八年级下-因式分解
八年级数学北师大版初二下册--第四单元 4.3《公式法--第三课时:分组分解法及分解因式的方法》课件

知1-讲
例2 分解因式:-x2-2xy+1-y2.
导引:按分组分解法,第一、二、四项提出负号后符 合完全平方式,再与“1”又组成平方差公式.
ìïïíïïî
4x-4 y=96, x2-y2=960,
但直接解方程组很烦琐,可利用平方差公式分解
因式:x2-y2=(x+y)(x-y),再利用整体思想求
出x+y的值,从而转化为二元一次方程组求解.
知2-讲
解:设大正方形的边长为x cm,小正方形的边长为y cm,
由题意得
ìïïíïïî
4x-4 y=96,① x 2-y2=960,②
知1-练
3 将多项式a2-9b2+2a-6b分解因式为( D ) A.(a+2)(3b+2)(a-3b) B.(a-9b)(a+9b) C.(a-9b)(a+9b+2) D.(a-3b)(a+3b+2)
知1-练
4 分解因式x2-2xy+y2+x-y的结果是( A ) A.(x-y)(x-y+1) B.(x-y)(x-y-1) C.(x+y)(x-y+1) D.(x+y)(x-y-1)
知1-练
5 分解因式: (1) ac+ad+bc+bd=__(_a_+__b_)_(c_+__d_)__; (2) x2-xy+xz-yz=___(_x_-__y_)(_x_+__z_)_.
6 分解因式: a2-4ab+4b2-1=_(_a_-__2_b_+__1_)_(a_-__2_b_-___1_) .
2.分解技巧:分组分解是因式分解的一种复杂的方法, 让我们来须有预见性. 能预见到下一步能继续分解. 而“预见”源于细致的“观察”,分析多项式的特 点,恰当的分组是分组分解法的关键 .
专题14 因式分解(2)八年级数学下册强化巩固专题知识(北师大版)

专题14 因式分解(2)教师讲义64x6-1=(8x3)2-1=(8x3+1)(8x3-1)=[(2x)3+1][(2x)3-1]=(2x+1)(4x2-2x+1)(2x-1)(4x2+2x+1) 方法二64x6-1=(4x2)3-1=(4x2-1)(16x4+4x2+1)=(2x+1)(2x-1)(16x4+8x2+1-4x2)=(2x+1)(2x-1)[(4x2+1)2-(2x)2]=(2x+1)(2x-1)(4x2+2x+1)(4x2-2x+1)例5 解 (x+y)2-6(x+y)+9=(x+y)2-2×3×(x+y)+32=(x+y-3)2.例6 解方法一x2+6x-7=x2+6x+9-9-7=(x+3)2-16=(x+3+4)(x+3-4)=(x+7)(x-1)方法二 x2+6x-7=(x+7)(x-1)例7 解方法一方法二 3x2-7x-6=(3x+2)(x-3).例8 解 2ax-10ay+5by-bx=2ax-10ay-bx+5by=(2ax-10ay)-(bx-5by)=2a(x-5y)-b(x-5y)=(x-5y)(2a-b).例9 解(1)x2-2xy+y2-1=(x2-2xy+y2)-1=(x-y)2-1=(x-y+1)(x-y-1)(2)x2-2y-y2-1=x2-y2-2y-1=x2-(y2+2y+1)=x2-(y+1)2=(x+y+1)(x-y-1)例10 解 x2+4xy+3y2+x+3y=(x2+4xy+3y2)+(x+3y)=(x+y)(x+3y)+(x+3y)=(x+3y)(x+y+1).例11 解(1)a2+2ab+b2+2a+2b+1=(a2+2ab+b2)+(2a+2b)+1=(a+b)2+2(a+b)+1=(a+b+1)2.(2)a2+2ab+b2+2a+2b-3=(a2+2ab+b2)+(2a+2b)-3=(a+b)2+2(a+b)-3=(a+b+3)(a+b-1).(3)a2+3ab+2b2+2a+b-3=(a2+3ab+2b2)+(2a+b)-3=(a+b)(a+2b)+(2a+b)-3=(a+b-1)(a+2b+3).例12 证明因为4x2+4xy+y2-4x-2y+1=0,所以(2x+y)2-2(2x+y)+1=0,(2x+y-1)2=0.所以2x+y-1=0.又因为2x2+3xy+y2-x-y=(x+y)(2x+y-1).而2x+y-1=0,所以2x2+3xy+y2-x-y=0.例13 解设3x2-4xy-7y2+13x-37y+m=[(3x-7y)+a][(x+y)+b]=3x2-4xy-7y2+(a+3b)x+(a-7b)y+ab.对应项系数相等,所以由(1)(2)解得a=-2,b=5.将a=-2,b=5代入(3),得m=-10,所以 3x2-4xy-7y2+13x-37y+m=3x2-4xy-7y2+13x-37y-10=(3x-7y+a)(x+y+b)=(3x-7y-2)(x+y+5).例14 解因为|x-3y-1|+x2+4y2=4xy,所以|x-3y-1|+x2-4xy+4y2=0即|x-3y-1|+(x-2y)2=0所以解这个方程组,得x=-2,y=-1.例15 解(1)x4+4y4=x4+4x2y2+4y4-4x2y2=(x2+2y2)2-(2xy)2=(x2+2xy+2y2)(x2-2xy+2y2).(2)x3+5x-6=x3-x+6x-6=(x3-x)+(6x-6)=x(x+1)(x-1)+6(x-1)=(x-1)(x2+x+6)例16 解因为x2-2xy-3y2=5,所以(x-3y)(x+y)=5.依题意x,y为整数,所以x-3y和x+y都是整数,于是有:解上述方程组得:例17 证明因为A=(x+2)(x-3)(x+4)(x-5)+49=(x2-x-6)(x2-x-20)+49=(x2-x)2-26(x2-x)+169=(x2-x-13)2所以A是一个完全平方数.五、课堂练习A卷:基础题A、选择题1.下列各式从左到右的变形是分解因式的是()A.a(a-b)=a2-ab B.a2-2a+1=a(a-2)+1C.x2-x=x(x-1) D.xy2-x2y=x(y2-xy)2.(x-5)(x-3)是多项式x2-px+15分解因式的结果,则p的值是()1-2004 = 100123456689。
北师大版八年级数学下册《因式分解——提公因式法》教学PPT课件(3篇)

= −(4 ∙ 6 2 − 4 ∙ 3 + 4 ∙ 7)
= −4(6 2 − 3 + 7).
易错注意:1.公因式要提尽;
2.公因式是某项时剩余的系数1别忘;
错误
提公因式后括号里少了一项.
正确解:原式=3x·
x-6y·
x+1·x
=x(3x-6y+1)
请你判断小明的解法有误吗?
因式分解: - x2+xy-xz.
解:原式= - x(x+y-z).
错误
提出负号时括号里的项
没变号
正确解:原式= - (x2-xy+xz)
=- x(x-y+z)
探索新知
巩固练习 将下列各式分解因式
项式的各项变号;
2.公因式的系数是多项式各项__________________;
系数的最大公约数
相同的字母
3.字母取多项式各项中都含有的____________;
4.相同字母的指数取各项中最小的一个,即 最低次幂
_________.
合作探究
因式分解:a(x-3)+2b(x-3)
(1)多项式的公因式是什么?
B.6(p+q)2-2(p+q)=2(p+q)(3p+q-1)
C.3(y-x)2+2(x-y)=(y-x)(3y-3x+2)
D.3x(x+y)-(x+y)2=(x+y)(2x+y)
4.用提公因式法因式分解:
(1)6p(p+q)-4q(p+q);
解:6p(p+q)-4q(p+q)
=2(p+q)(3p-2q).
A.x4
B.x3+1
C.x4+1
D.x3-1
4-1 因式分解(课件)八年级数学下册(北师大版)

C.10x2-5x=5x(2x-1)
D.x2-16+6x=(x+4)(x-4)+6x
随堂练习
3.把x2-3xy2分解因式,结果正确的是( D )
A.(x+3xy)(x-3xy)
பைடு நூலகம்
B.x(x-3xy)
C.x2(1-3xy2)
D.x(x-3y2)
4. 20162-2016不能被下列哪个数整除?( B )
A.a2+1=a(a+
1
)
a
B.(x+1)(x-1)=x2-1
C.a2+a-5=(a-2)(a+3)+1
D.x2y+xy2=xy(x+y)
探究新知
分解因式的要求:
1.分解的结果最后是积的形式;
2.每个因式必须是整式,且每个因式的次数都必须低
于多项式的次数;
3.必须分解到每个因式不能再分解为止
随堂练习
A.6
B.2017
C.2016
D.2015
随堂练习
5.若x2+3x+m=(x+1)(x+2),则m的值为( B )
A.1
B.2
C.3
D.4
6. 一个多项式分解因式的结果是(b3+2)(2-b3),那么
这个多项式是( B )
A.b6-4
B.4-b6
C.b6+4
D.-b6-4
随堂练习
7. (3a-y)(3a+y)是下列哪一个多项式因式分解的结果( C )
(2)2a3b2c+4ab3c-abc
=abc·2a2b+abc·4b2-abc·1
=abc (2a2b+4b2-1)
随堂练习
9.将下列各式分解因式
八年级数学因式分解方法总结

八年级数学因式分解方法总结嘿,同学们!咱今天就来好好聊聊八年级数学里的因式分解呀!这可真是个有趣又重要的玩意儿呢!因式分解,就好像是把一个大拼图拆成一个个小拼图,然后再看看能组合出啥花样来。
咱先说说提公因式法吧,这就好比是从一堆糖果里把相同口味的挑出来,简单直接!你看,一个式子里面要是有相同的部分,咱就直接把它提出来,一下子就把式子变简单啦。
然后呢,公式法也不能小瞧呀!平方差公式,就像是一把神奇的钥匙,能打开那些看似复杂的式子的大门。
a²-b²,嘿,这不就是两个数的平方差嘛,一下子就能分解成(a+b)(a-b),多神奇呀!还有完全平方公式,就像是给式子穿上了一套合适的衣服,让它变得整整齐齐的。
(a+b)²=a²+2ab+b²,(a-b)²=a²-2ab+b²,记住这些公式,就像是记住了自己家的钥匙在哪里一样重要。
分组分解法呢,就有点像分组做游戏啦。
把式子分成几个小组,然后在每个小组里找线索,最后把它们组合起来,哇,因式分解就完成啦!十字相乘法,这可是个厉害的角色!就像是玩连连看一样,找到合适的数字组合,一下子就能把式子分解出来。
哎呀呀,你们想想,要是不会因式分解,那数学题可不得难倒我们呀!就好比走路没有了方向,那得多迷茫呀!所以呀,一定要好好掌握这些方法哦。
在做因式分解的时候,可不能马虎呀!要像侦探一样细心,不能放过任何一个小细节。
有时候可能就因为一个小数字没注意到,整个式子就解不出来啦。
而且哦,多做练习也是很重要的呢!就像跑步一样,跑得多了,自然就跑得快啦。
多做几道因式分解的题,那以后再遇到,不就轻松搞定啦!同学们呀,八年级的数学可不简单呢,但只要我们把因式分解这些方法掌握好,那数学的大门就会为我们敞开啦!加油吧,让我们在数学的海洋里畅游,把因式分解这个小怪兽给征服咯!相信自己,我们一定行!。
八年级数学下册《因式分解》常见题型例析(含答案)

《因式分解》常见题型例析因式分解是中学数学的重要内容之一,是学习分式、根式、和一元二次方程的重要基础,是解决许多数学问题的重要“工具”,也是各级考试的一个热点,现将关于这部分知识的常见题型介绍如下。
题型一:分解因式的意义此类考题多数以选择题的形式出现。
解决此类问题需要对分解因式的概念正确的理解。
例1 下列从左到右的变形是分解因式的是( )(A )(x-4)(x+4)=x 2-16 (B)x 2-y 2+2=(x+y)(x-y)+2(C)2ab+2ac=2a(b+c) (D)(x-1)(x-2)=(x-2)(x-1).分析:根据多项式分解因式的概念:把一个多项式化成几个整式积的形式,叫做分解因式.所以要判断从左道右的变形是否是分解因式,关键是看左边是否是多项式,右边是否是整式的积.解:选(C).练习:下面由左边到右边的变形中,是分解因式的是( ).(A)a(x-y)=ax-ay (B)x 2-2x+4=(x-1)2+3(C)8x 2-4x=4x·2x (D)y 2-y+41=(y-21)2 答案: (D)题型二、直接提公因式分解此类题大多以选择或填空题的形式出现,其中找出公因式是关键。
求解时应按照提公因式法则将公因式提出即可。
例2 分解因式2a(b-c)-3c(b-c).分析:把(b-c)看作一个整体,则(b-c)就是此多项式的公因式.解: 2a(b-c)-3c(b-c)=(b-c)(2a-3b).练习:分解因式: (2x-3y)(a+b)+(a+b)(3x-2y).答案:5(a+b)(x-y).题型三、直接利用公式因式分解求解此类题掌握所学的几个公式的特点是关键,求解时应根据题目的特点选择合适的公式求解。
例3、分解因式:a 2-1=_______.析解:本题符合平方差公式的特点,故可直接利用平方差公式求解。
其结果为:(a -1)(a +1).练习:分解因式:224x y -=________.答案:(x -2y )(x+2y )题型四、提公因式后再用公式此类题大多以填空或选择题的形式出现,求解时应首先将公因式提出,再选择有关公式求解。
因式分解 北师大版数学八年级下册期末复习

(选做题)1.观察下列各式:3²-1²=8×1, 5²-3²=8×2,7²-5²=8×3,……,探索以上式子的规律, 试写出第n个等式,并运用所学的数学知识说明你所写 式子的正确性.
解:规律:(2n+1)²-(2n-1)²=8n 验证: (2n+1)²-(2n-1)²
1、整式乘法与分解因式的概念易混 2、分解因式要彻底
3.(x 5)(x 3)是多项式x2 px 15分解因式的结果, 则5. p的值是 8 .
6.多项式 a(a x)(x b) ab(a x)(b x) 的公因式是( B )
A.-a B. a(a x)(x b) C. a(a x) D. a(x a)
7.若 mx 2 kx 9 (2x 3)2 ,则m,k的值分别是( C )
=3a(a+2b)
(2)原式=[(x²-5)+1]² (3)原式=(x²+y²)²-4(x²+y²)+4
=(x²-4)²
=[(x²+y²)-2]²
=[(x+2)(x-2)]²
=(x²+y²-2)²
=(x+2)²(x-2)²
2.已知:a,b,c是△ABC的三边长,且满足
a2b a2c b3 b2c 0 ,试判断三角形的形状.
2.下列各式中:①x2﹣6x+9; ②25a2+10a﹣1; ③x2﹣4x+4; ④a2+a+ .其中能用完全平方公式
因式分解的个数为( C )
A.1
B.2
C.3
D.4
3.因式分解(1)a²-4a-b²+4=_(_a_-_2_+_b_)_(_a_-_2_-_b)
北师大版八年级数学下册第四章因式分解4.3完全平方公式(教案)

(五)总结回顾(用时5分钟)
今天的学习,我们了解了完全平方公式的推导、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对完全平方公式的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
北师大版八年级数学下册第四章因式分解4.3完全平方公式(教案)
一、教学内容
北师大版八年级数学下册第四章因式分解4.3节,主要围绕完全平方公式展开教学。本节课内容如下:
1.探索完全平方公式的推导过程,掌握完全平方公式:(a±b)^2 = a^2 ± 2ab + b^2。
2.学会运用完全平方公式分解因式,解决实际问题。
其次,对于完全平方公式的应用,我发现学生们在解决具体问题时,有时会忽略符号的判断。在讲解过程中,我特别强调了“同号得正,异号得负”的规律,并通过大量练习帮助学生加深记忆。但在实际操作中,仍有个别学生会出现错误。为此,我考虑在今后的教学中,增加一些关于符号判断的专项训练,以提高学生们的准确率。
此外,在学生小组讨论环节,我发现学生们能够积极参与,主动提出自己的观点和想法。但在讨论过程中,部分学生可能会偏离主题,讨论一些与完全平方公式无关的内容。为了提高讨论效率,我计划在今后的教学中,明确讨论主题,并在讨论过程中适时引导,确保学生们围绕主题展开讨论。
3.重点难点解析:在讲授过程中,我会特别强调完全平方公式的推导和运用这两个重点。对于难点部分,如符号判断,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与完全平方公式相关的实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题1-1:下列式子变形是因式分解的是(B )
A. B.
C. D.
关键点:两边是等式;因式分解的结果是积的形式
例题1-2:把多项式 因式分解,结果正确的是(A)
A. B. C. D.
关键:乘积;等式
例题1-3:下列由左到右的变形,是因式分解的是(C )
⑴. ⑵. ⑶.
2.因式分解
*利用与整式乘法互逆
例题2-1:根据乘法运算 ,因式分解
例题2-2:若mx+A能分解为m(x-y+2),则A=-my+2m
解:由m(x-y+2)=mx-my+2m可知A=-my+2m
*提取公因式
例题2-3:找出下列各整式的公因式
(1) (2)
答案:(1) (2)
思路:公因式得构成,1、系数,各项系数得最大公约数;2、字母,各项都有的相同字母(或因式);3、指数,相同字母(或因式)的最低次幂。
例题3-6:计算
逆用公式
(二)利用整体思想
例题3-7:已知 ,且 ,则 5
解:
例题3-8:
(1)已知 求
解:
(2)已知 求
解:
(3)已知 求
解:
探究题
例题3-9:试探究 能被45整除吗?
解:∵
∴ 能被45整除。
思路:要说明该整式能被45整除,则需要将该式写成45与一个整式乘机的形式。
例题3-10:如果多项式 可以分解成两个一次因式的积,那么整数p的值可以取多少个()
所以m=-41或43
说明:要注意讨论中间项的正负号
例题3-3:已知 ,且 为正整数,则 2010
解:
所以a=2010
关键是找出中间数字2010
*简化计算
(一)直接利用公式
例题3-4:计算 得结果是(C)
A.4.2 B.4.12 C.4 D.4.1
例题3-5:计算:(1) (2)
思路:均是提公因式后,剩余部分合并为规则数字,从而利于计算。公式正用,也可逆用。
例题2-7:把多项式 因式分解
解:
3.因式分解应用
*利用完全平方式或平方差公式,求字母值
例题3-1:若 是一个完全平方式,则 =
思路:那一部分不知道,则删去那一部分,利用其余部分来确定完全平方式,然后再相对照,从而得出要求的字母值。
例题3-2:已知多项式 是完全平方式,求m的值
解:由平方项得⑴3x ⑵7y 又因为是完全平方式,所以中间项为
A.1 B. 2 C.4 D.6
解:利用十字相乘法,12可以分成1×12 (-1)×(-12) 3×4 等6种
补充公式:
⑷. ⑸.
A.⑵,⑶ B.⑶,⑸C.⑶ D.⑶,⑷
注意:每个因式必须是整式。
例题1-4:下列说法正确的是( D)
A.多项式 中各项的公因式是 B.多项式 没有公因式
C. 中各项的公因式是 D.多项式 的公因式是
思路:公因式的定义:多项式中各项的公因式是各项系数的最大公约数与各项相同字母(或因式)的最低次幂的积。A,中,多项式的第三项不含m,所以m不是公因式;B中,有公因式7;C中, 不是多项式,而公因式的定义首先得是多项式。
例题2-4:因式分解:(1) (2)
解:(1)
(2)
说明:提公因式时要注意正负号。
*公式法
例题2-5:对下列各式进行因式分解
(1)
(2)
(3)
思路:综合运用公式,先提公因式,然后利用平方差公式或完全平方公式
*换元法(整体、转化思想)
例题2-6:因式分解
解:
思路:整体思想,将某一部分作为一项来利用公式。