计算机应用基础偏微分方程求解
第6章_偏微分方程数值解法

u ( x, 0) = sin( x) , u (0, t ) = 0, u (π , t ) = 0
利用线上法数值求解 u ( x, t ) 随时间的演化关系 解:取 Δx = π /15 ,计算程序:demo_MOL.m,和结果见右图。
对于 a > 0 ,波从 k − 1 点过来, k − 1 点状态已变化, k + 1 点状态还未变化。差分只能 uk − uk −1 。同样意
n n
义可分析 a < 0 情况。见图 6.1.1。迎风格式的精度为 O(Δt , Δx) ,稳定性条件为 Δt < Δx / | a | 。
% Upwind_Method L = 15;dx = 0.1;dt = 0.05;a = -1.; x =[-L+dx:dx:0]';n=length(x); %Initial value u1=zeros(1,n-20);u2=ones(1,10);u3 = zeros(1,10); u = [u1 u2 u3]';r = a*dt/dx; u0 = u; plot(x,u','LineWidth',2);axis([-15 0 -1 2]);pause(1); for t=dt:dt:10. u(1:n-1) = (1+r)*u(1:n-1)-r*u(2:n); % u(2:n-1)=0.5*((1.-r)*u(3:n)… % +(1.+r)*u(1:n-2)); % Lax scheme hold off;plot(x,u,'LineWidth',2); axis([-15 0 -1 2]);pause(0.05) end hold on; plot(x,u0','r','LineWidth',2);axis([-15 0 -1 2]); xlabel('position');ylabel('u(x,t)'); legend('传播的波','初始方波'); title('Upwind')
应用数学中的偏微分方程及其求解方法

应用数学中的偏微分方程及其求解方法偏微分方程是数学的一个分支,它主要研究物理、工程、经济等领域中的现象和问题,这些问题都可以用一些数学模型来描述,这些数学模型就是偏微分方程。
偏微分方程在实际问题中的应用非常广泛,例如,流体力学、电磁学、声学等。
偏微分方程的求解是应用数学研究的一个重点,因为只有通过求解偏微分方程,才能获得事物的规律和掌握其本质。
偏微分方程的求解方法也很多,本文将介绍偏微分方程的求解方法以及其在应用数学中的实际应用。
一、偏微分方程的分类在讨论偏微分方程的求解方法之前,我们需要首先了解偏微分方程的分类。
偏微分方程一般可以分为以下几类:椭圆型、双曲型和抛物型方程。
其分类依据的是方程的二阶导数的符号和方程的解的性质。
1.椭圆型方程椭圆型方程的二阶导数在整个解域中均大于等于零,是一类具有平稳性的方程,它的解具有较好的可微性和连续性,例如,泊松方程、拉普拉斯方程等。
2.双曲型方程双曲型方程的二阶导数在解域中的某些部分正、负性相反,是一类具有波动性的方程,它的解具有较好的非光滑性和间断性,例如,波动方程、热传导方程等。
3.抛物型方程抛物型方程的二阶导数在整个解域中的某个方向上为正,而在其他方向上为负,和双曲型方程有些相似,它的解具有介于椭圆型和双曲型之间的特性,例如,扩散方程、亥姆霍兹方程等。
二、偏微分方程的求解方法在应用数学中,我们目的是求出偏微分方程的解,因此,需要采用一些方法对偏微分方程进行求解。
通常来说,偏微分方程的求解方法可以分为以下几类:分离变量法、变系数法、特征线法、有限差分法和有限元法等。
1.分离变量法分离变量法是一种比较简单的求解偏微分方程的方法,它适用于一定特定条件下,例如,线性的偏微分方程、边值问题和定解问题等。
分离变量法的核心思想是假设偏微分方程的解可以表示为一个或多个函数的乘积形式,并通过代入得到常微分方程或定积分,从而求解原方程的解,例如,波动方程、热传导方程等。
2.变系数法变系数法是一种较为常用的求解偏微分方程的方法,它的思想是利用变系数的技巧来求解复杂的偏微分方程。
偏微分方程的解法

偏微分方程的解法偏微分方程(Partial Differential Equations,简称PDEs)是数学中的一个重要分支,它描述了多变量函数的偏导数之间的关系。
这些方程在自然科学、工程应用和社会科学等领域都发挥着重要作用。
解决偏微分方程是一个复杂而有挑战性的过程,需要运用多种数学方法和工具来求解。
在本文中,我将为您介绍几种常见的偏微分方程的解法,并提供一些示例以帮助您更好地理解。
以下是本文的主要内容:1. 一阶线性偏微分方程的解法1.1 分离变量法1.2 特征线方法2. 二阶线性偏微分方程的解法2.1 分离变量法2.2 特征值法2.3 Green函数法3. 非线性偏微分方程的解法3.1 平移法3.2 线性叠加法3.3 变换法4. 数值方法解偏微分方程4.1 有限差分法4.2 有限元法4.3 谱方法5. 偏微分方程的应用领域5.1 热传导方程5.2 波动方程5.3 扩散方程在解一阶线性偏微分方程时,我们可以使用分离变量法或特征线方法。
分离变量法的基本思路是将方程中的变量分离,然后通过积分的方式求解每个分离后的常微分方程,最后再将结果合并。
特征线方法则是将方程中的变量替换为新的变量,使得方程中的导数项消失,从而简化求解过程。
对于二阶线性偏微分方程,分离变量法、特征值法和Green函数法是常用的解法。
分离变量法的核心思想与一阶线性偏微分方程相似,将方程中的变量分离并得到常微分方程,然后进行求解。
特征值法则利用特征值和特征函数的性质来求解方程,适用于带有齐次边界条件的问题。
Green函数法则通过引入Green函数来求解方程,其特点是适用于非齐次边界条件的情况。
非线性偏微分方程的解法则更加复杂,常用的方法有平移法、线性叠加法和变换法。
这些方法需要根据具体问题的特点选择合适的变换和求解技巧,具有一定的灵活性和创造性。
除了上述解析解法,数值方法也是解偏微分方程的重要手段。
常用的数值方法包括有限差分法、有限元法和谱方法等。
偏微分方程解法

偏微分方程解法导言偏微分方程是数学中一个重要的研究领域,它涉及到物理、工程、经济等众多学科,对于解决现实世界中的问题起着至关重要的作用。
本文将深入探讨偏微分方程的解法,包括常见的求解方法和应用示例。
偏微分方程简介在分析偏微分方程之前,我们先了解一下什么是偏微分方程。
简单来说,偏微分方程是由未知函数及其偏导数构成的方程。
它包含多个自变量和多个偏导数,用于描述有多个变量的物理现象或者其他现象。
常见的偏微分方程求解方法分离变量法分离变量法是解偏微分方程的主要方法之一。
它的基本思想是将偏微分方程中的未知函数表示为多个单变量函数的乘积,然后进行求解。
具体步骤如下: 1. 分离变量:将未知函数表示为多个单变量函数的乘积。
2. 将方程化为两端只含单变量函数的方程。
3. 求解单变量函数的方程。
4. 将求解得到的单变量函数组合在一起,得到原方程的解。
特征线法特征线法是另一种常用的偏微分方程求解方法。
它的基本思想是通过引入曲线方程(特征线),将偏微分方程转化为常微分方程,然后再进行求解。
特征线法的步骤如下: 1. 引入曲线方程,将偏微分方程转化为常微分方程。
2. 求解常微分方程。
3. 将常微分方程的解代回原方程,得到原方程的解。
变换方法除了分离变量法和特征线法,还有一些其他的变换方法可以用来求解偏微分方程。
其中比较常用的有变换坐标法和变换函数法。
变换坐标法的基本思想是通过适当的坐标变换,将原方程转化为更简单的形式,然后再进行求解。
变换函数法的基本思想是通过引入新的未知函数,将原方程转化为只含有新未知函数的形式,然后再进行求解。
偏微分方程解法的应用示例偏微分方程解法广泛应用于各个领域,下面将简要介绍一些应用示例。
热传导方程热传导方程是物理学中的一个重要方程,它描述了热量在物体中的传导过程。
通过对热传导方程进行求解,可以得到物体温度分布随时间的变化规律,从而可以预测物体的热传导行为。
斯托克斯方程斯托克斯方程是流体力学中的一个基本方程,描述了流体在静止或者稳定的情况下的运动规律。
偏微分方程的数值求解方法

偏微分方程的数值求解方法偏微分方程是描述自然现象的重要工具,例如描述热传导、电磁波传播、流体运动等。
然而大多数情况下,这些方程很难通过解析方式求解,因此需要数值求解方法。
本文将介绍偏微分方程的数值求解方法及其应用。
一、有限差分法有限差分法是一种常见的偏微分方程数值求解方法。
它将原本连续的区域离散化,将偏微分方程转化为差分方程。
例如对于一维热传导方程:$$\frac{\partial u}{\partial t} = \alpha\frac{\partial^2 u}{\partial x^2} $$其中 $u(x, t)$ 是温度,$\alpha$ 是热扩散系数。
我们可以选择将空间分成 $N$ 个网格,时间分成 $M$ 个步骤。
则有:$$u_i^{m+1} = u_i^m + \frac{\alpha\Delta t}{\Deltax^2}(u_{i+1}^m - 2u_i^m + u_{i-1}^m)$$其中 $u_i^m$ 表示在位置 $i\Delta x$,时间 $m\Delta t$ 时的温度值。
这是一个显式求解方程,可以直接按照时间步骤迭代计算。
不过由于它的误差可能会增长,因此需要小心选择时间步长和空间步长,以保证误差不会过大。
二、有限元法有限元法是一种更加通用的偏微分方程数值求解方法。
它将连续区域离散化成一些小段,称为单元。
然后针对每个单元,将其上的偏微分方程转化为局部插值函数的方程求解。
例如对于一维波动方程:$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partialx^2}$$我们可以选择将空间分成 $N$ 个网格,用有限元方法将每个网格分成若干个单元。
则对于每个单元 $i$,我们可以得到一个局部插值函数 $u^i(x, t)$ 来近似解该单元上的偏微分方程。
这里不再赘述该函数的形式。
另外,我们还需要满足界面上的连续性和斜率匹配条件,以保证整体解是连续的。
算法大全第20章偏微分方程的数值解

算法大全第20章偏微分方程的数值解偏微分方程(Partial Differential Equations,简称PDE)是描述自然界中各种物理现象的数学方程。
这些方程中的未知函数是多变量函数,而不是常微分方程中的单变量函数。
求解PDE是科学与工程中的重要问题,尤其在现代科学中,PDE的求解对于理解和预测自然现象具有重要的意义。
偏微分方程的数值解是指通过数值计算方法来求解PDE的近似解。
由于大多数情况下,PDE的解析解很难获得,因此数值解方法成为研究这些方程的重要工具之一、对于偏微分方程的数值解的研究主要集中在以下几个方面:1. 有限差分法(Finite Difference Method):这是求解PDE最常用的方法之一、该方法通过将微分方程在空间和时间上进行离散化,转化为差分方程或代数方程组,然后通过求解这些方程组来得到数值解。
有限差分法的基本思想是将空间和时间进行网格划分,将未知函数的值在网格点上进行逼近,并用差分格式代替微分运算。
2. 有限元法(Finite Element Method):该方法通过将求解域划分为若干个较小的单元,然后在每个单元中构建适当的数学模型,求解局部的代数问题,最终得到整个求解域的逼近解。
有限元法的优点是能够处理比较复杂的几何形状,适用于非结构网格,但需要更多的计算资源。
3. 边界元法(Boundary Element Method):该方法主要用于求解边界值问题,将求解域划分为边界和内部两个部分。
边界元法通过在边界上离散化未知函数,并构建适当的积分方程来求解问题。
边界元法常用于求解椭圆型PDE,计算效率较高。
4. 特征线法(Characteristics Method):该方法通过在方程中寻找适当的特征曲线,将PDE转化为一维常微分方程,然后求解这个常微分方程。
特征线法对于具有特殊类型边界条件的问题有很好的适用性,但在处理高维问题时存在困难。
以上只是偏微分方程数值解研究的一些常见方法,根据具体问题的特点和要求,还可以选择其他数值方法。
偏微分方程求解算法研究及应用

偏微分方程求解算法研究及应用偏微分方程是描述自然现象和工程问题的重要工具。
从最简单的热传导方程到流体力学中的Navier-Stokes方程,这些方程的求解能够获得很多实际问题的解答。
随着计算机技术的飞速发展,可解决的偏微分方程问题的范围和复杂性也得到了提高。
在本文中,我们将讨论偏微分方程的一些求解算法及其应用,以及这些算法如何在实践中发挥作用。
第一部分:解析方法解析方程的基本思想是寻找满足特定条件的解析表达式。
在偏微分方程的求解中,常见的解析方法包括分离变量法、变量参数法和特征线方法等。
1.1 分离变量法分离变量法是解决大多数运筹学、物理学和工程学问题的重要方法。
它的基本思想是,假设找到一种函数形式,使得偏微分方程中的某些变量可以单独表示,这样就可以得到关于单个变量的一组普通微分方程。
通过求解这些方程,就可以获得原始问题的解。
例如,考虑一个双曲型偏微分方程:$$ \frac{\partial^2 u}{\partial x^2}-\frac{\partial^2 u}{\partial t^2}=0 $$我们可以假设$u(x,t)$的解有如下形式:$$ u(x,t)=X(x)T(t) $$将它代入原方程得到:$$ \frac{X''}{X}=\frac{T''}{T}=-\lambda $$其中$\lambda$是分离常数。
然后,我们可以解出关于$X$和$T$的两个普通微分方程:$$ X''+\lambda X=0, T''+\lambda T=0 $$这两个方程都是熟悉的谐振动方程,其解可以表示为正弦波和余弦波的线性组合。
因此,原方程的通解可以写成:$$ u(x,t)=\sum_{n=1}^{\infty}(A_n\cos(\sqrt{\lambda_n}x)+B_n\sin(\sqrt{\lambda_n}x))(C_n\cos(\sqrt{\lambda_n}t)+D_n\sin(\sqrt{\lambda_n}t)) $$其中,$A_n,B_n,C_n$和$D_n$是一些常数,根据边界条件和初始条件来确定。
偏微分方程解法

偏微分方程解法一、概述偏微分方程是数学中的一个重要分支,广泛应用于物理、工程、经济等领域。
解决偏微分方程的方法有很多种,其中最常用的方法是数值解法和解析解法。
本文将重点介绍偏微分方程的解析解法。
二、基本概念1. 偏微分方程:含有多个自变量和它们的偏导数的方程。
2. 解析解:能够用一定的代数式或函数表示出来的解。
3. 常微分方程:只含一个自变量和它的导数的方程。
4. 偏微分方程分类:(1)线性偏微分方程:各项次数之和为1或2。
(2)非线性偏微分方程:各项次数之和大于2。
5. 解析解法分类:(1)可分离变量法(2)相似变量法(3)积分因子法(4)特征线法(5)变换法三、可分离变量法可分离变量法是求解一类特殊形式线性偏微分方程最常用的方法,其基本思想是将未知函数表示成各自变量之积,然后将其带入原偏微分方程中得到一组常微分方程,再求解这些常微分方程,最后将得到的解代回原方程中即可。
以一阶线性偏微分方程为例:$$\frac{\partial u}{\partial t}+a(t)u=b(t)$$其中$a(t)$和$b(t)$为已知函数,$u=u(x,t)$为未知函数。
将未知函数表示成各自变量之积:$$u=X(x)T(t)$$将其带入原方程中得到:$$XT'+aXT=bXt$$将$X$和$T$分离变量并整理得到:$$\frac{1}{X}\frac{dX}{dx}=\frac{1}{at+b}-\frac{c}{X}$$其中$c$为常数。
对上式两边同时积分得到:$$ln|X|=ln|at+b|-ct+D_1,D_1为常数。
$$即可得到$X(x)$的解析解。
同理,对于$T(t)$也可以通过可分离变量法求出其解析解。
最后将$X(x)$和$T(t)$的解代入原方程中即可得到未知函数$u=u(x,t)$的解析解。
四、相似变量法相似变量法是一种适用于非线性偏微分方程的方法,其基本思想是通过引入新的自变量和因变量,将原偏微分方程转化成一个形式相似但更简单的方程,从而求出原方程的解析解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.3 偏微分方程求解工具箱
【例6-3】 求解椭圆型方程
x 2u 2 y 2u 22 5x5, 5y5
u100
x5 y5
采用工具箱求解
6.3 偏微分方程求解工具箱
6.3 偏微分方程求解工具箱
利用PDE工具箱命令行求解偏微分方程:
1. 问题定义及参数初始化 2. 网格化 3. 求解 4. 显示结果
第六章 偏微分方程求解
6.1 偏微分方程组求解 6.2 二阶偏微分方程的数学描述 6.3 偏微分方程的求解界面应用举例 6.4 偏微分方程在化工中的应用
6.1 偏微分方程组求解
一 偏微分方程的分类
A x 2 u 2 B x 2 u y C y 2 u 2 D u x E u y F f u x ,y ,u , u x , u x
>>x=0: 0.05: 1; t=0: 0.05: 2; m=0; sol=pdepe(m, @c7mpde, @c7mpic, @c7mpbc, x, t); surf(x, t, sol( :, :, 1))
6.1 偏微分方程组求解
求解函数:ME_5_1.m, 结果如下
6.2 二阶偏微分方程的求解
6.1 偏微分方程组求解
三 偏微分方程数值解法
1. 有限差分法 2. 正交配置法 3. MOL法 4. 有限元法
6.1 偏微分方程组求解
四 采用pdepe( )函数求解一维偏微分方程
6.1 偏微分方程组求解
边界条件的函数描述:
【例6-1】
6.1 偏微分方程组求解
6.1 偏微分方程组求解
6.1 偏微分方程组求解
6.1 偏微分方程组求解
边界条件程序”c7mbc.m” function [pa, qa, pb, qb]=c7mpbc(xa, ua, xb, ub, t) pa=[0; ua(2)]; qa=[1; 0]; pb=[ub(1)-1; 0]; qb=[0; 1];
function u0=c7mpic(x) u0=[1; 0];
6.2 二阶偏微分方程的求解
parabolic函数用于求解抛物型偏微分方程的解,调用格 式如下:
u1=parabolic(u0,tlist,b,p,e,t,c,a,f,d) b: 边界条件 u0: 初始条件 tlist;时间列表 u1:对应于tlist的解向量 p,e,t :网格数据
6.2 二阶偏微分方程的求解
u=assempde(b,p,e,t,c,a,f,u0) U0:初始条件,用于非线性方程求解
6.2 二阶偏微分方程的求解
例6-2,利用adaptmesh函数求解拉普拉斯方程,其 在弧上满足Dirichlet条件:
u=sin(2/3*atan2(y,x))
ME_6_3
6.2 二阶偏微分方程的求解
二 抛物线型偏微分方程
例6-3:求解热传导方程:
u t x 2u 2 y 2u 2 z2u 20, u0
Gx,y,z0x,y,z1
ME_6_2
6.2 二阶偏微分方程的求解
三 双曲型偏微分方程
6.3 偏微分方程求解工具箱
• 启动偏微分方程求解界面
– 在 MATLAB 下键入 pdetool
• 该界面分为四个部分
6.3 偏微分方程求解工具箱
例6-5 求解二维动态热传导方程
Tt x2T2 y2T2 ,
0x15,0y20,t0
初始条件 ut: 0 0,0x1,50y20
边界条件 ux: 0 ux15uy0 uy2010,(0t 0)
ME_6_6.m
6.4 偏微分方程在化工中的应用
在一管式催化反应器中进行乙苯的催化脱氢反应,所用原料为 乙苯和水蒸汽的气体混合物。动力学方程为:
当A,B,C为常数时,称为拟线性偏微分方程,可 分为三类:
B24AC 0 椭圆型方程 B24AC0 抛物型方程 B24AC0 双曲型方程
6.1 偏微分方程组求解
二 偏微分方程边界条件:
(1)Dirichlet 边界条件
hu=r
也称为第一类边界条件,对于偏微分方程组, Dirichlet边界条件为
hh1121uu11hh1222uuቤተ መጻሕፍቲ ባይዱ2
偏微分方程求解程序 “c7mpde”
function [c, f, s]=c7mpde(x, t, u, du) c=[1 ; 1] ; y=u(1)-u(2) ; F=exp(5.73*y)-exp(-11.46*y) ; s=F*[-1; 1] f=[0.024*du(1); 0.17*du(2)];
r1 r2
(2)Neumann边界条件
nc uq ug
6.1 偏微分方程组求解
也称为第三类边界条件;当q=0时,则变为第二类边界 条件。对于偏微分方程组,Neumann边界条件为:
n n c c 1 2 1 1 u u 1 1 n n c c 1 2 2 2 u u 2 2 q q 1 2 u u 1 1 1 1 q q 1 2 u u 2 2 2 2 g g 1 2
一 椭圆型偏微分方程
6.2 二阶偏微分方程的求解
6.2 二阶偏微分方程的求解
adaptmesh 和assempde函数用于求解椭圆型偏微分方 程的解,调用格式如下:
[u, p, e, t]=adapmesh(g,b,c,a,f) g: 求解几何区域; b: 边界条件 u:解向量 p,e,t :网格数据
其中 n为边界外法向单位向量,g, q, h, r为在边界 上定义的函数
(3)混合边界条件
n n c c 1 2 1 1 u u 1 1 n n c c 1 2 2 2 u u 2 2 q q 1 2 u u 1 1 q q 1 2 u u 2 2 2 2 g g 1 2 h h 1 2 1 1
– 菜单系统 – 工具栏 – 集合编辑 – 求解区域
6.3 偏微分方程求解工具箱
菜单栏
工具栏
6.3 偏微分方程求解工具箱
5.3 偏微分方程求解工具箱
工具箱求解步骤: 1. 用options设置应用模式(可选) 2. 用Draw建立几何模型 3. 用Boundary菜单设定边界条件 4. 用PDE定义偏微分方程的类型和系数 5. 用Mesh菜单进行三角形网格划分及细化 6. 用Slove进行偏微分方程求解 7. 用Plot以图形方式显示结果