第2章 递归与分治-3
第2章 递归与分治_作业答案讲解

具体执行过程:求最大值
0 1 2 3 4 5 6 7 8 9 10 11 12 13 24 -13 29 113 87 65 -9 36 14 76 44 83 67 5 0 1 2 3 4 5 6 24 -13 29 113 87 65 -9 0 1 2 3 24 -13 29 113 0 1 24 -13 2 3 29 113 4 5 6 87 65 -9 7 8 9 10 11 12 13 36 14 76 44 83 67 5 7 8 9 10 36 14 76 44 7 8 36 14 7 36 9 10 76 44 11 12 13 83 67 5 11 12 83 67 11 83 12 67 13 5
课后练习
• 练习2:分析如下时间函数的复杂度,并说明 原因。 1. 利用递归树说明以下时间函数的复杂度:
O(1) T ( n) 3T ( n ) O( n) 4 n1 n1
2. 利用主定理说明以下时间函数的复杂度:
T(n) = 16T(n/4) + n
T(n) = T(3n/7) + 1
课后练习
• 练习1:给定数组a[0:n-1], 1. 试设计一个分治法算法,找出a[0:n-1]中元素最 大值和最小值; 2. 写出该算法时间函数T(n)的递推关系式; 3. 分析该算法的时间复杂度和空间复杂度。
0 1 2 3 4 5 6 7 8 9 10 11 12 13 24 -13 29 113 87 65 -9 36 14 76 44 83 67 5
• 递归公式:
– 设n个元素的集合可以划分为F(n,m)个不同的由 m个非空子集组成的集合。 F(n,m) = 1, when n=0, n=m, n=1, or m=1 F(n,m) = 0, when n<m 否则 F(n,m)=F(n-1,m-1)+m*F(n-1,m)
递归和分治法

递归和分治法摘要:1.递归和分治法的定义2.递归和分治法的区别3.递归和分治法的应用实例4.递归和分治法的优缺点正文:递归和分治法是计算机科学中常用的两种算法设计技巧。
它们在解决问题时都采用了将问题分解成更小子问题的思路,但在具体实现上却有所不同。
下面,我们来详细了解一下递归和分治法。
1.递归和分治法的定义递归法是指在算法中调用自身来解决问题的方法。
递归函数在执行过程中,会将原问题分解成规模更小的相似子问题,然后通过调用自身的方式,解决这些子问题,最后将子问题的解合并,得到原问题的解。
分治法是指将一个大问题分解成若干个规模较小的相似子问题,然后分别解决这些子问题,最后将子问题的解合并,得到原问题的解。
分治法在解决问题时,通常需要设计一个主函数(master function)和一个子函数(subfunction)。
主函数负责将问题分解,子函数负责解决子问题。
2.递归和分治法的区别递归法和分治法在解决问题时都采用了将问题分解成更小子问题的思路,但它们在实现上存在以下区别:(1)函数调用方式不同:递归法是通过调用自身来解决问题,而分治法是通过调用不同的子函数来解决问题。
(2)递归法必须有递归出口,即必须有一个基线条件,而分治法不一定需要。
3.递归和分治法的应用实例递归法应用广泛,例如斐波那契数列、汉诺塔问题、八皇后问题等。
分治法也有很多实际应用,例如快速排序、归并排序、大整数乘法等。
4.递归和分治法的优缺点递归法的优点是代码简单易懂,但缺点是容易产生大量的重复计算,导致时间复杂度较高。
分治法的优点是时间复杂度较低,但缺点是代码实现相对复杂,需要设计主函数和子函数。
总之,递归和分治法都是解决问题的有效方法,具体应用需要根据问题的特点来选择。
计算机算法设计与分析(第5版)

作者简介
王晓东:男,1957年生,山东人,福建工程学院副院长,教授,博士生导师,福建省计算机学会理事长。主 讲课程:算法与数据结构、算法设计与分析、文献阅读与选题报告 。
目录
(注:目录排版顺序为从左列至右列 )
教学资源
《计算机算法设计与分析(第5版)》有配套教材——《计算机算法设计与分析习题解答(第5版)》 。
教材特色
《计算机算法设计与分析(第5版)》修正了第4版中发现的一些错误,并将各章的习题分为算法分析题和算 法实现题两部分,增加了算法实践性内容,增加了有关串和序列的算法内容。
《计算机算法设计与分析(第5版)》由王晓东担任主编;傅清祥教授、吴英杰教授、傅仰耿博士和朱达欣教 授参加了该教材有关章节的讨论,对该教材内容及各章节的编排提出了意见;田俊教授审阅了全书。该教材在编 写过程中,得到了全国高等学校计算机专业教学指导委员会的支持。福州大学“211工程”计算机与信息工程重 点学科实验室和福建工程学院为该教材的写作提供了设备和工作环境 。
该教材各章的论述中,首先介绍一种算法设计策略的基本思想,然后从解决计算机科学和应用中的实际问题 入手,描述几个算法。同时对每个算法所需的时间和空间进行分析,使读者既能学到一些常用的算法,也能通过 对算法设计策略的反复应用,牢固掌握这些算法设计的基本策略。该教材选择某些问题,通过对解同一问题的不 同算法的比较,使读者体会到每种算法的设计要点。
2018年8月,该教材由电子工业出版社出版 。
算法设计与分析课件--分治法-线性时间选择

2.5 线性时间选择
这样找到的m*划分是否能达到O(n)的时间复杂度? |A| = |D| = 2r, |B| = |C| = 3r +2,n = 10r +5. |A| + |D| + |C| = 7r + 2 = 7(n-5)/10 +2 = 7n/10 -1.5 < 7n/10 表明子问题的规模不超过原问题的7/10(d)。
T(n) = T(cn) + T(dn) + tn
6
2.5 线性时间选择
Select(S, k) Input: n个数的数组S,正整数k
T(n) = T(cn) + T(dn) + tn
Output: S中的第k个小元素
1. 将S划分成5个元素一组,共[n/5]个组;
2. 每组寻找一个中位数,把这些中位数放到集合M中;
寻找一个分割点m*, 使得左边子表S1中的元素都小于m*, 右子表 S2中的元素都大于m*。 如果寻找m*的时间复杂度达到O(nlogn), 那就不如直接使用排序 算法了。 如果直接寻找m*, 时间复杂度是O(n). 假设选择算法的时间复杂度为T(n), 递归调用这个算法在S的一 个真子集M上寻找m*,应该使用T(cn)时间,这里c是小于1的常数, 反映了M的规模与S相比缩小许多。
✓ 不妨假设n是5的倍数,且n/5是奇数,即n/5 = 2r+1. 于是: |A| = |D| = 2r, |B| = |C| = 3r +2,n = 10r +5.
✓ 如果A和D中的元素都小于m*,那么把它们的元素都加入到S1, S1对应规约后子问题的上限。 类似的,若A和D中的元素都 大于m*, 则把他们的元素都加 入到S2,S2对应规约后子问题 的上限。
信息工程系课程的介绍XXXX专业宣讲会

文库贡献者物理与电子信息工程学院信息工程系课程介绍2013年11月目录1. 《算法设计与分析》课程介绍 (1)2. 《离散数学》课程介绍 (2)3. 《计算机组成原理》课程介绍 (3)4. 《网络应用终端开发》课程介绍 (4)5. 《数据结构》课程介绍 (5)6. 《面向对象程序设计(Java)》课程介绍 (6)7. 《嵌入式操作系统基础》课程介绍 (8)8. 《数据结构》课程介绍 (9)9. 《操作系统A》课程介绍 (11)10. 《多媒体技术A》课程介绍 (12)11. 《ARM原理与应用》课程介绍 (13)12. 《ERP系统实施及二次开发技术》课程介绍 (14)13. 《Internet开发基础(JSP)》课程介绍 (15)14. 《IP统一通信技术》课程介绍 (17)15. 《IT项目管理》课程介绍 (18)16. 《嵌入式系统软件开发》课程介绍 (19)17. 《面向对象程序设计A》课程介绍 (20)18. 《Web应用开发》课程介绍 (22)19. 《Xml与Web Service》课程介绍 (24)20. 《编译原理》课程介绍 (26)21. 《数据库原理与应用》课程介绍 (27)22. 《电子商务概论》课程介绍 (28)23. 《企业运作模拟》课程介绍 (29)24. 《信息系统分析与设计》课程介绍 (31)25. 《管理学原理》课程介绍 (32)26. 《会计学原理》课程介绍 (34)27. 《数字电路与逻辑设计》课程介绍 (35)28. 《程序设计基础》课程介绍 (36)29. 《计算机网络》课程介绍 (38)30. 《计算机网络安全》课程介绍 (39)31. 《计算机网络规划与设计》课程介绍 (40)32. 《路由与交换技术》课程介绍 (41)33. 《企业管理与ERP》课程介绍 (43)34. 《软件工程B》课程介绍 (44)35. 《软件质量与测试基础》课程介绍 (45)36. 《网络协议分析与设计》课程介绍 (46)37. 《物流与供应链管理》课程介绍 (47)38. 《网络性能测试与分析》课程介绍 (48)39. 《信息系统分析与设计》课程介绍 (49)40. 《现代通信技术》课程介绍 (50)41. 《计算机网络基础》课程介绍 (51)42. 《计算机组成与体系结构》课程介绍 (53)43. 《运筹学B》课程介绍 (54)44. 《大型数据库系统基础》课程介绍 (55)1.《算法设计与分析》课程介绍2)教学目的和要求算法设计与分析是计算机科学与技术专业的专业课程,在计算机科学与应用的理论研究中具有重要的地位。
递归与分治实验报告

竭诚为您提供优质文档/双击可除递归与分治实验报告篇一:实验一递归与分治算法编程-实验报告纸南京信息工程大学实验(实习)报告实验(实习)名称递归与分治算法编程实验(实习)日期得分指导教师院专业年级班次姓名学号1.实验目的:1)掌握递归与分治策略的基本思想2)掌握递归算法在阶乘函数、Ackerman函数、整数划分等问题上的应用3)掌握二分查找、合并排序、快速排序等问题的分治算法实现4)熟悉myeclipse或eclipse等Java开发工具的使用。
2.实验内容:1)采用myeclipse或eclipse编程实现基于分治策略的二分查找算法。
2)采用myeclipse或eclipse编程实现基于分治策略的合并排序算法。
3)采用myeclipse或eclipse编程实现基于分治策略的合并排序算法。
3.实验步骤二分查找publicclasssorting{publicstaticintbinarysearch(int[]a,intx,intn){intle ft=0;intright=n-1;while(left intmiddle=(left+right)/2;if(x==a[middle])returnmiddle;if(x>a[middle])left=middle+1;elseright=middle-1;}return-1;}publicstaticvoidmain(stringargs[]){intx,n;inta[]={1,3,4,5,6,13,25};x=6;n=7;ints;s=binarysearch(a,x,n);system.out.println(s);合并排序publicclassmergesort{publicstaticvoidmergesort(int[]a){}publicstaticvoid mergepass(int[]x,int[]y,ints){}publicstaticvoidmerg e(int[]c,int[]d,intl,intm,intr){inti=1,j=m+1,k=1;in ti=0;while(i }}if(c[i]-(c[j])m)for(intq=j;q快速排序publicclassQsort{privatestaticvoidqsort(inta[],intp,intr){}privatest aticintpartition(inta[],intp,intr){inti=p;intj=r+1; intx=a[p];inttemp;while(true){while((a[++i]-x)0);if (i>=j)break;temp=a[i];if(p }}}a[j]=temp;mymath.s wap(a,i,j);//a[p]=a[j];a[j]=x;returnj;publicstaticv oidmain(string[]args){}inta[]={4,2,7,9,1};qsort(a,0,4);for(inti=0;;i++){}s ystem.out.println(a[i]);4.实验分析和总结掌握了递归与分治策略的基本思想掌握了递归算法在阶乘函数、Ackerman函数、整数划分等问题上的应用掌握了二分查找、合并排序、快速排序等问题的分治算法实现熟悉了myeclipse或eclipse等Java开发工具的使用。
算法设计与分析:递归与分治法-实验报告(总8页)

算法设计与分析:递归与分治法-实验报告(总8页)实验目的:掌握递归与分治法的基本思想和应用,学会设计和实现递归算法和分治算法,能够分析和评价算法的时间复杂度和空间复杂度。
实验内容:1.递归算法的设计与实现3.算法的时间复杂度和空间复杂度分析实验步骤:1)递归定义:一个函数或过程,在其定义或实现中,直接或间接地调用自身的方法,被成为递归。
递归算法是一种控制结构,它包含了解决问题的基础情境,也包含了递归处理的情境。
2)递归特点:递归算法具有以下特点:①依赖于递归问题的部分解被划分为若干较小的部分。
②问题的规模可以通过递推式递减,最终递归终止。
③当问题的规模足够小时,可以直接求解。
3)递归实现步骤:①确定函数的定义②确定递归终止条件③确定递归调用的过程4)经典实例:斐波那契数列递推式:f(n) = f(n-1) + f(n-2)int fib(int n) {if (n <= 0)return 0;else}5)优化递归算法:避免重复计算例如,上述斐波那契数列的递归算法会重复计算一些中间结果,影响效率。
可以使用动态规划技术,将算法改为非递归形式。
int f1 = 0, f2 = 1;for (int i = 2; i <= n; i++) {f1 = f2;使用循环避免递归,重复计算可以大大减少,提高效率。
1)分治算法的定义:将原问题分解成若干个规模较小且类似的子问题,递归求解子问题,然后合并各子问题得到原问题的解。
2)分治算法流程:②将问题分解成若干个规模较小的子问题。
③递归地解决各子问题。
④将各子问题的解合并成原问题的解。
3)分治算法实例:归并排序归并排序是一种基于分治思想的经典排序算法。
排序流程:②分别对各子数组递归进行归并排序。
③将已经排序好的各子数组合并成最终的排序结果。
实现源代码:void mergeSort(int* arr, int left, int right) {if (left >= right)while (i <= mid && j <= right)temp[k++] = arr[i] < arr[j] ? arr[i++] : arr[j++];temp[k++] = arr[i++];1) 时间复杂度的概念:指完成算法所需的计算次数或操作次数。
计算机专业课《算法》_第二章 递归与分治策略

“Hanoi 塔”问题演示 a 初始 a 步骤1 a
c
b
c
“Hanoi 塔”问题程序
void hanoi(int n,a,b,c)
{ if n == 1 move( 1, a, b );
else { hanoi( n-1, a, c, b );
move(n, a, b ); hanoi( n-1, c,b, a) ;
• 递归优点:结构清晰,可读性强
• 递归缺点:递归算法的运行效率较低,无论是耗 费的计算时间还是占用的存储空间都比非递归算 法要多。
整数划分问题的递归关系q(n,m)
如设p(n)为正整数n的划分数,则难以找到递归关系 • q(n,m):正整数n的不同的划分中,最大加数不 大于m的划分个数个数 q(n,m)=
1 q(n,n) 1+q(n,n-1) q(n,m-1)+q(n-m,m) n=1, m=1 n<m n=m n>m>1
递归函数举例(5)
学习要点
理解递归的概念。 掌握设计有效算法的分治策略。
通过典型范例,学习分治策略设计技巧。
2.1 递归的概念
• 递归算法:一个直接或间接地调用自身的算法 • 递归方程:对于递归算法,一般可把时间代 价表示为一个递归方程 • 递归函数:使用函数自身给出定义的函数 • 解递归方程最常用的方法是进行递归扩展
递归函数举例(1)
• 阶乘函数 n !=
1 n(n-1)! n=1 n>1
• Fibonacci数列
1 n=0
F(n)=
1 F(n-1)+F(n-2)
n=1 n>1
初始条件与递归方程是递归函数的二个要素
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 4 5 7 8 9 10 22 12 15 23 27 35 22 32 23 35 27 32 35
12 15
27 32
35
→i=14
时间复杂性
二分搜索算法的时间复杂性满足:
n 1 1 n T ( n) 1 T( ) n 1 2
二分搜索算法的时间复杂度为 O(log n)
算法设计1
对金块逐个的进行比较查找。先拿出两块比较重量, 留下重的一个与下一块进行比较,直到全部比较完 毕,就找到了最重的金子。
1
2
3
…
(n-1)
n
(2n-3)
(n-2)最轻
算法设计2
用分治法(二分法)可以用较少的比较次数解决上述问题。
…
…
…
…
在含 n 个元素的集合中寻找最大元素和最小元素。
1)将数据等分为两组,目的是分别选取其中的最大(小)元素;
分治过程:
n n n T (n) T ( ) T ( ) T ( k ) T (1) 2 4 2
练习:金块问题
老板有一袋金块(共 n 块, n 是 2 的幂 (n 2) ) ,最优秀的 雇员得到其中最重的一块,最差的雇员得到其中最轻的 一块。假设有一台比较重量的仪器,希望用最少的比较 次数找出最重和最轻的金块。
时间复杂性
算法分析:设 T (k ) 为覆盖 2 k 2 k 残缺棋盘的时间,
1) 2)
k 0 k 0
覆盖它需要常数时间O(1)
测试哪个子棋盘残缺以及形成3个残缺子棋盘需要O(1) 覆盖4个残缺子棋盘需四次递归调用,共需时间
4T (k 1)
算法的时间复杂性递推式为:
O(1) k 0 T (k ) 4T (k 1) O(1) k 0
作业
P38
2-3
是否能将问题分治为2个子问题?
2) 棋盘上有一个残缺方格
分解后的子问题中应该有一个残缺方格。
a) k=2时的棋盘
b)分解后
c)分治后
分治算法:
1) 当 k 0 时,将 2 k 2 k 棋盘分割为 4 个 2 k 1 2 k 1 子棋盘;
2k 1 2k 1
2k 1 2k 1
2)递归分解直到每组元素的个数,可以简单地找到
最大(小)元素; 3)回溯时合并子问题的解,在两个子问题的解中大者取大, 小者取小,即合并为当前问题的解。
时间复杂性满足递归关系式:
0 n 1 T ( n) 1 n2 2T ( n ) 2 n 2 2
解: (n) 2 k 1 T ( T
§2.6 棋盘覆盖
复习
1)分解:把原问题分解为若干个规模较小、相互独立, 与原问题相同的子问题,并尽量使这 k 个子问题的 规模大致相等; 2)求解 3)合并
问题
在一个 2k 2k 个方格组成的棋盘中,若恰有一残缺 方格(该方格与其它方格不同) (如下图) 。
图2-4 k=2时的一个特殊棋盘
解: (k ) 4T (k 1) O(1) T
4 k T (0) O(1) 4i 4 k O(1) O(1)( 4 k 1) / 3
i 0
k 1
T (k ) O(4 )
k
分治过程
n n n T (n) T ( ) T ( 2 ) T ( k ) T (1) 4 4 4
n 2
) 2i k 1
i 1
k 1
2
k 1
3 (2 2) n 2 2
k
算法的时间复杂性满足如下的递归关系式:
0 n 1 T ( n) 1 n2 n n T ( 2 ) T ( 2 ) 2 n 2
2k 1 2k 1 2k 1 2k 1
残缺方格必位于4个子棋盘之一其余3个子棋盘中无残缺方格。
2) 用一个L型骨牌覆盖这3个较小棋盘的结合处。
2k 1 2k 1
2k 1 2k 1
2k 1 2k 1 2k 1 2k 1
这3个子棋盘上被L型骨牌覆盖的方格就成为该棋盘上的残缺方 格,原问题转化为4个较小规模的棋盘覆盖问题。递归地使用这 种分割,直至棋盘简化为11棋盘。
棋盘覆盖问题:要求用4种不同形态的L型骨牌覆盖该棋盘上
除残缺方格外的所有方格且任何2个L型骨牌不得重叠覆盖。
(a)
(b)
(c)
(d)
** 2k 2k的棋盘覆盖中,用到的骨牌数为(4k-1)/3。
图2-4 k=2时的一个特殊棋盘
图2-4 覆盖后
对 2k 2k 的棋盘有如下的特点:
1)是正方形
二分搜索
amid
a1
x amid
…
…
an
x a mid
a1
…
…
an
二分搜索算法的基本思想
将 n 个元素分成个数大致相同的两半,取 amid 与 x 作比较。
1) x a mid 2)
算法终止 在数组的左半部继续搜索 在数组的右半部继续搜索
x a mid
3) x a mid
例2:设a=[1 4 5 7 8 9 10 12 15 22 23 27 32 35],搜索x=35。
§2.3 二分搜索技术
问题:
给定已按升序排好序的n个元素a[0:n-1],现要在这n个
元素中找出一特定元素x。
例 1、设 n 6, a [1 3 5 6 7 9] ,要找出特定元素 x 9 。
顺序查找
1
3
5
6
7
9
用顺序搜索方法,逐个比较 a[0 : n 1] 中元素,直至找 出元素 x 或搜遍整个数组后确定 x 不在其中。 在最坏情况下,顺序搜索方法需要 O(n) 次比较。