计算机应用基础偏微分方程求解

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

r1 r2
(2)Neumann边界条件
nc uq ug
6.1 偏微分方程组求解
也称为第三类边界条件;当q=0时,则变为第二类边界 条件。对于偏微分方程组,Neumann边界条件为:
n n c c 1 2 1 1 u u 1 1 n n c c 1 2 2 2 u u 2 2 q q 1 2 u u 1 1 1 1 q q 1 2 u u 2 2 2 2 g g 1 2
其中 n为边界外法向单位向量,g, q, h, r为在边界 上定义的函数
(3)混合边界条件
n n c c 1 2 1 1 u u 1 1 n n c c 1 2 2 2 u u 2 2 q q 1 2 u u 1 1 q q 1 2 u u 2 2 2 2 g g 1 2 h h 1 2 1 1
>>x=0: 0.05: 1; t=0: 0.05: 2; m=0; sol=pdepe(m, @c7mpde, @c7mpic, @c7mpbc, x, t); surf(x, t, sol( :, :, 1))
6.1 偏微分方程组求解
求解函数:ME_5_1.m, 结果如下
6.2 二阶偏微分方程的求解
6.1 偏微分方程组求解
边界条件程序”c7mbc.m” function [pa, qa, pb, qb]=c7mpbc(xa, ua, xb, ub, t) pa=[0; ua(2)]; qa=[1; 0]; pb=[ub(1)-1; 0]; qb=[0; 1];
function u0=c7mpic(x) u0=[1; 0];
当A,B,C为常数时,称为拟线性偏微分方程,可 分为三类:
B24AC 0 椭圆型方程 B24AC0 抛物型方程 B24AC0 双曲型方程
6.1 偏微分方程组求解
二 偏微分方程边界条件:
(1)Dirichlet 边界条件
hu=r
也称为第一类边界条件,对于偏微分方程组, Dirichlet边界条件为
hh1121uu11hh1222uu22
一 椭圆型偏微分方程
6.2 二阶偏微分方程的求解
6.2 二阶偏微分方程的求解
adaptmesh 和assempde函数用于求解椭圆型偏微分方 程的解,调用格式如下:
[u, p, e, t]=adapmesh(g,b,c,a,f) g: 求解几何区域; b: 边界条件 u:解向量 p,e,t :网格数据
偏微分方程求解程序 “c7mpde”
function [c, f, s]=c7mpde(x, t, u, du) c=[1 ; 1] ; y=u(1)-u(2) ; F=exp(5.73*y)-exp(-11.46*y) ; s=F*[-1; 1] f=[0.024*du(1); 0.17*du(2)];
例6-3:求解热传导方程:
u t x 2u 2 y 2u 2 z2u 20, u0
Gx,y,z0x,y,z1
ME_6_2
6.2 二阶偏微分方程的求解
三 双曲型偏微分方程
6.3 偏微分方程求解工具箱
• 启动偏微分方程求解界面
– 在 MATLAB 下键入 pdetool
• 该界面分为四个部分
6.1 偏微分方程组求解
三 偏微分方程数值解法
1. 有限差分法 2. 正交配置法 3. MOL法 4. 有限元法
6.1 偏微分方程组求解
四 采用pdepe( )函数求解一维偏微分方程
6.1 偏微分方程组求解
边界条件的函数描述:
【例6-1】
6.1 偏微分方程组求解
6.1 偏微分方程组求解
6.1 偏微分方程组求解
6.3 偏微分方程求解工具箱
【例6-3】 求解椭圆型方程
x 2u 2 y 2u 22 5x5, 5y5
u100
x5 y5
采用工具箱求解
6.3 偏微分方程求解工具箱
6.3 偏微分方程求解工具箱
利用PDE工具箱命令行求解偏微分方程:
1. 问题定义及参数初始化 2. 网格化 3. 求解 4. 显示结果
6.2 二阶偏微分方程的求解
parabolic函数用于求解抛物型偏微分方程的解,调用格 式如下:
u1=parabolic(u0,tlist,b,p,e,t,c,a,f,d) b: 边界条件 u0: 初始条件 tlist;时间列表 u1:对应于tlist的解向量 p,e,t :网格数据
6.2 二阶偏微分方程的求解
– 菜单系统 – 工具栏 – 集合编辑 – 求解区域
6.3 偏微分方程求解工具箱
菜单栏
工具栏
6.3 偏微分方程求解工具箱
5.3 偏微分方程求解工具箱
工具箱求解步骤: 1. 用options设置应用模式(可选) 2. 用Draw建立几何模型 3. 用Boundary菜单设定边界条件 4. 用PDE定义偏微分方程的类型和系数 5. 用Mesh菜单进行三角形网格划分及细化 6. 用Slove进行偏微分方程求解 7. 用Plot以图形方式显示结果
第六章 偏微分方程求解
6.1 偏微分方程组求解 6.2 二阶偏微分方程的数学描述 6.3 偏微分方程的求解界面应用举例 6.4 偏微分方程在化工中的应用
6.1 偏微分方程组求解
一 偏微分方程的分类
A x 2 u 2 B x 2 u y C y 2 u 2 D u x E u y F f u x ,y ,u , u x , u x
u=assempde(b,p,e,t,c,a,f,u0) U0:初始条件,用于非线性方程求解
6.2 二阶偏微分方程的求解
例6-2,利用adaptmesh函数求解拉普拉斯方程,其 在弧上满足Dirichlet条件:
u=sin(2/3*atan2(y,x))
ME_6_3
6.2 二阶偏微分方程的求解
二 抛物线型偏微分方程
6.3 偏微分方程求解工具箱
例6-5 求解二维动态热传导方程
Tt x2T2 y2T2 ,
0x15,0y20,t0
初始条件 ut: 0 0,0x1,50y20
Leabharlann Baidu
边界条件 ux: 0 ux15uy0 uy2010,(0t 0)
ME_6_6.m
6.4 偏微分方程在化工中的应用
在一管式催化反应器中进行乙苯的催化脱氢反应,所用原料为 乙苯和水蒸汽的气体混合物。动力学方程为:
相关文档
最新文档