第2章递归与分治策略01
第2章 递归与分治_作业答案讲解

具体执行过程:求最大值
0 1 2 3 4 5 6 7 8 9 10 11 12 13 24 -13 29 113 87 65 -9 36 14 76 44 83 67 5 0 1 2 3 4 5 6 24 -13 29 113 87 65 -9 0 1 2 3 24 -13 29 113 0 1 24 -13 2 3 29 113 4 5 6 87 65 -9 7 8 9 10 11 12 13 36 14 76 44 83 67 5 7 8 9 10 36 14 76 44 7 8 36 14 7 36 9 10 76 44 11 12 13 83 67 5 11 12 83 67 11 83 12 67 13 5
课后练习
• 练习2:分析如下时间函数的复杂度,并说明 原因。 1. 利用递归树说明以下时间函数的复杂度:
O(1) T ( n) 3T ( n ) O( n) 4 n1 n1
2. 利用主定理说明以下时间函数的复杂度:
T(n) = 16T(n/4) + n
T(n) = T(3n/7) + 1
课后练习
• 练习1:给定数组a[0:n-1], 1. 试设计一个分治法算法,找出a[0:n-1]中元素最 大值和最小值; 2. 写出该算法时间函数T(n)的递推关系式; 3. 分析该算法的时间复杂度和空间复杂度。
0 1 2 3 4 5 6 7 8 9 10 11 12 13 24 -13 29 113 87 65 -9 36 14 76 44 83 67 5
• 递归公式:
– 设n个元素的集合可以划分为F(n,m)个不同的由 m个非空子集组成的集合。 F(n,m) = 1, when n=0, n=m, n=1, or m=1 F(n,m) = 0, when n<m 否则 F(n,m)=F(n-1,m-1)+m*F(n-1,m)
《算法设计与分析》实验报告实验一...

《算法设计与分析》实验报告实验一递归与分治策略应用基础学号:**************姓名:*************班级:*************日期:2014-2015学年第1学期第九周一、实验目的1、理解递归的概念和分治法的基本思想2、了解适用递归与分治策略的问题类型,并能设计相应的分治策略算法3、掌握递归与分治算法时间空间复杂度分析,以及问题复杂性分析方法二、实验内容任务:以下题目要求应用递归与分治策略设计解决方案,本次实验成绩按百分制计,完成各小题的得分如下,每小题要求算法描述准确且程序运行正确。
1、求n个元素的全排。
(30分)2、解决一个2k*2k的特殊棋牌上的L型骨牌覆盖问题。
(30分)3、设有n=2k个运动员要进行网球循环赛。
设计一个满足要求的比赛日程表。
(40分)提交结果:算法设计分析思路、源代码及其分析说明和测试运行报告。
三、设计分析四、算法描述及程序五、测试与分析六、实验总结与体会#include "iostream"using namespace std;#define N 100void Perm(int* list, int k, int m){if (k == m){for (int i=0; i<m; i++)cout << list[i] << " ";cout << endl;return;}else{for (int i=m; i<k; i++){swap(list[m], list[i]);Perm(list, k, m+1);swap(list[m], list[i]);}}}void swap(int a,int b){int temp;temp=a;a=b;b=temp;}int main(){int i,n;int a[N];cout<<"请输入排列数据总个数:";cin>>n;cout<<"请输入数据:";for(i=0;i<n;i++){cin>>a[i];}cout<<"该数据的全排列:"<<endl;Perm(a,n,0);return 0;}《算法设计与分析》实验报告实验二递归与分治策略应用提高学号:**************姓名:*************班级:*************日期:2014-2015学年第1学期一、实验目的1、深入理解递归的概念和分治法的基本思想2、正确使用递归与分治策略设计相应的问题的算法3、掌握递归与分治算法时间空间复杂度分析,以及问题复杂性分析方法二、实验内容任务:从以下题目中任选一题完成,要求应用递归与分治策略设计解决方案。
递归与分治实验报告

竭诚为您提供优质文档/双击可除递归与分治实验报告篇一:实验一递归与分治算法编程-实验报告纸南京信息工程大学实验(实习)报告实验(实习)名称递归与分治算法编程实验(实习)日期得分指导教师院专业年级班次姓名学号1.实验目的:1)掌握递归与分治策略的基本思想2)掌握递归算法在阶乘函数、Ackerman函数、整数划分等问题上的应用3)掌握二分查找、合并排序、快速排序等问题的分治算法实现4)熟悉myeclipse或eclipse等Java开发工具的使用。
2.实验内容:1)采用myeclipse或eclipse编程实现基于分治策略的二分查找算法。
2)采用myeclipse或eclipse编程实现基于分治策略的合并排序算法。
3)采用myeclipse或eclipse编程实现基于分治策略的合并排序算法。
3.实验步骤二分查找publicclasssorting{publicstaticintbinarysearch(int[]a,intx,intn){intle ft=0;intright=n-1;while(left intmiddle=(left+right)/2;if(x==a[middle])returnmiddle;if(x>a[middle])left=middle+1;elseright=middle-1;}return-1;}publicstaticvoidmain(stringargs[]){intx,n;inta[]={1,3,4,5,6,13,25};x=6;n=7;ints;s=binarysearch(a,x,n);system.out.println(s);合并排序publicclassmergesort{publicstaticvoidmergesort(int[]a){}publicstaticvoid mergepass(int[]x,int[]y,ints){}publicstaticvoidmerg e(int[]c,int[]d,intl,intm,intr){inti=1,j=m+1,k=1;in ti=0;while(i }}if(c[i]-(c[j])m)for(intq=j;q快速排序publicclassQsort{privatestaticvoidqsort(inta[],intp,intr){}privatest aticintpartition(inta[],intp,intr){inti=p;intj=r+1; intx=a[p];inttemp;while(true){while((a[++i]-x)0);if (i>=j)break;temp=a[i];if(p }}}a[j]=temp;mymath.s wap(a,i,j);//a[p]=a[j];a[j]=x;returnj;publicstaticv oidmain(string[]args){}inta[]={4,2,7,9,1};qsort(a,0,4);for(inti=0;;i++){}s ystem.out.println(a[i]);4.实验分析和总结掌握了递归与分治策略的基本思想掌握了递归算法在阶乘函数、Ackerman函数、整数划分等问题上的应用掌握了二分查找、合并排序、快速排序等问题的分治算法实现熟悉了myeclipse或eclipse等Java开发工具的使用。
《算法设计与分析》(全)

1.1、算法与程序
程序:是算法用某种程序设计语言的具体实现。 程序可以不满足算法的性质(4)。 例如操作系统,是一个在无限循环中执行的程序, 因而不是一个算法。 操作系统的各种任务可看成是单独的问题,每一个 问题由操作系统中的一个子程序通过特定的算法来实 现。该子程序得到输出结果后便终止。
渐近分析记号的若干性质
(1)传递性: ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); ➢ f(n)= O(g(n)), g(n)= O (h(n)) f(n)= O (h(n)); ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); ➢ f(n)= o(g(n)), g(n)= o(h(n)) f(n)= o(h(n)); ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); (2)反身性: ➢ f(n)= (f(n));f(n)= O(f(n));f(n)= (f(n)). (3)对称性: ➢ f(n)= (g(n)) g(n)= (f(n)) . (4)互对称性: ➢ f(n)= O(g(n)) g(n)= (f(n)) ; ➢ f(n)= o(g(n)) g(n)= (f(n)) ;
巢湖学院计算机科学与技术系
渐近分析记号的若干性质
规则O(f(n))+O(g(n)) = O(max{f(n),g(n)}) 的证明: ➢ 对于任意f1(n) O(f(n)) ,存在正常数c1和自然数n1,使得对
所有n n1,有f1(n) c1f(n) 。 ➢ 类似地,对于任意g1(n) O(g(n)) ,存在正常数c2和自然数
巢湖学院计算机科学与技术系
第1章 算法引论
算法设计与分析:递归与分治法-实验报告(总8页)

算法设计与分析:递归与分治法-实验报告(总8页)实验目的:掌握递归与分治法的基本思想和应用,学会设计和实现递归算法和分治算法,能够分析和评价算法的时间复杂度和空间复杂度。
实验内容:1.递归算法的设计与实现3.算法的时间复杂度和空间复杂度分析实验步骤:1)递归定义:一个函数或过程,在其定义或实现中,直接或间接地调用自身的方法,被成为递归。
递归算法是一种控制结构,它包含了解决问题的基础情境,也包含了递归处理的情境。
2)递归特点:递归算法具有以下特点:①依赖于递归问题的部分解被划分为若干较小的部分。
②问题的规模可以通过递推式递减,最终递归终止。
③当问题的规模足够小时,可以直接求解。
3)递归实现步骤:①确定函数的定义②确定递归终止条件③确定递归调用的过程4)经典实例:斐波那契数列递推式:f(n) = f(n-1) + f(n-2)int fib(int n) {if (n <= 0)return 0;else}5)优化递归算法:避免重复计算例如,上述斐波那契数列的递归算法会重复计算一些中间结果,影响效率。
可以使用动态规划技术,将算法改为非递归形式。
int f1 = 0, f2 = 1;for (int i = 2; i <= n; i++) {f1 = f2;使用循环避免递归,重复计算可以大大减少,提高效率。
1)分治算法的定义:将原问题分解成若干个规模较小且类似的子问题,递归求解子问题,然后合并各子问题得到原问题的解。
2)分治算法流程:②将问题分解成若干个规模较小的子问题。
③递归地解决各子问题。
④将各子问题的解合并成原问题的解。
3)分治算法实例:归并排序归并排序是一种基于分治思想的经典排序算法。
排序流程:②分别对各子数组递归进行归并排序。
③将已经排序好的各子数组合并成最终的排序结果。
实现源代码:void mergeSort(int* arr, int left, int right) {if (left >= right)while (i <= mid && j <= right)temp[k++] = arr[i] < arr[j] ? arr[i++] : arr[j++];temp[k++] = arr[i++];1) 时间复杂度的概念:指完成算法所需的计算次数或操作次数。
计算机专业课《算法》_第二章 递归与分治策略

“Hanoi 塔”问题演示 a 初始 a 步骤1 a
c
b
c
“Hanoi 塔”问题程序
void hanoi(int n,a,b,c)
{ if n == 1 move( 1, a, b );
else { hanoi( n-1, a, c, b );
move(n, a, b ); hanoi( n-1, c,b, a) ;
• 递归优点:结构清晰,可读性强
• 递归缺点:递归算法的运行效率较低,无论是耗 费的计算时间还是占用的存储空间都比非递归算 法要多。
整数划分问题的递归关系q(n,m)
如设p(n)为正整数n的划分数,则难以找到递归关系 • q(n,m):正整数n的不同的划分中,最大加数不 大于m的划分个数个数 q(n,m)=
1 q(n,n) 1+q(n,n-1) q(n,m-1)+q(n-m,m) n=1, m=1 n<m n=m n>m>1
递归函数举例(5)
学习要点
理解递归的概念。 掌握设计有效算法的分治策略。
通过典型范例,学习分治策略设计技巧。
2.1 递归的概念
• 递归算法:一个直接或间接地调用自身的算法 • 递归方程:对于递归算法,一般可把时间代 价表示为一个递归方程 • 递归函数:使用函数自身给出定义的函数 • 解递归方程最常用的方法是进行递归扩展
递归函数举例(1)
• 阶乘函数 n !=
1 n(n-1)! n=1 n>1
• Fibonacci数列
1 n=0
F(n)=
1 F(n-1)+F(n-2)
n=1 n>1
初始条件与递归方程是递归函数的二个要素
第 2 章 化整为零
• 假定划分算法总是产生9∶1比例的划分,这使得 开始时看起来划分很不平衡。我们得到运行时间 的递归式为: • T(n)≤T(9n/10)+T(n/10)+cn
• 更精细的分析可以得到快速排序的平均情形运行 时间为Θ(n lg n)。
划分算法的随机版本
• • • • • • • • • RANDOMIZED-PARTITION(A, p, r) 1 i ← RANDOM(p, r) 2 exchange A[r] ↔ A[i] 3 return PARTITION(A, p, r) RANDOMIZED-QUICKSORT(A, p, r) 1 if p < r 2 then q ← RANDOMIZED-PARTITION(A, p, r) 3 RANDOMIZED-QUICKSORT(A, p, q - 1) 4 RANDOMIZED-QUICKSORT(A, q + 1, r)
• 最好情形发生在每次调用PARTITION过程 总是将A[p...r]分成两个长度相同的子序列 A[p…q]和A[q+1…r],其中q-p+1=r-q。
n =1 1 T ( n) = 2T (n / 2) + Θ(n) n > 1
• 运用定理2-1可知,QUICKSORT的最好情 形运行时间为Θ(n lgn)。
• 对于盘数n,HANOI过程的运行时间
n =1 1 T ( n) = 2T (n − 1) + 1 n > 1
1 1 1 n 1 1 1 1 1 1 1 1 1 1 1 1 1 2 22 23
T(1) T(1) T(1)
• T(n)=1+2+22+…+2n-2+2n-1=2n-1
算法之2章递归与分治
算法分析(第二章):递归与分治法一、递归的概念知识再现:等比数列求和公式:1、定义:直接或间接地调用自身的算法称为递归算法。
用函数自身给出定义的函数称为递归函数。
2、与分治法的关系:由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。
在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。
这自然导致递归过程的产生。
分治与递归经常同时应用在算法设计之中,并由此产生许多高效算法。
3、递推方程:(1)定义:设序列01,....na a a简记为{na},把n a与某些个()ia i n<联系起来的等式叫做关于该序列的递推方程。
(2)求解:给定关于序列{n a}的递推方程和若干初值,计算n a。
4、应用:阶乘函数、Fibonacci数列、Hanoi塔问题、插入排序5、优缺点:优点:结构清晰,可读性强,而且容易用数学归纳法来证明算法的正确性,因此它为设计算法、调试程序带来很大方便。
缺点:递归算法的运行效率较低,无论是耗费的计算时间还是占用的存储空间都比非递归算法要多。
二、递归算法改进:1、迭代法:(1)不断用递推方程的右部替代左部(2)每一次替换,随着n的降低在和式中多出一项(3)直到出现初值以后停止迭代(4)将初值代入并对和式求和(5)可用数学归纳法验证解的正确性2、举例:-----------Hanoi塔算法----------- ---------------插入排序算法----------- ()2(1)1(1)1T n T nT=−+=()(1)1W n W n nW=−+−(1)=021n-23()2(1)12[2(2)1]12(2)21...2++2 (121)n n n T n T n T n T n T −−=−+=−++=−++==++=−(1)2 ()(1)1((n-2)+11)1(2)(2)(1)...(1)12...(2)(1)(1)/2W n W n n W n n W n n n W n n n n =−+−=−−+−=−+−+−==++++−+−=−3、换元迭代:(1)将对n 的递推式换成对其他变元k 的递推式 (2)对k 进行迭代(3)将解(关于k 的函数)转换成关于n 的函数4、举例:---------------二分归并排序---------------()2(/2)1W n W n n W =+−(1)=0(1)换元:假设2kn =,递推方程如下()2(/2)1W n W n n W =+−(1)=0 → 1(2)2(2)21k k k W W W−=+−(0)=0(2)迭代求解:12122222321332133212()2(2)212(2(2)21)212(2)22212(2)2*2212(2(2)21)2212(2)222212(2)3*2221...2(0)*2(22...21)22k k k k k k k k k k k k k k k k k k k k k k k k W n W W W W W W W W k k −−−−−−−+−+−−−=+−=+−+−=+−+−=+−−=+−+−−=+−+−−=+−−−==+−++++=−1log 1n n n +=−+(3)解的正确性—归纳验证: 证明递推方程的解是()(1)/2W n n n =−()(1)1W n W n n W =−+−(1)=0,(n 1)=n +n=n(n-1)/2+n =n[(n-1)/2+1]=n(n+1)/2n W W +方法:数学归纳法证 n=1,W(1)=1*(1-1)/2=0假设对于解满足方程,则()---------------快速排序--------------------->>>平均工作量:假设首元素排好序在每个位置是等概率的112()()()(1)0n i T n T i O n n T −==+=∑ >>>对于高阶方程应该先化简,然后迭代(1)差消化简:利用两个方程相减,将右边的项尽可能消去,以达到降阶的目的。
大学_计算机算法设计与分析第4版(王晓东著)课后答案下载
计算机算法设计与分析第4版(王晓东著)课后答
案下载
计算机算法设计与分析第4版内容简介
第1章算法概述
1.1 算法与程序
1.2 算法复杂性分析
1.3 NP完全性理论
算法分析题1
算法实现题1
第2章递归与分治策略
2.1 递归的概念
2.2 分治法的基本思想
2.3 二分搜索技术
2.4 大整数的乘法
2.5 Strassen矩阵乘法
2.6 棋盘覆盖
2.7 合并排序
2.8 快速排序
2.9 线性时间选择
2.10 最接近点对问题
第3章动态规划
第4章贪心算法
第5章回溯法
第6章分支限界法
第7章随机化算法
第8章线性规划与网络流
附录A C++概要
参考文献
计算机算法设计与分析第4版目录
本书是普通高等教育“十一五”__规划教材和国家精品课程教材。
全书以算法设计策略为知识单元,系统介绍计算机算法的设计方法与分析技巧。
主要内容包括:算法概述、递归与分治策略、动态规划、贪心算法、回溯法、分支限界法、__化算法、线性规划与网络流等。
书中既涉及经典与实用算法及实例分析,又包括算法热点领域追踪。
为突出教材的`可读性和可用性,章首增加了学习要点提示,章末配有难易适度的算法分析题和算法实现题;配套出版了《计算机算法设计与分析习题解答(第2版)》;并免费提供电子课件和教学服务。
递归
17
n
n-1 n-1
n-1
……
n-2 n-2
n-2
n-2 n-2
n-2
…… 例4 排列问题
1
n0
F
(n)
1
n 1
F (n 1) F (n 2) n 1
边界条件 递归方程
非递归定义:
F(n)
1 5
1
2
5 n1
1
2
5
n1
7
第n个Fibonacci数可递归地计算如下: int fibonacci(int n)
{ if (n <= 1) return 1; return fibonacci(n-1)+fibonacci(n-2);
q(6,1) q(6,2) q(6,3) q(6,4) q(6,5) q(6,6)
28
用栈模拟q(6,6)的递归计算过程。
q(4,1) q(4,2) q(6,2) q(6,3) q(6,4) q(6,5) q(6,6)
29
用栈模拟q(6,6)的递归计算过程。
q( q(6,5) q(6,6)
第2章 递归与分治策略
学习要点: • 理解递归的概念。 • 掌握设计有效算法的分治策略。 • 通过下面的范例学习分治策略设计技巧。 (1)二分搜索技术; (2)大整数乘法; (3)Strassen矩阵乘法; (4)棋盘覆盖; (5)合并排序和快速排序; (6)线性时间选择; (7)最接近点对问题; (8)循环赛日程表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法复杂度:与小学算法没有改变
再接再厉
• XY = AC 2n + (AD+BC) 2n/2 + BD
• XY = AC 2n + ((A-B)(D-C)+AC+BD) 2n/2 + BD – 乘法次数:3次n/2位的整数乘法; – 加法:6次整数加法; – 移位:2次 – 当n>1时,有T(n)=3T(n/2)+O(n) – T(n)=O(nlog3)=O(n1.59)
2.2 分治法
学习分治法的策略,合理结合递归 求解问题,提高算法效率。
分治策略
• 分治法的基本思想是将一个规模为n的问题 分解为k个规模较小的子问题,这些子问题 互相独立且与原问题相同。 • 鉴于互相独立和与原问题相同,所以可以 利用递归的解这些子问题,然后将各子问 题的解合并得到原问题的解。 • 分治法与递归紧密关联。
算法复杂度分析: 每执行一次算法的while循环, 待搜索数组的大小减少一半。 因此,在最坏情况下,while循环被执行了O(logn) 次。循环 体内运算需要O(1) 时间,因此整个算法在最坏情况下的计算 时间复杂性为O(logn) 。
时间复杂性
• O(n)>O(logn) • 例如:n=1010
递归举例
例1 阶乘函数 阶乘函数可递归地定义为:
边界条件
n0 1 n! n(n 1)! n 0
递归方程 边界条件与递归方程是递归函数的二个要素,递归函 数只有具备了这两个要素,才能在有限次计算后得出 结果。
递归举例
例2 Fibonacci数列 无穷数列1,1,2,3,5,8,13,21,34,55,…,被 称为Fibonacci数列。它可以递归地定义为:
分治法的设计思想是,将一个难以直接解决的大问题, 分割成一些规模较小的相同问题,以便各个击破, n = T(n) 分而治之。
凡治众如治寡,分数是也。 n/2 n/2 n/2
n/2 ----孙子兵法
T(n/4)T(n/4)T(n/4)T(n/4) T(n/4)T(n/4)T(n/4)T(n/4) T(n/4)T(n/4)T(n/4)T(n/4) T(n/4)T(n/4)T(n/4)T(n/4
大整数的乘法
请设计一个有效的算法,可以进行两个n位大整数的乘法运算
小学的方法:O(n2) 效率太低 分治法: 复杂度分析 O(1) n 1 T n) XY = ac (2n + (ad+bc) 2n/2 +
为了降低时间复杂度,必须减少乘法的次数。 T(n)=O(nlog3) =O(n1.59)较大的改进
T(n)
n/2
=
n/2
n
n/2 n/2
T(n/4)T(n/4)T(n/4)T(n/4) T(n/4)T(n/4)T(n/4)T(n/4) T(n/4)T(n/4)T(n/4)T(n/4) T(n/4)T(n/4)T(n/4)T(n/4
算法总体思想
• 将求出的小规模的问题的解合并为一个更大规模的问 题的解,自底向上逐步求出原来问题的解。
分治法的适用条件
分治法所能解决的问题一般具有以下几个特征: • 该问题的规模缩小到一定的程度就可以容易地解决; • 该问题可以分解为若干个规模较小的相同问题,即该 问题具有最优子结构性质 • 利用该问题分解出的子问题的解可以合并为该问题的 解; • 该问题所分解出的各个子问题是相互独立的,即子问 题之间不包含公共的子问题。 这条特征涉及到分治法的效率,如果各子问题是 能否利用分治法完全取决于问题是否具有这条特 这条特征是应用分治法的前提,它也是大多数问 因为问题的计算复杂性一般是随着问题规模的增加 不独立的,则分治法要做许多不必要的工作,重 题可以满足的,此特征反映了递归思想的应用 而增加,因此大部分问题满足这个特征。 征,如果具备了前两条特征,而不具备第三条特 复地解公共的子问题,此时虽然也可用分治法, 征,则可以考虑贪心算法或动态规划。 但一般用动态规划较好。
• 问题:X和Y都是n位的二进制整数,要计算他们 的乘积XY。 • 分治法:将n位的二进制整数X和Y都分成2段,每 段的长为n/2位。
• 所以,X = A2n/2 + B, Y = C2n/2 + D
XY = AC 2n + (AD+BC) 2n/2 + BD
算法复杂性分析
• XY = AC 2n + (AD+BC) 2n/2 + BD
通过例子来理解分治法
Strassen矩阵乘法 提高效率? 乘法减少?
Strassen 矩阵乘法
传统方法:O(n3)
A和B的乘积矩阵C中的元素C[i,j]定义为:C[i][ j ] A[i][k ]B[k ][ j ]
k 1 n
若依此定义来计算A和B的乘积矩阵C,则每计 算C的一个元素C[i][j],需要做n次乘法和n-1次 加法。因此,算出矩阵C的 个元素所需的计算 时间为O(n3)
• 分割原则: 人们从大量实践中发现,在用分治法设计算法时, 最好使子问题的规模大致相同。即将一个问题分 成大小相等的k个子问题的处理方法是行之有效的。 这种使子问题规模大致相等的做法是出自一种平 衡(balancing)子问题的思想,它几乎总是比子问 题规模不等的做法要好。
分治法的复杂性分析
一个分治法将规模为n的问题分成k个规模为n/m的子问题去解。 设分解阀值n0=1,且adhoc解规模为1的问题耗费1个单位时间。 再设将原问题分解为k个子问题以及用merge将k个子问题的解合 并为原问题的解需用f(n)个单位时间。用T(n)表示该分治法解 规模为|P|=n的问题所需的计算时间,则有:
2.1
递归的概念
• 直接或间接地调用自身的算法称为递归算法。用函数自身 给出定义的函数称为递归函数。 • 由分治法产生的子问题往往是原问题的较小模式,这就为 使用递归技术提供了方便。在这种情况下,反复应用分治 手段,可以使子问题与原问题类型一致而其规模却不断缩 小,最终使子问题缩小到很容易直接求出其解。这自然导 致递归过程的产生。 • 分治与递归像一对孪生兄弟,经常同时应用在算法设计之 中,并由此产生许多高效算法。
1 n0 F ( n) 1 n 1 F (n 1) F (n 2) n 1
第n个Fibonacci数可递归地计算如下: public static int fibonacci(int n) { if (n <= 1) return 1; return fibonacci(n-1)+fibonacci(n-2); }
思考题:求数组的最大值和最小值。 思考:利用递归真的比直接求最大值、最小值的 效率高吗?
再看分治算法
• 一般,分治算法常与递归方式结合; • 一般,将问题分成两个子问题更合理,对 于递归来说,分得太细对于效率和复杂性 并无好处。
通过例子来理解分治法
大整数乘法 提高效率? 乘法减少?
大整数的乘法
第2章
递归与分治策略
北京邮电大学 计算机学院 王小茹
内容提要
• 理解递归的概念 • 理解分治法的策略 • 学会设计,通过例子
– – – – – – – – 二分搜索 大整数乘法 Strassen矩阵乘法 合并排序 快速排序 线性时间选择 最接近点对问题 循环赛日程表
• 总结归纳
算法总体思想
• 将要求解的较大规模的问题分割成k个更小规模的子问 对这k个子问题分别求解。如果子问题的规模仍然不够 题。 小,则再划分为k个子问题,如此递归的进行下去,直 到问题规模足够小,很容易求出其解为止。
3T (n / 2) O(n) n 1 bd
1. XY = ac 2n + ((a-c)(b-d)+ac+bd) 2n/2 + bd 2. XY = ac 2n + ((a+c)(b+d)-ac-bd) 2n/2 + bd
细节问题:两个XY的复杂度都是O(nlog3),但考虑到a+c,b+d可能 得到m+1位的结果,使问题的规模变大,故不选择第2种方案。
Strassen矩阵乘法
传统方法:O(n3) 分治法: 使用与上例类似的技术,将矩阵A,B和C中每一矩阵都分块成4 复杂度分析 O(1) n2 个大小相等的子矩阵。由此可将方程C=AB重写为: T (n) C11 C12 7T (n 11 2) A12O B11 ) B12 2 A/ (n 2 n C B C22 A21 3) A22没有改进 B22 21 T(n)=O(n 21 由此可得:
大整数的乘法
请设计一个有效的算法,可以进行两个n位大整数的乘法运算 小学的方法:O(n2)
分治法: O(n1.59) 更快的方法??
效率太低 较大的改进
如果将大整数分成更多段,用更复杂的方式把它们组合起来, 将有可能得到更优的算法。 最终的,这个思想导致了快速傅利叶变换(Fast Fourier Transform)的产生。该方法也可以看作是一个复杂的分治算 法,对于大整数乘法,它能在O(nlogn)时间内解决。 是否能找到线性时间的算法???目前为止还没有结果。
通过例子来理解分治法
二分搜索 提高效率? 减小规模?
二分搜索技术
问题:给定已按升序排好序的n个元素a[0:n-1],现要在这n个元 素中找出一特定元素x。 分析: 该问题的规模缩小到一定的程度就可以容易地解决; 该问题可以分解为若干个规模较小的相同问题; 分解出的子问题的解可以合并为原问题的解; 分解出的各个子问题是相互独立的。 分析:如果n=1即只有一个元素,则只要比较这个元素和x就 分析:比较x和a的中间元素a[mid],若x=a[mid],则x在L中的 可以确定x是否在表中。因此这个问题满足分治法的第一个适 位臵就是mid;如果x<a[mid],由于a是递增排序的,因此假 分析:很显然此问题分解出的子问题相互独立,即在a[i]的前 用条件 如x在a中的话,x必然排在a[mid]的前面,所以我们只要在 面或后面查找x是独立的子问题,因此满足分治法的第四个适 a[mid]的前面查找x即可;如果x>a[i],同理我们只要在a[mid] 用条件。 的后面查找x即可。无论是在前面还是后面查找x,其方法都 和在a中查找x一样,只不过是查找的规模缩小了。这就说明 了此问题满足分治法的第二个和第三个适用条件。