《利用画树状图和列表计算概率》随堂练习

合集下载

《利用画树状图和列表计算概率》习题—第一课时

《利用画树状图和列表计算概率》习题—第一课时

《利用画树状图和列表计算概率》第2课时一、知识积累,过程检测1.选择题;(1)有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面上,任意翻开两张,那么两张图案一样的概率是();A.13;B.12;C.23;D.34;(2)小明打算暑假里的某天到上海世博会一日游,上午可以先从台湾馆、香港馆、韩国馆中随机选择一个馆,下午再从加拿大馆、法国馆、俄罗斯馆中随机选择一个馆游玩,则小明恰好上午选中台湾馆,下午选中法国馆这两个场馆的概率是();A.29;B.13;C.23;D.19;(3)在元旦游园晚会上有一个闯关活动:将5张分别画有等腰梯形、圆、平行四边形、等腰三角形、菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关.那么一次过关的概率是();A.15;B.25;C.35;D.45;2.填空题;(1)从1~9这九个自然数中任取一个,是2的倍数的概率是________;(2)不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其他都相同,从中任意摸出一个球,则摸出_______球的可能性最大;(3)任意掷一枚均匀硬币两次,两次都是同一面朝上的概率是_____;(4)一个小妹妹将10盒蔬菜的标签全部撕掉了.现在每个盒子看上去都一样,但是她知道有三盒玉米、两盒菠菜、四盒豆角、一盒土豆。

她随机地拿出一盒并打开它.则盒子里面是玉米的概率是_____,盒子里面不是菠菜的概率是_____;二、方法应用,能力训练1.解答题;在一个不透明的盒子里,装有四个分别标有数字1、2、3、4的小球,它们的形状、大小、质地等完全相同,小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y;用列表法表示出(x,y)所有可能出现的结果;。

2.解答题;将一枚硬币连掷3次,出现“两正,一反”的概率是多少?三、情感抒发、实践拓展1.解答题;依据闯关游戏规则,请你探究“闯关游戏”的奥秘:(1)用列表的方法表示有可能的闯关情况;(2)求出闯关成功的概率。

九年级数学下册 6.7.1 利用画树状图和列表计算概率同步练习 青岛版(2021年整理)

九年级数学下册 6.7.1 利用画树状图和列表计算概率同步练习 青岛版(2021年整理)

九年级数学下册6.7.1 利用画树状图和列表计算概率同步练习(新版)青岛版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学下册6.7.1 利用画树状图和列表计算概率同步练习(新版)青岛版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学下册6.7.1 利用画树状图和列表计算概率同步练习(新版)青岛版的全部内容。

6。

7.1 利用画树状图和列表计算概率1。

从1、2、3、4、5这五个数字中,先随意抽取一个,然后从剩下的四个数中再抽取一个,则两次抽到的数字之和为偶数的概率是;2.有五条线段,其长度分别为1、3、5、7、9,从中任取三条,以这三条线段为边能够成一个三角形的概率是;3。

现有10个型号相同的杯子,其中一等品7个,二等品2个,三等品1个,从中任取两个杯子都是一等品的概率是 .4。

同时掷两颗均匀的骰子,下列说法中正确的是().(1)“两颗的点数都是3”的概率比“两颗的点数都是6"的概率大;(2)“两颗的点数相同”的概率是错误!;(3)“两颗的点数都是1"的概率最大;(4)“两颗的点数之和为奇数"与“两颗的点数之和为偶数"的概率相同.A。

(1)、(2) B. (3)、(4) C。

(1)、(3) D. (2)、(4)5。

有两组卡片,第一组卡片共3张,分别写着2、2、3;第二组卡片共5张,分别写着1、2、2、3、3. 试用列表的方法求从每组中各抽取一张卡片,两张都是2的概率.6.有两个质量均匀、大小相同的正四面体,其中一个的四个面上分别写着数字1、2、3、4,另一个的四个面上分别写着数字5、6、7、8。

6.7利用画树状图和列表计算概率习题新

6.7利用画树状图和列表计算概率习题新
(3)这次测试成绩的众数在哪个小组中? (4)如果 80 分以上(含 80 分)为优良, 那么优良率是多少?
6. 判断题:已知抛掷一枚硬币正面朝上的概率是 12,下列说法中 错误的是
(1)抛掷这枚硬币10次,“出现有5次正面朝上”是必然事件. (2)抛掷这枚硬币10次,“10次正面朝上”是不可能事件. (3)大量重复抛掷这枚硬币,平均100次中出现正面朝上50次. (4)通过抛掷这枚硬币确定谁先发球的比赛规则对双方是公平的.
几何概率
乘法公式: 若事件A,B互相独立,则 P(AB)=P(A)×P(B)
P(两次遇到绿灯)=
30 60 30
50 50 50
11 32
8.一枚棋子放在如图所示的正六边形ABCDEF的顶点A上,通过 摸球确定这枚棋子下一步走到正六边形的哪个顶点的位置. 规则 是:在一个不透明的袋子中标号分别是 1, 2,3的三个相同的小 球,搅匀后,从中随机摸出1个,记下标号后放回袋中搅匀,然 后从袋中再随机摸出 1 个. 两次摸出的小球的标号之和是几,棋
(2)P(其中一张牌写有1)= 4 2 63
注意:任取两张相当于先取一张不放回,再 取一张。
3. 在3个乒乓球中有2个正品、1个次品,从中任取2个,求两
个球都是正品的概率.
球1
球2 结果
正品
正品 √
次品 ×
正品
正品 √
次品 ×
次品
正品 ×
正品 ×
P(两个球都是正品)= 2 1 63
4. 某旅游团计划在3天内游览3个景点A,B,C,每天只能游览其 中的1个景点. 将A, B,C分别写在3张纸条上,采用抽签的方法 决定游览顺序. (1)共有几种不同的安排方案? 6 (2) 第1天游览景点A,第2天游览景点B,第3天游览景点C的 概率是多少?

北师版九年级初三上册数学《用树状图或表格求概率》同步练习题

北师版九年级初三上册数学《用树状图或表格求概率》同步练习题

3.1 用树状图或表格求概率第1课时 用树状图或表格求概率【基础练习】 一、选择题:同时掷两颗均匀的骰子,下列说法中正确的是( ).(1)“两颗的点数都是3”的概率比“两颗的点数都是6”的概率大;(2)“两颗的点数相同”的概率是16 ; (3)“两颗的点数都是1”的概率最大;(4)“两颗的点数之和为奇数”与“两颗的点数之和为偶数”的概率相同.A. (1)、(2)B. (3)、(4)C. (1)、(3)D. (2)、(4)二、填空题:用列表的方法求下列各事件发生的概率,并用所得的结果填空.1.从1、2、3、4、5这五个数字中,先随意抽取一个,然后从剩下的四个数中再抽取一个,则两次抽到的数字之和为偶数的概率是 ;2.有五条线段,其长度分别为1、3、5、7、9,从中任取三条,以这三条线段为边能够成一个三角形的概率是 ;3.现有10个型号相同的杯子,其中一等品7个,二等品2个,三等品1个,从中任取两个杯子都是一等品的概率是 .用画树状图的方法求下列各事件发生的概率,并用所得的结果填空.4.在两个布袋中分别装有三个小球,这三个小球的颜色分别为红色、白色、绿色,其他没有区别.把两袋小球都搅匀后,再分别从两袋中各取出一个小球,求取出两个相同颜色....小球的概率是_______.5.妞妞和她的爸爸玩“锤子、剪刀、布”游戏.每次用一只手可以出锤子、剪刀、布三种手势之一,规则是锤子赢剪刀、剪刀赢布、布赢锤子,若两人出相同手势,则算打平.妞妞和爸爸出相同手势的概率是___________.6.三个袋中各装有2个球,其中第一个袋和第二个袋中各有一个红球和一个黄球,第三个袋中有一个黄球和一个黑球,现从三个袋中各摸出一个球,则摸出的三个球中有2个黄球和一个红球的概率为_________.三、解答题:有两组卡片,第一组卡片共3张,分别写着2、2、3;第二组卡片共5张,分别写着1、2、2、3、3. 试用列表的方法求从每组中各抽取一张卡片,两张都是2的概率.【综合练习】有两个质量均匀、大小相同的正四面体,其中一个的四个面上分别写着数字1、2、3、4,另一个的四个面上分别写着数字5、6、7、8. 将这两个正四面体同时投掷到桌面上,并以它们底面上的数字之和来计分,问:(1)共能组成多少种不同的计分?(2)底面上的数字之和为素数的概率是多少?(3)底面上的数字之和为偶数的概率是多少?【探究练习】中国队和韩国队等9支球队参加奥运会足球预选赛亚洲区决赛,把9支球队任意地分成3组,试求中、韩两队恰好分在同一组的概率.答案:【基础练习】一、D.二、1. 25 ; 2. 310 ; 3. 715 ; 4.13 ;5.13; 6.14. 三、415. 【综合练习】(1)7;(2)14 ;(3)12. 【探究练习】14.课后小知识--------------------------------------------------------------------------------------------------小学生每日名人名言1、读书要三到:心到、眼到、口到2、一日不读口生,一日不写手生。

北师大版九年级数学《用树状图或表格求概率》同步练习1(含答案)

北师大版九年级数学《用树状图或表格求概率》同步练习1(含答案)

3.1 用树状图或表格求概率同步练习◆基础训练1.下列事件中可作为机会均等的结果的事件来计算概率的是()①某篮球运动员投篮一次命中目标;②抛一枚图钉,钉尖朝上;③一副扑克牌(去掉大小王)中任抽一张是红桃;④号码由1,2,3三个数字组成的内线电话,任意拨其中的三个数字电话接通A.②③④B.②③C.③④D.①②③④2.袋中有3个红球,2个白球,若从袋中任意摸出1个球,则摸出白球的概率是()A.15B.25C.23D.133.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这个骰子向上的一面点数是奇数的概率为()A.12B.13C.14D.154.在“等边三角形、正方形、等腰梯形、正五边形、矩形、正六边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率为______.5.九年级(1)班将竞选出正、副班长各1名,现有甲、乙两位男生和丙、丁两位女生参加竞选.(1)男生当选班长的概率是_______;(2)请用列表或画树状图的方法求出两位女生同时当选正、副班长的概率.6.某商店举办有奖销售活动,办法如下:凡购货满100元者得奖券一张,多购多得,每10000张奖券为一个开奖单位,设特等奖1个,一等奖50个,二等奖100个,那么买100元商品的中奖概率是多少?7.在“妙手推推推”的游戏中,主持人出示了一个9位数,让参加者猜商品价格.被猜的价格是一个4位数,也就是这个9位数中从左到右连在一起的某4个数字.如果参与者不知道商品的价格,从这些连在一些的所有4位数中,任意..猜一个,求他猜中该商品价格的概率.8.小红与父母一起从杭州乘火车去上海,火车车厢里每排有左、中、右三个座位.小红一家三口随意坐在某排的三个座位,则小红恰好坐在中间的概率是多少?◆提高训练9.小刚与小亮一起玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘分成面积相等的三个区域,分别有“1”、“2”、“3”表示.固定指针,同时转动两个转盘,任其自由停止,若两指针的数字和为奇数,则小刚获胜;否则,小亮获胜.则在该游戏中小刚获胜的概率是()A.12B.49C.59D.2310.从分别写有1,3,5,7,9的五张卡片中任取一张恰好是3的倍数的概率是_______.11.如图,三张卡片上分别写有一个代数式,把它们背面朝上洗匀,小明闭上眼睛,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张.第一次抽取的卡片上的整式做分式,第二次抽取的卡片上的整式做分母,用列表法或画树状图法求能组成分式的概率是多少?2 5 83 9 64 1 712.一枚质地均匀的正方体骰子,六个面分别标有1,2,3,4,5,6,连续投掷两次.(1)用列表法或树状图表示出朝上的面上的数字所有可能出现的结果;(2)记两次朝上的面上的数字分别为p、q,若p、q分别作为点A的横坐标和纵坐标,求点A(p,q)在函数y=12x的图象上的概率.13.一个不透明的口袋里装有红、黄、绿三种颜色的球(除颜色不同外其余都相同),其中红球有2个,黄球有1个,从中任意摸出1个球是红球的概率为12.(1)试求袋中绿球的个数;(2)第1次从袋中任意摸出1球(不放回),第2次再任意摸出1球,请你用画树状图或列表格的方法,求两次都摸到红球的概率.14.请你依据图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘:(1)用树状图表示出所有可能的寻宝情况;(2)求在寻宝游戏中胜出的概率.◆拓展训练15.抽屉中有2个白球,3个红球,它们只有颜色不同,任意摸出一球,大家知道摸到白球的概率为25,摸到红球的概率为35,现在把这5个球分别放到两个相同的盒子中,其中一个盒子中放有1个白球,1个红球,而另一个盒子中放有1个白球和2个红球,再把两个盒子放到抽屉中,问任意摸一球,摸到白球的概率还是25吗?为什么?若不是25,请求出此时摸到白球的概率.参考答案1.C 2.B 3.A4.1 25.(1)12(2)166.151 100007.1 68.1 39.B10.2 511.2 312.(1)略(2)1 913.(1)1个(2)1 614.(1)略(2)1 615.不是,5 12。

北师大版九年级数学上册《3.1用树状图或表格求概率》同步测试题带答案

北师大版九年级数学上册《3.1用树状图或表格求概率》同步测试题带答案

北师大版九年级数学上册《3.1用树状图或表格求概率》同步测试题带答案·知识点1游戏的公平性问题1.小强和小华两人玩“剪刀、石头、布”的游戏,随机出手一次,则小强获胜的概率为( )A.16B.13C.12D.232.小明、小颖和小凡都想去影院看电影,但现在只有一张电影票,三人决定一起做游戏,谁获胜谁就去,游戏规则是:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜,若两枚反面朝上,则小颖获胜;若一枚正面朝上,一枚反面朝上,则小凡获胜,关于这个游戏,下列判断正确的是( )A.三人获胜的概率相同B.小明获胜的概率大C.小颖获胜的概率大D.小凡获胜的概率大3.学生甲、乙在学习了概率初步知识后设计了如下游戏:甲手中有6,8,10三张扑克牌,乙手中有5,7,9三张扑克牌,两人从各自手中随机取一张牌进行比较,数字大的则本局游戏获胜.(1)请用列表或画树状图的方法列举出此游戏所有可能出现的情况;(2)求学生乙本局游戏获胜的概率.·知识点2转盘问题4.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是( )A.13B.14C.16D.185.(2023·聊城中考)如图,两个相同的可以自由转动的转盘A和B,转盘A被三等分,分别标有数字2,0,-1;转盘B被四等分,分别标有数字3,2,-2,-3.如果同时转动转盘A,B,转盘停止时,两个指针指向转盘A,B上的对应数字分别为x,y(当指针指在两个扇形的交线时,需重新转动转盘),那么点(x,y)落在直角坐标系第二象限的概率是.6.现有三张分别标有数字1,2,3的牌,它们除数字外完全相同,把牌背面朝上洗匀后,甲、乙两人进行摸牌游戏,甲从中随机抽取一张,记下数字后放回洗匀,乙再从中随机抽取一张,若两人抽取的数字之和为偶数,则甲胜,否则乙胜.则甲获胜的概率是( )A.13B.23C.49D.597.甲、乙各抛一次质地均匀的正方体骰子,骰子的六个面上分别刻有1至6的点数,若甲、乙的点数相同时,算两人平手;若甲的点数>乙的点数时,算甲获胜;若乙的点数>甲的点数时,算乙获胜.则甲获胜的概率是( )A.712B.512C.12D.138.从-2,-1,2三个数中任取两个不同的数,作为点的坐标,则该点在第三象限的概率等于.9.如图,一段长管中放置着三根同样的绳子,小明从左边随机选一根,张华从右边随机选一根,两人恰好选中同一根绳子的概率是.【素养提升】10.福州国际马拉松赛事设有“马拉松(42.195千米)”,“半程马拉松(21.097 5千米)”,“迷你马拉松(5千米)”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小智被分配到“马拉松(42.195千米)”项目组的概率为.(2)用树状图或列表法求小智和小慧被分到同一个项目组进行志愿服务的概率.【易错必究】·易错点:忽视等可能的前提条件【案例】用如图所示的两个转盘进行“配紫色”游戏,配得紫色的概率是( )A.14B.13C.12D.1参考答案·知识点1游戏的公平性问题1.小强和小华两人玩“剪刀、石头、布”的游戏,随机出手一次,则小强获胜的概率为(B)A.16B.13C.12D.232.小明、小颖和小凡都想去影院看电影,但现在只有一张电影票,三人决定一起做游戏,谁获胜谁就去,游戏规则是:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜,若两枚反面朝上,则小颖获胜;若一枚正面朝上,一枚反面朝上,则小凡获胜,关于这个游戏,下列判断正确的是(D)A.三人获胜的概率相同B.小明获胜的概率大C.小颖获胜的概率大D.小凡获胜的概率大3.学生甲、乙在学习了概率初步知识后设计了如下游戏:甲手中有6,8,10三张扑克牌,乙手中有5,7,9三张扑克牌,两人从各自手中随机取一张牌进行比较,数字大的则本局游戏获胜.(1)请用列表或画树状图的方法列举出此游戏所有可能出现的情况;(2)求学生乙本局游戏获胜的概率.【解析】略·知识点2转盘问题4.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是(A)A.13B.14C.16D.185.(2023·聊城中考)如图,两个相同的可以自由转动的转盘A和B,转盘A被三等分,分别标有数字2,0,-1;转盘B被四等分,分别标有数字3,2,-2,-3.如果同时转动转盘A,B,转盘停止时,两个指针指向转盘A,B上的对应数字分别为x,y(当指针指在两个扇形的交线时,需重新转动转盘),那么点(x,y)落在直角坐标系第二象限的概率是16.6.现有三张分别标有数字1,2,3的牌,它们除数字外完全相同,把牌背面朝上洗匀后,甲、乙两人进行摸牌游戏,甲从中随机抽取一张,记下数字后放回洗匀,乙再从中随机抽取一张,若两人抽取的数字之和为偶数,则甲胜,否则乙胜.则甲获胜的概率是(D)A.13B.23C.49D.597.甲、乙各抛一次质地均匀的正方体骰子,骰子的六个面上分别刻有1至6的点数,若甲、乙的点数相同时,算两人平手;若甲的点数>乙的点数时,算甲获胜;若乙的点数>甲的点数时,算乙获胜.则甲获胜的概率是(B)A.712B.512C.12D.138.从-2,-1,2三个数中任取两个不同的数,作为点的坐标,则该点在第三象限的概率等于13.9.如图,一段长管中放置着三根同样的绳子,小明从左边随机选一根,张华从右边随机选一根,两人恰好选中同一根绳子的概率是13.【素养提升】10.福州国际马拉松赛事设有“马拉松(42.195千米)”,“半程马拉松(21.097 5千米)”,“迷你马拉松(5千米)”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小智被分配到“马拉松(42.195千米)”项目组的概率为.(2)用树状图或列表法求小智和小慧被分到同一个项目组进行志愿服务的概率.【解析】略【易错必究】·易错点:忽视等可能的前提条件【案例】用如图所示的两个转盘进行“配紫色”游戏,配得紫色的概率是(C)A.14B.13C.12D.1。

3.1用树状图或表格求概率课时练习(含答案解析)

3.1用树状图或表格求概率课时练习(含答案解析)

第一节用树状图或表格求概率同步测试一、选择题1.某校有一个两层楼的餐厅,甲、乙、丙三名学生各自随机选择此中的某个楼层的餐厅用餐,则甲、乙、丙三名学生在同一个楼层餐厅用餐的概率为()1 3 1 3A. B. C. D.4 4 8 8答案: A分析:解答:设两层楼分别为 A , B,共有 8 种状况,在一层的共有 2 种状况,因此甲乙丙同在一层楼吃饭的概率是1.4应选 A剖析 :列举出所有状况,让甲、乙、丙三名学生在同一个楼层餐厅用餐的状况数即AAA,AAB,ABA,ABB,BAA,BAB,BBA,BBB,除以总状况数即为所求的概率.2.如下图的两个转盘,每个转盘均被分红四个相同的扇形,转动转盘时指针落在每一个扇形内的时机均等,同时转动两个转盘,则两个指针同时落在标有奇数扇形内的概率为()1 1 1 1A. B. C. D.2 3 4 8答案: C分析:解答:列表得:1共有 16 种状况,两个指针同时落在标有奇数扇形内的状况有4 种状况,因此概率是,故4选 C .剖析 :本题考察了树状图来求概率 ,列举出所有状况,看两个指针同时落在标有奇数扇形内的状况占总状况的多少即可.3.在一个口袋中有 3 个完整相同的小球,把它们分别标号为1, 2, 3,随机地摸取一个小球而后放回,再随机地摸出一个小球.则两次取的小球的标号相同的概率为()A.1 1 1 1 B.C.2D.369答案: A分析: 解答: 列表,得:因此共有 9 种状况,两次取的小球的标号相同的有3 种状况;因此两次取的小球的标号相同的概率为3 1 9 .3应选 A .剖析 :本题考察了列表法求概率 ,本题是抽取再放回 ,用表格列出所有的 9 种状况是解决问题的重点 .4.学校准备从甲、乙、丙、丁四位同学中选两位参加数学比赛,则同时选中甲、乙两位同学的概率是 ()1 B.1 1 1 A.C.2D.648答案: A分析: 解答: 解:画树状图得:∵共有 12 种等可能的结果,同时选中甲、乙两位同学的有 2 种状况,2 = 1 .因此选 A .∴同时选中甲、乙两位同学的概率是:12 6剖析 :第一依据题意画出树状图,而后由树状图求得所有等可能的结果与同时选中甲、乙两位同学的状况,再利用概率公式求解即可求得答案5.随机闭合开关S1、 S2、S3中的两个,能让灯泡⊙发光的概率是( )3 2 1 1A. B. C. D.4 3 2 3答案: B,应选 B.2分析:解答:随机闭合开关S1、S2、S3中的两个出现的状况列表得,因此概率为3开关S1 S2 S1 S3 S2S3,结果亮亮不亮剖析 :本题第一要明确 ,并联电路的特色 ,用列表法 ,求出三个开关的所有闭合状况,再剖析出灯泡亮的状况 ,即可解决问题 .6.小兰和小潭分别用掷 A 、 B 两枚骰子的方法来确立P(x, y)的地点,她们规定:小兰掷得的点数为 x,小谭掷得的点数为 y,那么,她们各掷一次所确立的点落在已知直线y=-2x+6 上的概率为 ()6 1 1 1A. B. C. D.36 18 12 9答案: B分析:解答:列表得:∴一共有 36 种状况,她们各掷一次所确立的点落在已知直线y=-2x+6 上的有( 1, 4),(2, 2).∴她们各掷一次所确立的点落在已知直线y=-2x+6 上的概率为2 136 .18应选 B剖析 :用列表法先列出所有的36 种坐标 ,而后再分别代入直线,找出知足分析式的点的坐标,问题即可获得解决.7小红上学要经过三个十字路口,每个路口碰到红、绿灯的时机都相同,小红希望上学时经过每个路口都是绿灯,但实质这样的时机是()1 1 1 1A. B. C. D.2 3 4 8答案: D分析:解答:解:画树状图,得∴共有 8 种状况,经过每个路口都是绿灯的有一种,∴实质这样的时机是 1 .8应选 D.剖析 :本题可理解为两步实验,用树状图列出这两步实验的所有状况8 种 ,问题即可获得解决 .8.在数 -1,1,2 中任取两个数作为点坐标,那么该点恰幸亏一次函数y=x-2 图象上的概率是()1 1 1 1A. B. C. D.2 3 4 6答案: D分析:解答:画树状图如上:共有 6 种等可能的结果,此中只有(1, -1)在一次函数y=x-2 图象上,1因此点在一次函数y=x-2 图象上的概率=.6应选 D.剖析 :用树状图列出这四个数作为点的坐标的所有状况,注意有次序性,再代入找出知足分析式的点 ,问题即可获得解决.9.一枚质地平均的昔通硬币重复掷两次,落地后两次都是正面向上的概率是( )1 1 1B. C. D.2 3 4答案: D分析:解答:共有 4 种状况,落地后两次都是正面向上的状况数有 1 种,因此概率为1.应选D.4剖析 :用树状图列出所有可能出现的状况(正正 ;正反 ;反正 ;反反 )这是解决问题的重点.10.任意掷一枚平均的硬币两次,则两次都不是正面向上的概率是()1 1 1B. C. D.4 3 3答案: B分析:解答:∵任意掷一枚平均的硬币两次,等可能的结果有:正正,正反,反正,反反,∴两次都不是正面向上的概率是1.应选 B.4剖析:第一利用列举法可得任意掷一枚平均的硬币两次,等可能的结果有:正正,正反,反正,反反,而后利用概率公式求解即可求得答案.11.将分别标有数字 1,2,3,4 的四张卡片洗匀后,反面向上,放在桌面上,随机抽取一张(不放回 ),接着再随机抽取一张,恰巧两张卡片上的数字相邻的概率为()111 1A. B. C. D.543 2答案: D分析:解答:第一次可有 4 种选择,那么第二次可有 3 种选择,那么知共有4×3=12 种可能,恰巧两张卡片上的数字相邻的有 6 种,因此概率是 6 = 1 ,应选D.12 2剖析 :第一利用列举法可得抽取不放回的等可能的结果有:12 种,相邻的有 6 种 ,而后利用概率公式求解即可求得答案.12.有三张正面分别写有数字-1, 1, 2 的卡片,它们反面完整相同,现将这三张卡片反面朝上洗匀后随机抽取一张,以其正面数字作为 a 的值,而后再从节余的两张卡片随机抽一张,以其正面的数字作为 b 的值,则点 (a, b)在第二象限的概率为()1 1 1 2A. B. C D.6 3 2 3答案: B分析:解答:解:依据题意,画出树状图如上:一共有 6 种状况,在第二象限的点有(-1,1)( -1, 2)共 2 个,因此, P= 2 1 = .6 3应选 B.剖析 :第一利用树形图可得等可能的结果有 6 种,而后利用概率公式求解即可求得答案.13.一个盒子中有 4 个除颜色外其他都相同的玻璃球, 1 个红色, 1 个绿色, 2 个白色,现随机从盒子中一次取出两个球,这两个球都是白球的概率为( )1B. 1C.1A.36 2答案: A分析:解答:共12 种等可能的状况, 2 次都是白球的状况数有 2 种,因此概率为.应选 A.剖析 :列举出所有状况,看这两个球都是白球的状况数占总状况数的多少即可.14.小明同时向上掷两枚质地平均、相同大小的正方体骰子,骰子的六个面上分别刻有 1 到 6 的点数,掷得面向上的点数之和是 3 的倍数的概率是 ( )1 1 8 5A. B. C. D.3 6 15 6答案: A分析:解答:明显和为 3 的倍数的概率为.应选 A.剖析 :本题可理解为两步实验,用列表法求出36 种所有可能的状况,而后找出和为 3 的倍数个数问题即可获得解决.15.甲、乙、丙、丁四位同学参加校田径运动会4×100 米接力跑比赛,假如任意安排四位同学的跑步次序,那么恰巧由甲将接力棒交给乙的概率是()1 1 1 5A. B. C. D.4 6 8 24答案: A分析:解答:画树状图得:一共有 24 种状况,恰巧由甲将接力棒交给乙的有甲乙丙丁、甲乙丁丙、丙甲乙丁、丁甲乙丙、丙丁甲乙、丁丙甲乙 6 种状况,∴恰巧由甲将接力棒交给乙的概率是6 = 1 ,应选 A.24 4剖析 :用树形图列举出所有状况,看恰巧由甲将接力棒交给乙的状况数占总状况数的多少即可.二、填空题16. 由 1, 2, 3 构成不重复的两位数,十位数字是 2 的概率是_____.答案:13分析:解答:由 1,2, 3 构成不重复的两位数有:则十位数字是 2 的状况有: 21、23 两种;12、 13、 21、 23、 31、 32 共六种状况;∴十位数字是 2 的概率是2÷6= 1.故答案为 1 .3 3剖析 :先依据题意列出切合条件的两位数有 6 种,此中十位数字是 2 的状况有 2 种,而后根据概率公式求解即可.17.如图,是两个能够自由转动的平均圆盘 A 和 B,A 、B 分别被平均的分红三等份和四等份.同时自由转动圆盘 A 和 B,圆盘停止后,指针分别指向的两个数字的积为偶数的概率是_____.答案:23分析:解答:画树状图得:∵由 12 种等可能的结果,指针分别指向的两个数字的积为偶数的有8 种状况,8 2∴指针分别指向的两个数字的积为偶数的概率是:.12 3故答案为:2.3剖析 :第一依据题意画出树状图,而后由树状图求得所有等可能的结果与指针分别指向的两个数字的积为偶数的状况,再利用概率公式求解即可求得答案.18.有四条线段,长度分别为1、 3 、 4 、5,任意取此中三条,能构成三角形的概率是_____答案:14分析:解答:四条线段,长度分别为1、3、4、5,任意取此中三条状况为:1, 3,4;1, 3,5; 1, 4, 5; 3, 4,5;能构成三角形的状况有:3,4, 5 只有 1 种状况,1 1则 P= .故答案为:4 4剖析 :找出四条选段,任意取此中三条的状况数,再找出能构成三角形的状况,即可求出所求的概率.19.从 1cm、3cm、5cm、7cm、9cm 的五条线段中,任选三条能够构成三角形的概率是_____.答案:310分析:解答:∵从 1cm、3cm、5cm、7cm、9cm 的五条线段中,任选三条,等可能的结果有:1cm、 3cm、 5cm, 1cm、 3cm、7cm, 1cm、 3cm、 9cm, 1cm、 5cm、 7cm, 1cm、5cm、 9cm,1cm、 7cm、 9cm, 3cm、 5cm、 7cm, 3cm、 5cm、 9cm, 3cm、 7cm、 9cm, 5cm、 7cm、 9cm 共 10 种,能构成三角形的有以上状况:3cm,5cm,7cm,3cm,7cm,9cm,5cm,7cm,9cm,3∴任选三条能够构成三角形的概率是:.10故答案为:3.10剖析 :第一利用列举法可得:任选三条,等可能的结果有:1cm、3cm、5cm,1cm、3cm、7cm,1cm、 3cm、 9cm, 1cm、 5cm、 7cm, 1cm、 5cm、 9cm, 1cm、 7cm、 9cm, 3cm、 5cm、7cm,3cm、5cm、9cm,3cm、7cm、9cm,5cm、7cm、9cm 共 10 种,能构成三角形的有以上状况:3cm, 5cm, 7cm, 3cm, 7cm, 9cm, 5cm, 7cm, 9cm,再利用概率公式即可求得答案.20.假如有两组牌,它们牌面数字分别为1、 2、3,那么从每组牌中各摸出一张牌,两张牌的牌面数字和等于 4 的牌概率是 ____ .1答案:3分析:解答:解:画树状图如上:共有 9 种状况,两张牌的牌面数字和等于 4 的牌有 3 种,∴P(两张牌的牌面数字和等于4) = 3 1 .故答案为:1.9 3 3剖析 :用树形图按两步实验的方法列出9 种状况 ,数字之和等于 4 的有 3 种,即可得出答案 . 概率三.解答题21.有两组牌,每组牌都是 4 张,牌面数字分别是 1, 2, 3, 4,从每组牌中任取一张,求抽取的两张牌的数字之和等于 5 的概率,并画出树状图.答案:解:,共有 16 种等可能的状况,和为 5 的状况有 4 种,∴ P(和为 5) = 1.4分析:剖析 :画出树状图.列举出所有状况,看抽取的两张牌的数字之和等于 5 的状况占所有状况的多少即可.22.一个不透明的盒子中放有四张分别写有数字1,2,3,4 的红色卡片和三张分别写有数字1, 2, 3 的蓝色卡片,卡片除颜色和数字外完整相同.(1) 从中任意抽取一张卡片,求该卡片上写有数字 1 的概率;答案: 27(2)将 3 张蓝色卡片取出后放入此外一个不透明的盒子内,而后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数构成一个两位数,求这个两位数大于 22 的概率.答案:712分析:解答:( 1)∵在 7 张卡片中共有两张卡片写有数字1,∴从中任意抽取一张卡片,卡片上写有数字1 的概率是 2 ;7(2)构成的所有两位数列表为:十位数1 2 3 4个位数1 11 21 31 412 12 22 32 423 13 23 33 43或列树状图为:7∴这个两位数大于22 的概率为.12剖析 :本题考察的是用列表法或画树状图法求概率.列表法或画树状图法能够不重复不遗漏的列出所有可能的结果,合适于两步达成的事件.用到的知识点为:概率 =所讨状况数与总状况数之比.依照题意先用列表法或画树状图法剖析所有等可能和出现所有结果的可能,而后依据概率公式求出该事件的概率.23.现将红、黄、蓝各一球放入不透明的盒子中,这三个球除颜色外完整相同,每次摇匀后,从中摸出一个球记录颜色并放回,共摸两次,求摸到同种颜色球的概率.答案:解:由树状图可知共有3×3=9 种可能,摸到同种颜色球的有 3 种,因此概率是3 1.9 3图法分析:剖析 :用树形图 ,先求出摸两次所有可能出现的状况共9 种 ,再找出同颜色的有 3 种 ,计算即可得到答案 .24.“十一”黄金周时期,小明要与父亲母亲出门游乐,带了 2 件上衣和 3 条长裤 (把衣服和裤子分别装在两个袋子里),上衣颜色有红色、黄色,长裤有红色、黑色、黄色.问题为:(1)小明任意取出一条裤子和一件上衣配成一套,用( 画树状图或列表格 )中的一种列出所有可能出现结果;答案: 6 种;(2)配好一套衣服,小明正好拿到黑色长裤的概率是多少;答案:13(3)他任意取出一件上衣和一条长裤穿上的颜色正好相同的概率是多少?答案:13分析:解答:解:( 1)列表如上:裤子红色黑色黄色上衣红色红色,红色红色,黑色红色,黄色黄色黄色,红色黄色,黑色黄色,黄色因此小明任意取出一条裤子和一件上衣配成一套,所有可能出现的结果有 6 种;(2)黑色长裤的有两种,因此概率是 1 ;3(3)颜色相同的占两种,因此概率是 1 .3剖析 :因为本题需要两步达成,因此采纳列表法或许采纳树状图法都比较简单;解题时要注意是放回实验仍是不放回实验.本题属于放回实验.(1)依据表格可得所有状况;(2)找到黑色长裤占所有状况的多少;(3)颜色相同的状况占所有状况的多少.25.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其他都相同),此中白球有 2 个,黄球有 1 个,现从中任意摸出一个是白球的概率为 1 .2(1)试求袋中蓝球的个数;答案: 1 个.(2)第一次任意摸一个球 (不放回 ),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.答案:1 6分析:解答:( 1)设蓝球个数为x 个,则由题意得 2 = 1, x=12+ 1+ x 2 答:蓝球有 1 个;(2)∴两次摸到都是白球的概率=2=1.12 6剖析 :求概率时要理解概率值等于出现的次数比上总的次数,因为给出了概率求个数,因此可列方程解之 .。

《利用画树状图和列表计算概率》习题—第二课时

《利用画树状图和列表计算概率》习题—第二课时

《利用画树状图和列表计算概率》第1课时一、知识积累,过程检测1.选择题;(1)在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出1颗棋子,取得白色棋子的概率是25,如果再往盒中放进3颗黑色棋子,那么取得白色棋子的概率变为14,则原来盒里有白色棋子( );A .1颗;B .2颗;C .3颗;D .4颗;(2)盒子中装有2个红球和4个绿球,每个球除颜色外都相同,从盒子中任意摸出一个球,是绿球的概率是( );A .41; B .31; C .32; D .21;(3)如图,一个小球从A 点沿制定的轨道下落,在每个交叉口都有向左或向右两种机会均等的结果,小球最终到达 H 点的概率是( );A .12;B .14;C .16;D .18;2.填空题;(1)小明同时向上掷两枚质地均匀、大小相等的正方体骰子,骰子的六个面上分别刻有1~6的点数,掷得朝上面的点数之和是3的倍数的概率是________;(2)小明、小刚、小亮三人正在做游戏,现在要从他们三人中选出一人去帮王奶奶干活,则小明被选中的概率为_____,小明未被选中的概率为_________;(3)从一副扑克牌(除去大、小王)中任抽一张,则抽到红心的概率为_____;抽到黑桃的概率为_____;抽到红心3的概率为_____;(4)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个白球的概率是_____,则口袋里有蓝球_____个;二、方法应用,能力训练1.解答题;一布袋中放有红、黄、自三种颜色的球各一个,它们除颜色外其他都一样,小亮从布袋中摸出一球后放回去摇匀,再摸出一个球,请你利用列举法(列表或画树状图)分析并求出小亮两次都能摸到白球的概率。

三、情感抒发、实践拓展1.解答题;儿童节期间,某公园游戏场举行一场活动.有一种游戏的规则是:在一个装有8个红球和若干个白球(每个球除颜色外,其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个世博会吉祥物海宝玩具,已知参加这种游戏的儿童有40000人次,公园游戏场共发放海宝玩具8000个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用画树状图和列表计算概率 随堂练习
1.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是黄灯的概率为( ) A .
1
12 B .13
C .
512
D .
12
2.在两个布袋中分别装有三个小球,这三个小球的颜色分别为红色、白色、绿色,其他没有区别.把两袋小球都搅匀后,再分别从两袋中各取出一个小球,求取出两个相同颜色....小球的概率是_______.
3.妞妞和她的爸爸玩 “锤子、剪刀、布”游戏.每次用一只手可以出锤子、剪刀、布三种手势之一,规则是锤子赢剪刀、剪刀赢布、布赢锤子,若两人出相同手势,则算打平.妞妞和爸爸出相同手势的概率是___________.
4.三个袋中各装有2个球,其中第一个袋和第二个袋中各有一个红球和一个黄球,第三个袋中有一个黄球和一个黑球,现从三个袋中各摸出一个球,则摸出的三个球中有2个黄球和一个红球的概率为_________.
5.已知函数5y x =-,令12x =
,1,32,2,52,3,72, 4,9
2
,5,可得函数图象上的十个点.在这十个点中随机取两个点11()P x y ,,22()Q x y ,,则P Q ,两点在同一反比例函数图象上的概率是___________.
6.小明、小芳做一个“配色”的游戏.右图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A 转出了红色,转盘B 转出了蓝色,或者转盘A 转出了蓝色,转盘B 转出了红色,则红色和蓝色在一起配成紫色,这种情况下小芳获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小明获胜;在其它情况下,则小明、小芳不分胜
负.
(1)利用列表或树状图的方法表示此游戏所有可能出现的结果; (2)此游戏的规则,对小明、小芳公平吗?试说明理由.
7.有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4四个数,另一个信封内的四张卡片分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜. (1)请你通过列表(或画树状图)计算甲获胜的概率 (2)你认为这个游戏公平吗?为什么?
参考答案
1.A 2.13 3.13 4.14 5.4
45
6.解:用列表法将所有可能出现的结果表示如下:
所以,所有可能出现的结果共有12种.
(2)上面等可能出现的12种结果中,有3种情况可能得到紫色,故配成紫色的
概率是
31124=,即小芳获胜的概率是1
4
;但只有2种情况才可能得到绿色,配成绿色的概率是21126=,即小明获胜的概率是16.而11
46>,故小芳获胜的可能性
大,这个“配色”游戏对小明、小芳双方是不公平的. 7.解:(1)利用列表法得出所有可能的结果,如下表:
由上表可知,该游戏所有可能的结果共16种,其中两卡片上的数字之积大于20的有5种,所以甲获胜的概率为516
P =甲
. (2)这个游戏对双方不公平,因为甲获胜的概率516P =甲,乙获胜的概率1116
P =乙,11
1616
5≠,所以,游戏对双方是不公平的.。

相关文档
最新文档