ANSYS 有限元分析 平面薄板

合集下载

Ansys机械工程应用精华60例第8例 平面问题的求解实例—厚壁圆筒问题

Ansys机械工程应用精华60例第8例  平面问题的求解实例—厚壁圆筒问题

8.3.4
创建实体模型
拾 取 菜 单 Main Menu → Preprocessor → Modeling → Create → Areas → Circle → By Dimensions。弹出如图 8-8 所示的对话框,在“RAD1” 、 “RAD2” 、 “THETA2”文本框中分 别输入 0.1、0.05 和 90,单击“OK”按钮。 77
第8例
平面问题的求解实例——厚壁圆筒问题
“Item, Comp”两个列表中分别选“Stress” 、 “Y-direction SY” ,单击“OK”按钮。 注意:该路径上各节点 X、Y 方向上的应力即径向应力r 和切向应力t。
图 8-15
映射数据对话框
8.3.12
作路径图
拾取菜单 Main Menu→General Postproc→Path Operations→Plot Path Item→On Graph。弹 出如图 8-16 所示的对话框,在列表中选“SR” 、 “ST” ,单击“OK”按钮。
8.3.6
施加约束
拾取菜单 Main Menu→Solution→Define Loads→Apply→Structural→Displacement→On Lines。弹出拾取窗口,拾取面的水平直线边,单击“OK”按钮,弹出如图 8-11 所示的对话 框,在列表中选择“ UY ” ,单击“ Apply”按钮,再次弹出拾取窗口,拾取面的垂直直线 边,单击“OK”按钮,在图 8-11 所示对话框的列表中选择“UX” ,单击“OK”按钮。
76
第8例
平面问题的求解实例——厚壁圆筒问题
图 8-3 单元类型对话框
图 8-4
单元类型库对话框
图 8-5

ansys关于薄板、厚板、壳单元的特性区别要点

ansys关于薄板、厚板、壳单元的特性区别要点

一、板壳弯曲理论简介1. 板壳分类按板面内特征尺寸与厚度之比划分:当L/h < (5~8) 时为厚板,应采用实体单元。

当(5~8) < L/h < (80~100) 时为薄板,可选2D 实体或壳单元当L/h > (80~100) 时为薄膜,可采用薄膜单元。

壳类结构按曲率半径与壳厚度之比划分:当R/h >= 20 时为薄壳结构,可选择薄壳单元。

当6 < R/h < 20 时为中厚壳结构,选择中厚壳单元。

当R/h <= 6 时为厚壳结构。

上述各式中h 为板壳厚度,L 为平板面内特征尺度,R 为壳体中面的曲率半径。

2. 薄板理论的基本假定薄板所受外力有如下三种情况:①外力为作用于中面内的面内荷载。

弹性力学平面应力问题。

②外力为垂直于中面的侧向荷载。

薄板弯曲问题。

③面内荷载与侧向荷载共同作用。

所谓薄板理论即板的厚度远小于中面的最小尺寸,而挠度又远小于板厚的情况,也称为古典薄板理论。

薄板通常采用Kirchhoff-Love 基本假定:①平行于板中面的各层互不挤压,即σz = 0。

②直法线假定:该假定忽略了剪应力和所引起的剪切变形,且认为板弯曲时沿板厚方向各点的挠度相等。

③中面内各点都无平行于中面的位移。

薄板小挠度理论在板的边界附近、开孔板、复合材料板等情况中,其结果不够精确。

3. 中厚板理论的基本假定考虑横向剪切变形的板理论,一般称为中厚板理论或Reissner(瑞斯纳)理论。

该理论不再采用直法线假定,而是采用直线假定,同时板内各点的挠度不等于中面挠度。

自Reissner 提出考虑横向剪切变形的平板弯曲理论后,又出现了许多精化理论。

但大致分为两类,如Mindlin(明特林)等人的理论和Власов(符拉索夫)等人的理论。

厚板理论是平板弯曲的精确理论,即从3D 弹性力学出发研究弹性曲面的精确表达式。

4. 薄壳理论的基本假定也称为Kirchhoff-Love(克希霍夫-勒夫)假定:①薄壳变形前与中曲面垂直的直线,变形后仍然位于已变形中曲面的垂直线上,且其长度保持不变。

ANSYS机械结构设计 第5节-二维薄板平面应力分析

ANSYS机械结构设计 第5节-二维薄板平面应力分析

第5节 二维薄板平面应力问题5.1 问题描述设有图5-1所示的正方形薄板,在对角线顶点作用有沿厚度均匀分布载荷,其合力为2 N ,板厚为1单位,为简单起见令弹性模量E=1、泊松比µ=0。

用有限元法求该方板的变形。

由于该正方形板的几何形状和受载情况对称于板的两对角线,因此只需取其1/4代替整个板的计算,并作出图5-2的计算模型。

坐标系的原点取在方板的中心,x 和y 轴分别取在板的水平和竖直的对称面上。

由于对称面上的各节点没有垂直于对称面的位移,故设置支杆约束其一个方向的位移。

这是一个平面应力问题。

u 前处理1) 确定分析标题Utility Menu: File →Change Title …×1Ø键入标题:Finite Element Analysis of Thin Plate ×2ØOK2) 设置菜单偏好根据分析问题的学科性质过滤在分析过程中出现的GUI 。

在“Preferences ”对话框中选择“Structural ”项,完全屏蔽所有其他与Thermal 、Electromagnetic 、Fluid 有关的菜单项。

因为我们的例子中仅涉及结构分析。

Main Menu: Preferences … ×1Ø仅仅打开“Structural ”菜单过滤 ×2ØOK123) 定义单元类型:Main Menu: Preprocessor通过键盘命令直接添加单元类型,在ANSYS 窗口输入下面命令并按回车键。

ET, 1, PLANE42<回车>本例使用ANSYS 提供的PLANE42单元,该单元是ANSYS 早期开发的,已经逐步被淘汰。

如果直接通过图形用户界面(GUI)是不能找到该单元类型的。

执行了上面的命令后,我们可以通过GUI 可以检查其特性。

Main Menu: Preprocessor →Element type →Add/Edit/Delete 可以发现PLANE42单元类型已经存在。

ansys关于薄板、厚板、壳单元的特性区别

ansys关于薄板、厚板、壳单元的特性区别

一、板壳弯曲理论简介1. 板壳分类按板面内特征尺寸与厚度之比划分:当L/h < (5~8) 时为厚板,应采用实体单元。

当(5~8) < L/h < (80~100) 时为薄板,可选2D 实体或壳单元当L/h > (80~100) 时为薄膜,可采用薄膜单元。

壳类结构按曲率半径与壳厚度之比划分:当R/h >= 20 时为薄壳结构,可选择薄壳单元。

当6 < R/h < 20 时为中厚壳结构,选择中厚壳单元。

当R/h <= 6 时为厚壳结构。

上述各式中h 为板壳厚度,L 为平板面内特征尺度,R 为壳体中面的曲率半径。

2. 薄板理论的基本假定薄板所受外力有如下三种情况:①外力为作用于中面内的面内荷载。

弹性力学平面应力问题。

②外力为垂直于中面的侧向荷载。

薄板弯曲问题。

③面内荷载与侧向荷载共同作用。

所谓薄板理论即板的厚度远小于中面的最小尺寸,而挠度又远小于板厚的情况,也称为古典薄板理论。

薄板通常采用Kirchhoff-Love 基本假定:①平行于板中面的各层互不挤压,即σz = 0。

②直法线假定:该假定忽略了剪应力和所引起的剪切变形,且认为板弯曲时沿板厚方向各点的挠度相等。

③中面内各点都无平行于中面的位移。

薄板小挠度理论在板的边界附近、开孔板、复合材料板等情况中,其结果不够精确。

3. 中厚板理论的基本假定考虑横向剪切变形的板理论,一般称为中厚板理论或Reissner(瑞斯纳)理论。

该理论不再采用直法线假定,而是采用直线假定,同时板内各点的挠度不等于中面挠度。

自Reissner 提出考虑横向剪切变形的平板弯曲理论后,又出现了许多精化理论。

但大致分为两类,如Mindlin(明特林)等人的理论和Власов(符拉索夫)等人的理论。

厚板理论是平板弯曲的精确理论,即从3D 弹性力学出发研究弹性曲面的精确表达式。

4. 薄壳理论的基本假定也称为Kirchhoff-Love(克希霍夫-勒夫)假定:①薄壳变形前与中曲面垂直的直线,变形后仍然位于已变形中曲面的垂直线上,且其长度保持不变。

基于ANSYS的平面板材中心受力分析

基于ANSYS的平面板材中心受力分析

得分基于ANSYS的平面板材中心受力分析姓名:学号/序号:班级:基于ANSYS的平面板材中心受力分析摘要平面板材的中心受载荷作用的情况在日常生活和生产中很常见,平面板材在其中心受到载荷作用后,容易变形、损坏。

因此需要对平面板材主要受力及变形部位要给保护。

本文用PROE构建平面板材模型,并导入ANSYS进行形变及应力的分析,对平面板材在承受中心压力或拉力时各点的受力情况进行了研究。

得出了平面板材最大形变量和最大应力所在的点,以及应力、应变的变化规律,从而分析得出平面板材的加强筋应该设置为从中心向四周辐射的纵向,横向加强筋应该是内密外疏的蜘蛛网状才是最有效的。

同时本文还提出了本问题的进一步的研究方向。

关键词:平面板材中心载荷加强筋 PROE ANSYS一、平面板材相关数据本文为不失一般性,采用正十六边形的板材形状,对边的垂直距离为200毫米,厚度为2毫米,载荷作用于其中心直径2毫米的区域,四周的边界受约束。

载荷用1兆帕分析。

二、平面板材建模用PROE三维绘图软件建立平面板材模型,由于厚度方向的值比直径小很多,所以可以看做平面模型。

平面板材模型如图1所示。

图1:平面板材模型三、平面板材有限元模型将建立的平面板材模型导入ANSYS建立有限元模型,如图2所示。

图2:平面板材的有限元模型单元类型:SOLID45材料属性:45钢,EX=210E6MPA ,PRXY=0.3网格划分:自由划分,控制全局单元大小为5mm实体单元数目:40674四、载荷和约束加载平面板材受力一般是在其中心或者中心附近,而约束一般是在周围,本文在平面板材的边缘加约束,在中心加直径2毫米的区域内加载1兆帕,如图3所示。

图3:平面板材约束约束位置:平面板材的周围载荷位置:平面板材的中心直径2毫米区域载荷大小:1兆帕五、分析结果图4:平面板材中心受力的应变图图5:平面板材中心受力的应力图六、结论本文研究时赋予模型材料为45钢,其屈服强度为310MPA,抗拉强度为570MPA。

ansys关于薄板、厚板、壳单元的特性区别

ansys关于薄板、厚板、壳单元的特性区别

一、板壳弯曲理论简介1. 板壳分类按板面内特征尺寸与厚度之比划分:当L/h < (5~8) 时为厚板,应采用实体单元。

当(5~8) < L/h < (80~100) 时为薄板,可选2D 实体或壳单元当L/h > (80~100) 时为薄膜,可采用薄膜单元。

壳类结构按曲率半径与壳厚度之比划分:当R/h >= 20 时为薄壳结构,可选择薄壳单元。

当6 < R/h < 20 时为中厚壳结构,选择中厚壳单元。

当R/h <= 6 时为厚壳结构。

上述各式中h 为板壳厚度,L 为平板面内特征尺度,R 为壳体中面的曲率半径。

2. 薄板理论的基本假定薄板所受外力有如下三种情况:①外力为作用于中面内的面内荷载。

弹性力学平面应力问题。

②外力为垂直于中面的侧向荷载。

薄板弯曲问题。

③面内荷载与侧向荷载共同作用。

所谓薄板理论即板的厚度远小于中面的最小尺寸,而挠度又远小于板厚的情况,也称为古典薄板理论。

薄板通常采用Kirchhoff-Love 基本假定:①平行于板中面的各层互不挤压,即σz = 0。

②直法线假定:该假定忽略了剪应力和所引起的剪切变形,且认为板弯曲时沿板厚方向各点的挠度相等。

③中面内各点都无平行于中面的位移。

薄板小挠度理论在板的边界附近、开孔板、复合材料板等情况中,其结果不够精确。

3. 中厚板理论的基本假定考虑横向剪切变形的板理论,一般称为中厚板理论或Reissner(瑞斯纳)理论。

该理论不再采用直法线假定,而是采用直线假定,同时板内各点的挠度不等于中面挠度。

自Reissner 提出考虑横向剪切变形的平板弯曲理论后,又出现了许多精化理论。

但大致分为两类,如Mindlin(明特林)等人的理论和Власов(符拉索夫)等人的理论。

厚板理论是平板弯曲的精确理论,即从3D 弹性力学出发研究弹性曲面的精确表达式。

4. 薄壳理论的基本假定也称为Kirchhoff-Love(克希霍夫-勒夫)假定:①薄壳变形前与中曲面垂直的直线,变形后仍然位于已变形中曲面的垂直线上,且其长度保持不变。

实验四薄板圆孔的有限元分析

实验四薄板圆孔的有限元分析

(2) 生成一个圆孔 Main Menu>Preprocessor>Modeling>Create>Areas>Circle>Solid Circle,弹出如图所示的 【Solid Circular Area】对话框。分别在【WP X】、【WP Y】和【Radius】文本框中输入“0”、 “0”、“5”。单击 OK 按钮,生成结果如下左图所示。 (3) 执行面相减操作 Main Menu>Preprocessor>Modeling>Operate>Booleans>Subtract>Areas,弹出一个拾取 框。拾取编号为 A1 的面,单击 OK 按钮。然后拾取编号为 A2 的圆面,单击 OK 按钮。生 成结果如下右图所示。
泊松比=0.3 拉伸载荷:
P=1000Pa 几何参数:
平板厚度 t=0.1m。 单元类型:
Structural Solid Quad 8node 82 1. 定义工作文件名和工作标题 (1) 定义工作文件名 Utility Menu>File>Change Jobname,输入文件名,选择【New log and error files】复选框, 单击 OK 按钮。 (2) 定义工作标题 Utility Menu>File>Change Title,输入工作标题,单击 OK。 (3) 重新显示 Utility Menu>Plot>Replot (4) 关闭三角坐标符号 Utility Menu>PlotCtrls>Window Controls>Window Options,弹出【Windows Options】对
单击 Add 按钮,弹出如图所示的【Library of Element Types】对话框。选择“Structural Solid” 和“Quad 8node 82”选项,单击 OK 按钮,然后单击 Close 按钮。

ANSYS有限元分析——平面问题的有限元法

ANSYS有限元分析——平面问题的有限元法

vi = α4 + α5 xi + α6 yi vj = α4 +α5xj +α6yj vm = α4 + α5xm + α6 ym
7
最终确定六个待定系数
⎧⎪⎨αα12 ⎪⎩α3
⎫ ⎪ ⎬ ⎪⎭
=
1 2A
⎡ ⎢ ⎢
ai bi
⎢⎣ ci
aj bj cj
am bm
⎤ ⎥ ⎥
⎧ ⎪ ⎨
ui uj
⎫ ⎪ ⎬
]
[Bj ]
[Bm ]⎤⎦{δ e} = [B]{δ e}
⎪⎩vm ⎪⎭
21
[ ] { } { } ε
3×1 =
B 3×6 δ
e 6×1
{ε}= {ε x ε y
{ } { }δ e = ui vi u j v j um vm T
[ ] [B] = Bi Bj Bm
[Bi
]
=
1 2A
⎡bi
⎢ ⎢
0
节点位移
内部位移
设单元内位移为
u(x, y) = α1 +α2x +α3 y
v(x, y) = α4 +α5x +α6 y
在单元节点处有
u(xi , yi ) = ui u(xj, yj ) = uj u(xm , ym ) = um
v(xi , yi ) = vi v(xj , y j ) = vj v(xm , ym ) = vm
0 cr br
⎤ ⎥ ⎥ ⎥⎦

1 2A=
E 2A(1−
μ2)
⎡ ⎢ ⎢ ⎢⎣(1−
br
μbr μ)cr
/
2
μcr ⎤
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《有限元基础教程》作业二:平面薄板的有限元分析
班级:机自101202班 姓名:韩晓峰 学号:201012030210
一.问题描述:
P P
h1mm R1mm
10m m 10mm
条件:上图所示为一个承受拉伸的正方形板,长度和宽度均为10mm ,厚度为h 为1mm ,中心圆的半径R 为1mm 。

已知材料属性为弹性模量E=1MPa ,泊松比为0.3,拉伸的均布载荷
q =1N/mm 2。

根据平板结构的对称性,只需分析其中的二分之一即可,简化模型如上右图所
示。

二.求解过程:
1 进入ANSYS
程序 →ANSYS 10.0→ANSYS Product Launcher →File management →input job name: ZY2→Run
2设置计算类型
ANSYS Main Menu: Preferences →select Structural → OK
3选择单元类型
ANSYS Main Menu: Preprocessor →Element Type →Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK → Options… →select K3: Plane Strs w/thk →OK →Close
4定义材料参数
ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX: 1e6, PRXY:0.3 → OK
5定义实常数以及确定平面问题的厚度
A NSYS Main Menu: Preprocessor →Real Constants …→Add/Edit/Delete →Add →Type 1→OK →Real Constant Set No.1,THK:1→OK →Close
6生成几何模型
a 生成平面方板
ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Rectangle →By 2 Corners →WP X:0,WP Y:0,Width:5,Height:5→OK
b 生成圆孔平面
ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Circle →Solid Circle →WPX=0,WPY=0,RADIUS=1→OK
b 生成带孔板
ANSYS Main Menu: Preprocessor →Modeling →Operate →Booleans → Subtract →Areas →点击area1→OK →点击area2→OK
7 网格划分
A NSYS Main Menu: Preprocessor →Meshing →Mesh Tool →(Size Controls) Global: Set →SIZE: 0.5 →OK →iMesh →Pick All → Close
8 模型施加约束
a 分别给左边施加x和y方向的约束
ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Displacement → On lines →拾取左侧边→OK →select UX,UY→ OK
b 给斜边施加x方向均布载荷
Main Menu: Solution →Define Loads →Apply →Structural →Pressure →On Lines →拾取右侧边;OK →VALUE:-10→OK
9 分析计算
ANSYS Main Menu: Solution →Solve →Current LS →OK→Close
10 结果显示
ANSYS Main Menu: General Postproc →Plot Results →Deformed Shape…→select Def + Undeformed →OK→Contour Plot →Nodal Solu…→select: DOF solution, Displacement vector sum, Def + Undeformed , Stress ,von Mises stress, Def + Undeformed→OK
11显示整体效果
Utility Menu→PlotCtrls→Style>Symmetry Expansion>Periodic/Cyclic Symmetry Expansion→1/4Dihedral Sym→OK
10 退出系统
ANSYS Utility Menu: File→Exit…→ Save Everything→OK
三.结果分析:
图1 建模、网格划分、加载图图2 变形图
图3 整体应力。

相关文档
最新文档