关系,继续利用路程时间速度三个量之间的关系,列方程解应用题。
通过观察、类比进一步培养学生的数学创新能力,培养学生与人合作的能力,培养学生学习数学的热情。
学情简析通过新课的学习,学生已经掌握一元一次方程应用基本的解题思路、方法,会分析解决简单的实际问题,但整个知识掌握不系统、不全面,解题正确率不高。
教法发现法、练习法、讨论法教具多媒体课件、彩色粉笔、小黑板等
教学过程
教学环节教学内容教师活动学生活动
创设问题情境回顾旧知
例题赏析
巩固练习趣味数学:
小明和小刚从相距6千米的两地同时出发同向而行,小明每
小时走7千米,小刚每小时走5千米,小明带了一只小狗,小
狗每小时跑10千米,小狗随小明同时出发,向小刚跑去,碰
到小刚后就立即回头向小明跑去,碰到小明后再回头跑向小
刚……,直到小明追上小刚时才停住,求这条小狗一共跑了多
少路?
温故知新
1.路程问题中路程速度时间三者的关系:
2.列方程解应用题的一般步骤:
3.路程问题中的两种基本题型:
例1:一列慢车从某站开出,每小时行驶48千米,45分钟后,
一列快车也从该站出发,与慢车同向而行,如要1.5小时追上
慢车,快车每小时需行多少千米?
过程展示:
相等关系:
快车路程=
慢车先行路
程+慢车后
行路程
解:设快车每小时行x千米,由题意得
1.5x=48×3/4 +48×1.5
解得:x=72
答:快车每小时需行72千米
练习1:小红和小明家距离300米,两人沿同一条路线出发去
某地,小明每秒跑4米,小红骑自行车每秒行10米,若小明
在小红的前面,则小红多长时间可追上小明?
引导观察
提问
提出问题
讲解分析
个别指导
思考回答
思考回答
计算
计算
走进生活
巩固练习
导入题目求解开拓发展
小结练习2:一队学生去校外进行军事野营训练,以5千米/时的速
度行进,走了12分钟的时候,学校要将一个紧急通知传给队
长,通讯员从学校出发骑自行车以14千米/时的速度,按原路
追上去,通讯员用多少时间可以追上学生队伍?
在一次环城自行车比赛中,已知最快的运动员每小时行30千
米,最慢运动员每小时行10千米,环城一周为60千米,则速
度最快的运动员第一次遇到速度最慢的运动员需用多少小
时?
1、和小明每天绕1个长为400米的环形跑道练习跑步,小彬
每秒跑6米,小明每秒跑4米,若二人同时同地同向跑步,经
几秒后首次相遇?
若二人同时同地反向跑步,经几秒后首次相遇?
2、两站间路程384千米,一列慢车从甲站开出,速度为48千
米/时,慢车开出30分钟后,一列快车从乙站开出,速度为72
千米/时,两车相遇需多长时间?
小明和小刚从相距6千米的两地同时出发同向而行,小明每
小时走7千米,小刚每小时走5千米,小明带了一只小狗,小
狗每小时跑10千米,小狗随小明同时出发,向小刚跑去,碰
到小刚后就立即回头向小明跑去,碰到小明后再回头跑向小
刚……,直到小明追上小刚时才停住,求这条小狗一共跑了多
少路?
1、火车用26秒的时间,通过一座长为256米的隧道(即从车
头进入入口到列车车尾离开出口),这列火车又用16秒的时
间通过了一座长96米的桥,求火车的车长?
2、某初一学生在做作业时,不慎将墨水瓶打翻,使一道作业
题只看到如下字样:“甲乙两地相距40千米,摩托车从甲地出
发,每小时行45千米,运货车从乙站出发,每小时行35千米,
————?(横线部分表示被墨水覆盖的若干文字)”请将这
道作业题补充完整,并列出方程。
通过本节课的学习:
1.你有哪些收获?
2.你还有什么困惑?
完成学案中其它练习。
反馈纠正
引导分析
启发提问
引导分析
启发引导
拓展提问
观察思考
计算
合作交流
思考讨论解
答
思考解答
思考总结
作业
教后记
本节复习一元一次方程的应用,由于复习课重视的是知识的系统和提高,练习密度大,学生往往感到单调,所以本节课我通过一道趣味数学题来创设情境,引起学生兴趣。
放在最后求解达到首尾呼应效果,借此题还复习了间接设法,一题多用。
在知识的复习上围绕两种基本题型展开,着重分析等量关系,在讲解追及问题的特例---环城自行车比赛问题时,我设计了动画演示使学生轻松得到了相等关系。
在教学中适当运用讨论法,将一些较难问题如求火车长放手给学生,通过小组合作交流将问题轻松愉快地解决,学生的积极性也被充分调动起来,营造了良好的课堂氛围,还培养了学生的协作能力。
但在一些个别问题的处理上,我有些急于功成,不能大胆的放手给学生;题目形式的设计过于单一,各环节的衔接不够紧凑,今后教学中我会注意这些问题并及时改进。