详解红外热像仪

合集下载

红外热成像仪的介绍及工作原理

红外热成像仪的介绍及工作原理

1.红外热成像技术红外成像技术作为一门新技术,在电力设备运行状态检测中有着无比的优越性。

红外成像是以设备的热状态分布为依据对设备运行状态良好与否进行诊断,它具有不停运、不接触、远距离、快速、直观地对设备的热状态进行成像。

由于设备的热像图是设备运行状态下热状态及其温度分布的真实描写,而电力设备在运行状态下的热分布正常与否是判断设备状态良好与否的一个重要特征。

因此采用红外成像技术可以通过对设备热像图的分析来诊断设备的状态及其隐患缺陷。

2.什么是红外热像图一般我们人眼能够感受到的可见光波长为:0.38—0.78微米。

通常我们将比0.78微米长的电磁波,称为红外线。

自然界中,一切物体都会辐射红外线,因此利用探测器测定目标本身和背景之间的红外线差,可以得到不同的红外图像,称为热图像。

同一目标的热图像和可见光图像是不同,它不是人眼所能看到的可见光图像,而是目标表面温度分布图像,或者说,红外热图像是人眼不能直接看到目标的表面温度分布,变成人眼可以看到的代表目标表面温度分布的热图像。

3.红外热像仪的原理热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,热图像的上面的不同颜色代表被测物体的不同温度。

红外热像仪的非接触式测温方式,能够在不影响轧辊工作的同时测量其实时温度,并随时采取降温措施。

红外热像仪的原理4.红外热成像的特点自然界所有温度在绝对零度(-273℃)以上的物体,都会发出红外线,红外线(或称热辐射)是自然界中存在最为广泛的辐射。

大气、烟云等吸收可见光和近红外线,但是对3~5微米和8~14微米的红外线却是透明的。

因此,这两个波段被称为红外线的“大气窗口”。

我们利用这两个窗口,可以在完全无光的夜晚,或是在烟云密布的恶劣环境,能够清晰地观察到前方的情况。

5.在线式红外热像仪采用红外热成像技术,探测目标物体的红外辐射,并通过光电转换、信号处理等手段,将目标物体的温度分布图像转换成视频图像的设备,我们称为红外热像仪。

红外线热成像仪的原理

红外线热成像仪的原理

红外线热成像仪的原理红外线热成像仪是一种非接触式的温度测量仪器,其原理基于物体的红外辐射特性。

红外线热成像仪利用光学系统将物体的红外辐射聚焦到探测器上,然后通过电子系统处理信号,最终在显示器上呈现物体的热图像。

一、红外辐射原理所有物体都会发出红外辐射,这是由于物体内部的微观粒子的振动和运动产生的。

温度越高,物体发出的红外辐射的强度越高。

红外线热成像仪通过测量物体发出的红外辐射强度来推断物体的温度。

二、工作原理红外线热成像仪由光学系统、探测器和电子系统三部分组成。

1.光学系统光学系统的作用是将目标物体的红外辐射聚焦到探测器上。

它通常由透镜或反射镜组成,具有过滤和聚焦的功能。

通过过滤器,光学系统只允许特定波长的红外辐射进入,以减少其他干扰信号的影响。

2.探测器探测器是红外线热成像仪的核心部分,负责接收和测量目标物体的红外辐射。

探测器通常由一系列的热电偶或热电阻组成,能够将红外辐射转换为电信号。

探测器的性能决定了红外线热成像仪的灵敏度和精度。

3.电子系统电子系统负责处理探测器输出的信号,将其转换为可显示的图像。

电子系统通常包括放大器、信号处理器和显示器等组件。

放大器将探测器输出的微弱电信号放大,信号处理器对信号进行进一步处理和修正,最后在显示器上呈现目标物体的热图像。

三、特点及应用红外线热成像仪具有非接触、快速、高精度和高灵敏度等特点,广泛应用于军事、工业、医疗等领域。

在军事领域,红外线热成像仪用于夜视侦查和瞄准目标;在工业领域,红外线热成像仪用于设备故障检测和产品质量检测;在医疗领域,红外线热成像仪用于疾病诊断和治疗监测。

总之,红外线热成像仪是一种基于物体红外辐射特性的温度测量仪器,其工作原理主要包括光学系统、探测器和电子系统三部分。

由于具有非接触、快速、高精度和高灵敏度等特点,红外线热成像仪在军事、工业、医疗等领域得到了广泛应用。

随着技术的不断发展,红外线热成像仪的应用前景将更加广阔。

红外热像仪的介绍及使用

红外热像仪的介绍及使用

红外热像仪的介绍及使用
红外热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应,图Io通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像。

热图像的上面的不同颜色代表被测物体的不同温度。

在消防监督检查工作中一般用于测量电气火灾隐患。

图I红外热像仪
应用范围
用红外热像仪测量导线接头、导线与设备或器具接线端子的温度,其最高允许温度应符合相关规定,图2。

图2红外热像仪使用范例。

红外热像仪的特点和应用

红外热像仪的特点和应用

发电企业应用
火力发电、核能发电和水力发电企业,由于存在环境振动、 灰尘腐蚀、设备使用磨损、消耗、工作应力作用等因素,使发 电机组工作失常、电气设备非正常过热、蒸汽系统保温损坏、 管路腐蚀泄漏、管路阀门失效、轴承欠润滑、轴承不同心等问 题。应用热像仪可对设备进行有效维护检测和安全检测,被检 测设备主要包括:发电机组、电气控制盘、变压器、升压站设 备、电路板、电缆接头、锅炉热保温部分、蒸汽管道、阀门、 热风道、除尘器烟道、输煤皮带、阀门、电动机控制中心、电 动机、轴承等。
m
波长
0.4
0.6 0.8 1
1.5 2
34
6 8 10 15 20 30
波长 (um)
常用红外波谱范围
二、红外热像仪的特点和应用优势
探测物体表面细微的温度分布; 非接触检测工作中的设备; 夜间长距离观察的能力; 具有穿透烟雾霾的观察能力。
探测物质世界的红外辐射波段,可看到神奇 的景象。能看到不透明纸杯中的水位。
上右耦合电容器介质超标整体发热
下左220KV氧化锌避雷器内部缺陷 下右110KV氧化锌避雷器内部缺陷
机械制造工业应用
机械制造企业在生产过程中,变电站、配电 柜、电动机等电气设备非正常过热将造成电 路中断、生产线停产,甚至发生火灾,给企 业带来重大经济损失。轴承轴心跳动和润滑 不好发热,不能及时发现将会造成轴承过早 损坏。蒸汽系统通常存在输送管路保温不好、 管道堵塞、汽阀失效、管路泄漏等故障,造 成能源大量损耗和浪费,并形成事故隐患。 热像仪是以上问题强有力发现工具,可及时 发现设备安全隐患、设备维护需、设备能耗 浪费。同时也是产品研发、工艺改进新型分 析工具,是产品质量分析和控制的有效手段。
热像仪能全天候对军事目标实施侦察

红外热像仪的工作原理

红外热像仪的工作原理

红外热像仪的工作原理
红外热像仪是一种探测目标物体的红外辐射能量分布情况的仪器,它可以将被测目标的红外辐射能量分布图形转变成图像显示在红外成像屏幕上,并可以对被测目标进行温度测量。

红外热像仪是一种高科技、高智能的多功能仪器,具有非接触、分辨率高、功耗低、抗干扰能力强等特点,在机械设备检修过程中能够快速准确地发现机械设备存在的故障,及时避免了机械设备发生重大事故。

下面我们就来了解一下红外热像仪的工作原理吧!
红外线是一种可见光,它不像可见光那样在可见光谱范围内具有光波的一切特性,而是具有不可见光所没有的波谱特性。

在红外线波段,物体发出的红外线能量相当于可见光能量的10倍
以上,甚至比可见光还要强得多。

这是因为物体的原子和分子等内部有大量的电子在高速旋转着,这些电子在旋转过程中会辐射出大量的红外线,这些红外线被人眼接收后,人就能看到物体发出的红外线了。

同时,人也能感觉到这种红外线带来的温度差异。

红外热像仪就是利用红外探测器把这种差异转化成图像显示出来。

—— 1 —1 —。

红外热像仪主要技术参数

红外热像仪主要技术参数

红外热像仪主要技术参数1.分辨率:红外热像仪的分辨率是指它可以检测到并显示的最小温度差异。

一般来说,分辨率越高,红外热像仪就能提供更准确和清晰的图像。

分辨率通常以温度差异的最小测量单位表示,比如0.1°C。

2.温度测量范围:红外热像仪的温度测量范围表示它可以测量的最低和最高温度。

一些低端的红外热像仪的温度测量范围可能只有几十摄氏度,而高端的红外热像仪则可以测量到上千摄氏度的温度范围。

3.帧率:帧率是指红外热像仪在一秒钟内可以拍摄和显示的图像帧数。

高帧率可以提供更流畅和清晰的图像,而低帧率可能会导致图像模糊。

4.聚焦方式:红外热像仪的聚焦方式决定了它可以检测到的目标距离范围。

一些红外热像仪具有手动聚焦的功能,用户可以通过调整焦距来获取清晰的图像,而其他红外热像仪具有自动聚焦功能,可以更方便地获得清晰的图像。

5.可视光照相机:一些高端的红外热像仪配备了可视光照相机,可以在红外热像仪图像上叠加显示可视光图像,以提供更直观和全面的信息。

6.图像和视频保存功能:一些红外热像仪具有内置存储功能,可以将图像和视频保存到内部存储器或外部存储卡中。

这使得用户可以随后进行分析和报告编制。

7.接口和通信:红外热像仪通常还配备有各种接口,比如USB、HDMI或无线通信接口,以便用户可以快速传输图像和数据,并与其他设备进行连接。

8.电池寿命:红外热像仪通常使用可充电电池供电,其电池寿命决定了使用时间的长短。

一些高端的红外热像仪具有长时间的电池寿命,可以持续使用数小时。

总结起来,红外热像仪的主要技术参数包括分辨率、温度测量范围、帧率、聚焦方式、可视光照相机、图像和视频保存功能、接口和通信、电池寿命等。

这些参数决定了红外热像仪的性能和适用范围,用户可以根据自己的需求选择适合的红外热像仪。

红外热像仪工作原理

红外热像仪工作原理
红外热像仪(Infrared thermal imager)是一种可以将物体的红
外辐射能量转化为可见图像的设备。

它通过感知物体发出和传输的红外线辐射,然后将红外辐射转化为热图,进而生成可见的热像。

红外热像仪的工作原理可以概括为以下几个步骤:
1. 接收红外辐射:红外热像仪通过一个红外探测器接收来自物体的红外辐射波段,一般范围在3~14μm之间。

2. 辐射传输:物体发出的红外辐射会经过传输介质(例如空气)传输到红外热像仪的镜头。

3. 透镜聚焦:红外热像仪的镜头会聚焦红外辐射在红外探测器上。

透镜的设计可以使得光束汇聚于探测器上的一个点,以提高检测的精度。

4. 信号转换:红外探测器将接收到的红外辐射转换为电信号。

红外辐射的能量会导致探测器中的导电材料发生温度变化,产生电阻变化,进而转化为电信号。

5. 信号处理:红外热像仪将接收到的电信号进行放大、滤波和数字化处理,以提高信号的质量和可视化效果。

6. 热图生成:通过对接收到的信号进行处理和分析,红外热像仪能够将红外辐射转化为可见的热图。

热图上的不同颜色代表着不同温度的物体,可以直观地显示出物体的热分布情况。

总的来说,红外热像仪工作的基本原理就是利用红外辐射和温度之间的关系,通过专用的探测器接收和转换红外辐射,并将其转化为可见的热图,从而实现对物体的热分布和温度变化的检测和观测。

这种技术在军事、医疗、安防、建筑和工业等领域有着广泛的应用。

红外热像仪工作原理

红外热像仪工作原理
红外热像仪,也叫热成像仪,是一种用来检测物体表面温度的仪器。

它可以检测物体表面温度,并将温度变化转换成图像,以便更加直观的查看物体的温度分布情况。

红外热像仪的工作原理可以概括为:首先,它接收物体反射的红外辐射,然后将接收到的红外辐射转换为电脉冲,最后,将其转换成可视图像,从而显示出物体表面温度的分布情况。

红外热像仪的原理主要是利用黑体原理,即物体在热辐射的作用下,会发射不同的红外辐射。

这些红外辐射的强弱取决于物体的温度,越高的温度发射的辐射越强,越低的温度发射的辐射越弱。

红外热像仪接收到的红外辐射强度与物体的表面温度成正比。

红外热像仪的优点:红外热像仪可以快速、非接触地检测物体表面温度,并将温度变化以图像的形式直观地显示出来,这样可以大大提高检测效率。

它还可以用于检测隐藏在物体表面以下的温度变化,从而进行更为精确的检测。

红外热像仪也可以用于环境监测,可以用来检测地表温度,从而为气候变化研究提供有效信息。

红外热像仪在工业、农业、环境监测等领域都有很广泛的应用,它可以检测物体表面温度,并可以将温度变化转换为图像,这样能更加直观地查看物体的温度分布情况,为工业、农业、环境监测等领域提供更多的便利。

红外热像仪成像原理

所的角度,通俗的说,镜头有一个确定的视野,镜头对这个视野的高度和宽度 的角称为视场角,
名词解释
测温精度: 测温精度是指测温型红外热像仪进行温度测量时,读取的温度数据与实
际温度的差异,此数值越小,代表热像仪的性能越好,
测温范围: 测温范围是指测温型红外热像仪可以测量到的最高温度和最低温度的
范围,
名词解释Βιβλιοθήκη 补偿前红外图像补偿后红外图像
Thank you
单击此处编辑母版内容样式
单击此处编辑母版内容样式 G西ui安de天In迈fra机re电d 科技 SeSaearcrhch
单击此处编辑母版副内容样式
坏点: 坏点指在红外图像中坐标不随目标变化的明暗斑点,是由探测器的单个
探测元对红外辐射的响应率过高或过低造成的,也称无效像元 ,
名词解释
非均匀性校正: 由于红外探测器制造工艺的局限,红外探测器每个探测元对红外辐射的
响应率不同,成像面上会出现上述鬼影和坏点现象,影响热像仪的成像质量, 非均匀性校正是指有效降低探测器的响应率不均匀性,提高热像仪成像
大气、烟云等吸收红外线也跟红外辐射的波长有关,对于3~5微米和8~14微米的 红外线是透明的,因此,这两个波段被称为红外线的大气窗口,利用这两个窗口,红外 热像仪可以正常的环境中进行观测而不换产生红外辐射衰减的情形,
如图: 烟雾中看不清汽车,通过红外 热像仪可以清晰看到,
红外热成像原理
1. 热成像原理
主要有多晶硅和氧化钒两种探测器,
制冷型
非制冷型
名词解释
红外热像仪按照功能分为测温型和非测温型
测温型红外热像仪: 测温型红外热像仪,可以直接从热图像上读出物体表面任意点的温度数值,
这种系统可以作为无损检测仪器,但是有效距离比较短,

红外热像仪 原理

红外热像仪原理红外热像仪原理什么是红外热像仪?红外热像仪是一种能够检测和测量物体表面辐射出的红外热辐射能量,并将其转化为可视化图像的设备。

不同于可见光相机,红外热像仪可以在全天候、低光、无光或遮挡条件下进行探测,因此在许多领域有着广泛的应用,如军事、安全、建筑、医学等。

红外辐射和热能•红外辐射:物体由于温度而发出的电磁辐射,波长在微米之间,位于可见光和微波之间。

红外辐射具有独特的热能信息。

•热能:物体内部分子和原子的热运动形成的能量。

红外热像仪的工作原理红外热像仪基于物体发出的红外辐射能量,采用以下步骤来转换成可视化图像:1.接收红外辐射:红外热像仪使用一个特殊的红外探测器,如铟锗、铟锑或微阵列探测器,接收从目标物体发出的红外辐射能量。

2.辐射转换:红外辐射进入红外探测器后,被探测器转换成电信号。

3.信号放大:探测器产生的微弱电信号经过放大处理,提高信号的强度和清晰度。

4.信号处理:经过放大后的信号,经过一系列滤波、放大和修正处理,以优化图像质量并减少噪声。

5.图像重构:最后,经过信号处理后的电信号转换成图像信号,然后显示在红外热像仪的屏幕上,形成可视化的热像图。

红外热像仪的工作特点•即时成像:红外热像仪可以在几乎即时地生成热像图,让用户能够即刻观察到检测区域的温度分布。

•非接触式检测:通过红外辐射的检测,红外热像仪无需接触目标物体,避免了对目标的干扰。

•高分辨率:现代红外热像仪具备高像素和高灵敏度的特点,能够捕捉微小的温度变化。

•多功能:红外热像仪可以进行即时、连续的图像记录,还可以测量温度、进行多点测温、生成热图等。

红外热像仪的应用领域•建筑和能源:用于检测建筑物的隐蔽缺陷、能源损失和不良绝缘。

•电力和制造业:用于检测电力设备的热量分布和异常温度。

•医疗保健:用于体温测量、疾病诊断和治疗监测。

•安全和法律:用于搜索和救援、犯罪调查、边境监控等领域。

•军事和防务:用于目标探测、侦察、夜视和导航等应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红外热像仪由来:1800年英国物理学家F. W. 赫胥尔发现了红外线,红外线是一种电磁波,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。

红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。

温度在绝对零度以上的物体,都会因自身的分子运动而辐射出红外线。

著名的普朗克定律表明温度、波长和能量之间存在一定的关系,红外总能量随温度的增加而迅速增加;峰值波长随温度的增加向短波移动。

根据斯蒂芬·玻耳兹曼定律,当温度变化时,红外总能量与绝对温度的四次方成正比,当温度有较小的变化时,会引起总能量的很大变化。

红外热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。

通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像。

热图像的上面的不同颜色代表被测物体的不同温度。

红外热像仪最早是因为军事目的而得以开发,近年来迅速向民用工业领域扩展。

自二十世纪70年代,欧美一些发达国家先后开始使用红外热像仪在各个领域进行探索。

红外热像仪也经过几十年的发展,已经发展成非常轻便的现场测试设备。

由于测试往往产生的温度场差异不大和现场环境复杂等因素,好的热像仪必须具备320*240像素、分辨率小于0.1℃、空间分辨率小、具备红外图像和可见光图像合成功能等。

由于红外热成像技术能够进行非接触式的、高分辨率的温度成像,能够生成高质量的图像,可提供测量目标的众多信息,弥补了人类肉眼的不足,因此已经在电力系统、土木工程、汽车、冶金、石化、医疗等诸多行业得到广泛应用,未来的发展前景更不可限量。

下面对红外热像仪的具体应用情况向您作一个简单介绍:输电设备:接头、绝缘子、夹板、跳线、高压线、压接套管、瓷瓶引线……变电系统:互感器、隔离开关、空气断线器、油断路器、少油量断路器、避雷器、电容器、电抗器、变压器、总线、套管、整流器、绝缘子、线夹、阻波器……配电系统:配电盘、开关箱、变压器、断电器、接触器、保险丝、电缆……发电厂:发电机碳刷绕组装备、发电机、变压器、油枕、发电机馈电线、电压调节器、发电机马达控制中心电盘、UPS……建设系统:检查外墙空鼓、剥落、屋面渗漏、管道、热桥、建筑节能研究、竣工验收等;公路桥梁:可用于快速扫描公路裂纹、桥梁开裂、渗漏检查、沥青摊铺等;冶金系统:用于大型高炉料面测定、热风炉的破损诊断和检修等;高炉、钢材成型加工和热处理:焊接、铸件、模具、炼钢炉、转炉、鱼雷车、炉壁、金属热处里(退火、回火、淬火)、冷/热轧钢板、钢卷线材等温度量测监控……石化系统:可用于保温隔热材料的破损诊断、加热炉管的温度分布测定等;转动机械设备:马达、马达碳刷、轴承、联轴器、泵浦、汽机叶片、齿轮箱、驱动齿轮、驱动皮带、联轴器、射出成型机、柴油机、空压机……机电系统:可用于新产品开发试验研究、大型机电设备温度分布监测等;锅炉反应炉加热炉:炉壁、炉管、烟囱、热交换器、水泥旋窑……产品流程设备:安全阀、气体/产品管路(保温、保冷)、热交换器、冷却塔、桶槽、球槽、储存槽、空气干燥机、烘干机、冷冻器……电子产品:PC板热分析、电子组件热传导测试、壳散热测试、电路设计、环境评估……消防安保系统:可用于消防科研、火灾救人、安保、走私监控等;自然科学:采光、温室效应、沙尘暴、植物、采矿等;医疗:肿瘤、甲状腺、糖尿病、非典、禽流感等;其它:玻璃、军事、塑料、造纸、纺织、包装、排污、电影广告策划……怎样选择合适的红外热像仪1.什么样的像素满足您的要求?320*240=76,800?在12米处测量的最小尺寸是1*1cm160*120=19,200?在12米处测量的最小尺寸是2*2cmTH7700红外热像仪低端低分辨率红外热像仪320*240=76800个像素160*120=19,200个像素2、是否需要定量检测?红外热像仪有两种用途:1、热成像2、测温评价红外测温能力叫做MFOV,主要有2种:一种是MFOV 为1,另外一种MFOV 为3*3。

MFOV为1时,目标完全覆盖了热像仪的像素,像素接受的辐射只来自目标,因此能准确测量目标温度。

而MFOV为9时,像素接收的辐射不只来自目标,而且吸收目标旁边的和背后的辐射,就不能测得这么小目标的准确温度。

然而这只是测量的极限,根据当前的大部分FPA探测器技术,目标在探测器上最少要有 3 x 3 个像素才能确保准确测量,这要求检测时尽量靠近目标或选用望远镜头. 如果目标成像小于3x3个像素,则热像仪显示的温度读数是目标的温度值与也成像在这3x3个像素的目标周围物体(环境)温度的平均值。

3、高空间分辨率的优势高空间分辨率能够得出准确的温度,低空间分辨率读出的温度只是发热点周围的平均温度。

在定量化检测时候,温度的正确与否非常重要!4、稳定性重复性对你是否重要?决定红外热像仪的因素主要有3个方面:探测器、光学器件、电气原器件,军事级探测器的主要优势在哪里?a、主要有两种探测器。

氧化钒晶体和多晶硅。

氧化钒晶体探测器的主要优势:b、此探测器主要的优势是测温视域MFOV(Measurement Field of View)为1,温度测量是精确到1个像素点。

Amorphous Silicon(多晶体硅)传感器,MFOV为9,即每点的温度是基于3×3=9个像素点平均而获得。

c、温度稳定性好。

d、使用寿命长e、适合于远距离测试5、是否在意报告处理的烦琐?如果红外图像和可见光图像组合显示就减少了大量工作,同时报告自动生成也会大大减少操作时间。

6、是否需要延长曝光时间?延长曝光时间——专业照相的必然选择∑2、∑4、∑8、∑16等功能,特别在检测北立面或者阳光照不到的地方很有优势。

使用了∑功能,增加了曝光时间,图像更清晰,更容易发现缺陷部位。

7、是否需要强大的售后技术支持?a、是否需要现场测试指导培训?b、专业的培训:LEVEL1,LEVEL2,LEVEL3认证课程培训。

正确使用红外热像仪的方法和技巧1)调整焦距2)选择正确的测温范围3)了解最大测量距离4)仅仅要求生成清晰红外热图像,还是同时要求精确测温?5)工作背景单一6)保证测量过程中仪器平稳1)调整焦距您可以在红外图像存储后对图像曲线进行调整,但是您无法在图像存储后改变焦距,也无法消除其他杂乱的热反射。

保证第一时间操作正确性将避免现场的操作失误。

仔细调整焦距!如果目标上方或周围背景的过热或过冷的反射影响到目标测量的精确性时,试着调整焦距或者测量方位,以减少或者消除反射影响。

(FoRD的意思是:Focus焦距,Range范围, Distance距离)2)选择正确的测温范围您是否了解现场被测目标的测温范围?为了得到正确的温度读数,请务必设置正确的测温范围。

当观察目标时,对仪器的温度跨度进行微调将得到最佳的图像质量。

这也将同时会影响到温度曲线的质量和测温精度。

3)了解最大的测量距离当您测量目标温度时,请务必了解能够得到精确测温读数的最大测量距离。

对于非制冷微热量型焦平面探测器,要想准确地分辨目标,通过热像仪光学系统的目标图像必须占到9个像素,或者更多。

如果仪器距离目标过远,目标将会很小,测温结果将无法正确反映目标物体的真实温度,因为红外热像仪此时测量的温度平均了目标物体以及周围环境的温度。

为了得到最精确的测量读数,请将目标物体尽量充满仪器的视场。

显示足够的景物,才能够分辨出目标。

与目标的距离不要小于热像仪光学系统的最小焦距,否则不能聚焦成清晰的图像。

4)仅仅要求生成清晰红外热图像,还是同时要求精确测温这之间有什么区别吗?一条量化的温度曲线可用来测量现场的温度情况,也可以用来编辑显著的温升情况。

清晰的红外图像同样十分重要。

但是如果在工作过程中,需要进行温度测量,并要求对目标温度进行比较和趋势分析,便需要记录所有影响精确测温的目标和环境温度情况,例如发射率,环境温度,风速及风向,湿度,热反射源等等。

5)工作背景单一例如,天气寒冷的时候,在户外进行检测工作时,你将会发现大多数目标都是接近于环境温度的。

当在户外工作时,请务必考虑太阳反射和吸收对图像和测温的影响。

因此,有些老型号的红外热像仪只能在晚上进行测量工作,以避免太阳反射带来的影响。

6)保证测量过程中仪器平稳现在所有的长波NEC红外热像仪都可以达到60Hz帧频速率,因此在拍摄图像过程中,由于仪器移动可能会引起图像模糊。

为了达到最好的效果,在冻结和记录图像的时候,应尽可能保证仪器平稳。

当按下存储按钮时,应尽量保证轻缓和平滑。

即使轻微的仪器晃动,也可能会导致图像不清晰。

推荐在您胳膊下用支撑物来稳固,或将仪器放置在物体表面,或使用三脚架,尽量保持稳定。

还有要了解的可以找欧美大地专业人员进行指导。

上海欧美大地科技有限公司主营的产品之一为NEC红外热像仪,一级代理NEC红外热像仪已经有10多年的历史。

NEC红外热像仪采用氧化钒探测器,稳定性好,温度漂移很小,客户对产品的评价很高。

2009年欧美大地香港办事处成立标定维修中心,专业为客户提供NEC红外热像仪的标定维修服务,回收了曾销售给香港客户的10多台NEC红外热像仪(主要为9100/5102/ 7700系列),发现5年来客户购买的NEC红外热像仪温度准确度依然维持在±2%或2℃,没有温度漂移,很稳定。

由此可见NEC红外热像仪的质量和精度之高,稳定性之好。

除了NEC的红外热像仪,欧美大地近几年又引进了MIKRON、IRISYS、Xennics、Meditherm等红外热像仪产品。

相关文档
最新文档