新北师大版八年级数学下册因式分解导学案】

合集下载

北师大版八年级数学下册 因式分解 教案

北师大版八年级数学下册 因式分解 教案

因式分解【教学目标】一、教学知识点使学生了解因式分解的意义,知道它与整式乘法在整式变形过程中的相反关系。

二、能力训练要求通过观察,发现分解因式与整式乘法的关系,培养学生的观察能力和语言概括能力。

三、情感与价值观要求通过观察,推导分解因式与整式乘法的关系,让学生了解事物间的因果联系。

【教学重点】1.理解因式分解的意义。

2.识别分解因式与整式乘法的关系。

【教学难点】通过观察,归纳分解因式与整式乘法的关系。

【教学方法】观察讨论法【课时安排】6课时【教学准备】投影片一张【教学过程】【第一课时】一、创设问题情境,引入新课[师]大家会计算(a+b)(a-b)吗?[生]会。

(a+b)(a-b)=a2-b2.[师]对,这是大家学过的平方差公式,我们是在整式乘法中学习的。

从式子(a+b)(a-b)=a2-b2中看,由等号左边可以推出等号右边,那么从等号右边能否推出等号左边呢?即a2-b2=(a+b)(a-b)是否成立呢?[生]能从等号右边推出等号左边,因为多项式a2-b2与(a+b)(a-b)既然相等,那么两个式子交换一下位置还成立。

[师]很好,a2-b2=(a+b)(a-b)是成立的,那么如何去推导呢?这就是我们即将学习的内容:因式分解的问题。

二、讲授新课1.讨论993-99能被100整除吗?你是怎样想的?与同伴交流。

[生]993-99能被100整除。

因为993-99=99×992-99=99×(992-1)=99×9800=99×98×100其中有一个因数为100,所以993-99能被100整除。

[师]993-99还能被哪些正整数整除?[生]还能被99,98,980,990,9702等整除。

[师]从上面的推导过程看,等号左边是一个数,而等号右边是变成了几个数的积的形式。

三、议一议你能尝试把a3-a化成n个整式的乘积的形式吗?与同伴交流。

[师]大家可以观察a3-a与993-99这两个代数式。

2022-2023学年八年级数学北师大版下册4.1因式分解 教案

2022-2023学年八年级数学北师大版下册4.1因式分解 教案

2022-2023学年八年级数学北师大版下册4.1因式分解教案一、教学目标1.理解因式分解的概念和意义;2.掌握基本的因式分解方法;3.能够应用因式分解解决实际问题;4.培养学生的逻辑思维和综合运算能力。

二、教学内容1.回顾负数的乘法和除法;2.因式分解的基本概念;3.因式分解的基本方法;4.应用因式分解解决实际问题。

三、教学重点1.理解因式分解的概念和意义;2.掌握基本的因式分解方法。

四、教学难点1.能够应用因式分解解决实际问题;2.培养学生的逻辑思维和综合运算能力。

五、教学准备1.北师大版八年级数学下册教材;2.学生练习册;3.教学投影仪和课件。

六、教学过程1. 导入(5分钟)目的:进一步激发学生对因式分解的兴趣。

1.引入一个生活中的问题:小明买了5个苹果,小红买了3个苹果,他们一共买了多少个苹果?请用数学式子表示出来。

2. 新课讲解(10分钟)目的:引入因式分解的概念和意义。

1.引导学生思考:在小明和小红买苹果的问题中,能否用一种更简洁的方式表示数量关系?2.引出因式分解的概念:将一个数或者一个代数式写成若干个乘积的形式,其中每个乘积的因数称为因式。

3.引导学生发现因式分解的意义:通过因式分解,可以使问题的表达更加简洁,同时也方便我们进行计算和解题。

3. 示例演练(15分钟)目的:回顾负数的乘法和除法,并让学生掌握基本的因式分解方法。

1.提醒学生注意负数的乘法和除法规则:两个负数相乘得正数,一个正数和一个负数相乘得负数,负数除以正数得负数,正数除以负数得正数。

2.给出一个示例:将14ab分解为因式的乘积。

3.引导学生思考解题思路:首先确定14的因数,然后确定a和b的因数,并组合得到14ab的所有因式。

4.和学生一起分解示例:14ab = 2 * 7 * a * b。

4. 练习与巩固(15分钟)目的:让学生通过练习巩固所学的因式分解方法。

1.学生完成教材上的练习题,老师及时给予指导和解答。

5. 拓展与应用(10分钟)目的:引导学生将因式分解应用到实际问题中。

2024北师大版数学八年级下册4.3.1《用平方差公式进行因式分解》教学设计

2024北师大版数学八年级下册4.3.1《用平方差公式进行因式分解》教学设计

2024北师大版数学八年级下册4.3.1《用平方差公式进行因式分解》教学设计一. 教材分析《2024北师大版数学八年级下册4.3.1《用平方差公式进行因式分解》》这一节内容是在学生学习了平方差公式的基础上进行的一个实践活动。

平方差公式是初中数学中的一个重要公式,它不仅可以简化计算,还可以用来解决一些因式分解的问题。

本节课通过实例讲解,让学生掌握平方差公式的应用,提高他们的数学解题能力。

二. 学情分析学生在学习本节课之前,已经学习了平方差公式,对公式有一定的理解。

但是,如何将平方差公式应用到实际的因式分解中,可能还存在一定的困难。

因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高他们的解题技巧。

三. 教学目标1.理解平方差公式的含义,掌握平方差公式的结构。

2.能够将实际的因式分解问题转化为平方差公式的形式,并进行解答。

3.培养学生的逻辑思维能力,提高他们的数学解题能力。

四. 教学重难点1.掌握平方差公式的结构。

2.如何将实际的因式分解问题转化为平方差公式的形式。

五. 教学方法采用讲解法、实践法、讨论法等教学方法,引导学生通过自主学习、合作交流,掌握平方差公式的应用。

六. 教学准备1.准备相关平方差公式的课件和教学素材。

2.准备一些实际的因式分解问题,用于课堂练习。

七. 教学过程1.导入(5分钟)通过一个实际的因式分解问题,引导学生回顾平方差公式。

例如:已知多项式x^2 - 4,请将其因式分解。

让学生尝试解答,然后给出解答过程和答案。

2.呈现(10分钟)讲解平方差公式的含义和结构,让学生理解平方差公式的推导过程。

通过示例,讲解如何将实际的因式分解问题转化为平方差公式的形式。

3.操练(10分钟)让学生分组合作,解决一些实际的因式分解问题。

教师巡回指导,解答学生的问题,并给予反馈。

4.巩固(10分钟)让学生自主选择一些练习题进行巩固练习,教师个别辅导,解答学生的问题。

5.拓展(10分钟)引导学生思考如何将平方差公式应用到更复杂的问题中,例如多项式的乘法、求解方程等。

北师大版八年级下册数学《4.1 因式分解》教学设计

北师大版八年级下册数学《4.1 因式分解》教学设计

北师大版八年级下册数学《4.1 因式分解》教学设计一. 教材分析《4.1 因式分解》是北师大版八年级下册数学的一章内容。

本章主要介绍了因式分解的概念、方法和应用。

因式分解是初中学过的最复杂的整式运算,也是中学数学中重要的思想方法。

本章内容对于学生来说,既是对之前所学知识的巩固,也是为之后学习更高级数学打下基础。

二. 学情分析学生在学习本章内容之前,已经掌握了整式的加减、乘法、除法等基本运算,同时也学习过一些简单的因式分解方法。

但是,对于八年级的学生来说,因式分解仍然是一个比较困难的问题,需要通过实例讲解和练习来进一步理解和掌握。

三. 教学目标1.知识与技能:使学生理解因式分解的概念,掌握因式分解的方法,能够运用因式分解解决实际问题。

2.过程与方法:通过实例讲解和练习,培养学生观察、分析、归纳的能力,提高解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的耐心和毅力,使学生感受到数学的美丽和实用性。

四. 教学重难点1.重点:因式分解的概念和方法。

2.难点:如何运用因式分解解决实际问题。

五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法,通过实例讲解、练习和讨论,使学生理解和掌握因式分解的方法和应用。

六. 教学准备1.准备相关教学材料,如PPT、教案、练习题等。

2.准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)通过一个实际问题,引出因式分解的概念和方法。

例如,讲解“分解因数”的概念,让学生初步了解因式分解的意义。

2.呈现(15分钟)讲解因式分解的基本方法,如提公因式法、公式法等。

通过示例,让学生观察和分析因式分解的过程,引导学生主动思考和探究。

3.操练(15分钟)让学生分组进行练习,互相讨论和交流因式分解的方法。

教师巡回指导,解答学生的疑问,及时给予反馈和评价。

4.巩固(10分钟)让学生独立完成一些因式分解的题目,巩固所学知识。

教师选取部分学生的作业进行讲解和分析,指出其中的错误和不足。

北师大版八年级数学(下册)优秀教学案例:4.1因式分解

北师大版八年级数学(下册)优秀教学案例:4.1因式分解
在本章节的教学过程中,我将关注学生在知识与技能、过程与方法、情感态度与价值观等方面的全面发展,努力提高他们的数学素养,为学生的终身发展奠定坚实基础。在教学实践中,注重激发学生的学习兴趣,营造轻松愉快的教学氛围,使他们在愉悦的情感体验中学习数学,感受数学的无穷魅力。
三、教学策略
(一)情景创设
为了让学生更好地理解因式分解的概念和意义,我将通过创设丰富多样的教学情景,引导学生从生活中发现数学的影子。例如,通过实际生活中的物品购买问题,让学生体会因式分解在简化计算方面的作用;或者通过设计有趣的数学故事,将因式分解融入其中,激发学生的学习兴趣。此外,利用多媒体教学手段,如动画、图片等,形象直观地展示因式分解的过程,帮助学生形成直观的认识。
1.例题1:(a+b)×(a+b)
例题2:(x+y)×(x-y)
例题3:a^2+2ab+b^2
2.讨论要求:
(1)各小组讨论并确定解题方法。
(2)各小组派代表展示解题过程及答案。
(3)讨论过程中,鼓励学生提问、质疑,分享解题心得。
(四)总结归纳
在总结归纳环节,我会带领学生回顾本节课所学的因式分解方法,总结各方法的优缺点及适用场景。
2.因式分解的意义:因式分解可以帮助我们简化计算,解决实际问题。
3.因式分解的方法:介绍提取公因式法、十字相乘法、平方差公式等常用的因式分解方法。
在讲解过程中,结合具体例题,让学生直观地感受因式分解的过程,并强调各方法的适用条件及注意事项。
(三)学生小组讨论
在学生小组讨论环节,我会给出几个具有代表性的例题,让学生分组讨论,共同完成因式分解的任务。
北师大版八年级数学(下册)优秀教学案例:4.1因式分解
一、案例背景

北师大版数学八下因式分解教案

北师大版数学八下因式分解教案

北师大版数学八下因式分解教案北师大版八年级下册数学教材中,因式分解是一个重要的内容。

因式分解可以帮助我们简化复杂的算式,提高计算的效率。

以下是一份关于北师大版八下因式分解教案的示例,供参考:一、教学目标:1.理解因式分解的概念,能够正确运用因式分解法则解决实际问题;2.掌握常见的因式分解方法,如提公因式法、公式法和配方法;3.培养学生的逻辑思维能力和抽象思维能力。

二、教学重难点:1.抽象概念的理解和应用;2.真实问题的转化和解决。

三、教学内容:1.提公因式法a.教师引导学生归纳“同一元素相乘”的法则;b.教师提供一些简单的例子,让学生通过观察发现规律;c.学生找出规律后,进行总结归纳并写出提公因式法的定义;d.练习题:在黑板上写一些算式,让学生用提公因式法简化。

2.公式法a.教师引导学生认识公式法的概念;b.通过一个实际问题引出公式法的运用场景;c.学生运用公式法解决实际问题,并总结公式法的步骤;d.练习题:提供一些需要用到公式法的练习题,让学生独立解决。

3.配方法a.教师简要介绍配方法的概念;b.提供一个简单的例子,并引导学生按照配方法的步骤解决问题;c.学生自主练习配方法,并总结配方法的规律;d.练习题:提供一些需要用到配方法的练习题,让学生独立解决。

四、教学过程:1.引入新知识a.教师简要介绍因式分解的概念和作用;b.提出一个实际问题:“小明家的地面积是56平方米,长和宽都是整数,那么它的长和宽分别是多少?”;c.学生讨论解决问题的思路,引出因式分解的思想;d.教师介绍本节课重点内容:提公因式法、公式法和配方法。

2.学习提公因式法a.学生观察例子,归纳提公因式法的规律;b.学生完成练习题,提供帮助和指导;c.教师和学生一起讨论练习题的解析。

3.学习公式法a.学生通过一个实际问题认识公式法的作用;b.学生按照公式法的步骤解决实际问题;c.学生自主解答练习题,教师提供帮助和指导。

4.学习配方法a.学生通过一个例子理解配方法的思路;b.学生按照配方法的步骤解决简单问题;c.学生独立解答练习题,教师提供帮助和指导。

2024北师大版数学八年级下册4.1《因式分解》教学设计

2024北师大版数学八年级下册4.1《因式分解》教学设计

2024北师大版数学八年级下册4.1《因式分解》教学设计一. 教材分析《因式分解》是北师大版数学八年级下册第4章第1节的内容。

本节课的主要内容是利用提公因式法和公式法分解因式。

因式分解是中学数学中的重要内容,是解决许多数学问题的基础。

通过本节课的学习,使学生掌握因式分解的方法,提高解题能力。

二. 学情分析学生在七年级已经接触过简单的因式分解,对因式分解有初步的认识。

但八年级的因式分解内容更加系统和复杂,需要学生有一定的逻辑思维能力和抽象思维能力。

根据学生的实际情况,我将采用循序渐进的教学方法,引导学生逐步掌握因式分解的方法。

三. 教学目标1.知识与技能:使学生掌握提公因式法和公式法分解因式的方法。

2.过程与方法:通过独立探究、合作交流,培养学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心。

四. 教学重难点1.重点:提公因式法和公式法分解因式。

2.难点:如何引导学生发现和运用提公因式法和公式法的规律。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过设置问题,引导学生独立思考和合作交流,提高学生解决问题的能力。

六. 教学准备1.准备相关案例和练习题。

2.准备课件和教学素材。

七. 教学过程1.导入(5分钟)通过一个实际问题引入因式分解的概念,激发学生的兴趣。

2.呈现(10分钟)呈现因式分解的方法,包括提公因式法和公式法。

通过讲解和示例,让学生初步理解这两种方法。

3.操练(10分钟)让学生独立完成一些因式分解的练习题,巩固所学的知识。

4.巩固(5分钟)对学生的练习情况进行反馈,解答学生的问题,帮助学生巩固因式分解的方法。

5.拓展(5分钟)通过一些综合性的练习题,引导学生运用因式分解的方法解决问题,提高学生的解题能力。

6.小结(5分钟)对本节课的内容进行总结,强调因式分解的方法和注意事项。

7.家庭作业(5分钟)布置一些因式分解的练习题,让学生回家后巩固所学知识。

北师大版数学八年级下册4.1《因式分解》教案

北师大版数学八年级下册4.1《因式分解》教案

北师大版数学八年级下册4.1《因式分解》教案一. 教材分析北师大版数学八年级下册4.1《因式分解》是初中数学的重要内容,主要让学生掌握因式分解的方法和应用。

因式分解是代数运算的基础,对于提高学生的数学思维能力和解决问题的能力具有重要意义。

本节课的内容包括提公因式法、公式法、分组分解法等因式分解方法,通过这些方法的学习,使学生能够灵活运用因式分解解决实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了整式的乘法运算,具备了一定的代数基础。

但因式分解较为抽象,对于部分学生来说,理解起来存在一定的困难。

因此,在教学过程中,要关注学生的学习差异,针对不同层次的学生进行教学,提高他们的学习兴趣和自信心。

三. 教学目标1.知识与技能目标:使学生掌握因式分解的方法,能够灵活运用各种方法进行因式分解。

2.过程与方法目标:通过小组合作、讨论交流,培养学生的团队协作能力和解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。

四. 教学重难点1.重点:因式分解的方法。

2.难点:灵活运用各种方法进行因式分解,解决实际问题。

五. 教学方法1.情境教学法:通过创设生活情境,激发学生的学习兴趣。

2.启发式教学法:引导学生主动思考,培养学生的创新能力。

3.小组合作学习:培养学生团队协作能力和解决问题的能力。

六. 教学准备1.准备相关教案、PPT、教学素材等。

2.准备黑板、粉笔、投影仪等教学用品。

3.提前让学生预习本节课的内容,了解因式分解的基本概念。

七. 教学过程1. 导入(5分钟)利用生活实例或趣味数学问题,引入因式分解的概念,激发学生的学习兴趣。

2. 呈现(10分钟)通过PPT展示因式分解的方法,包括提公因式法、公式法、分组分解法等。

引导学生了解各种方法的特点和应用。

3. 操练(10分钟)对学生进行分组,每组选定一个因式分解问题,运用所学的methods进行解决。

教师巡回指导,解答学生的疑问。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章因式分解第一节因式分解(1)计算下列各式:①(m+4)(m-4)=__________;②(y-3)2=__________;③3x(x-1)=__________;④m(a+b+c)=__________;⑤a(a+1)(a-1)=__________.(2)根据上面的算式填空:①3x2-3x=( )( );②m2-16=( )( );③ma+mb+mc=( )( );④y2-6y+9=( )2⑤a3-a=( )( )在(1)中我们知道从左边推右边是整式乘法;那么在(2)中由多项式推出整式乘积的形式是因式分解。

因式分解与整式乘法的相互关系——互逆关系。

一、因式分解的定义:把一个多项式化成的形式,这种变形叫做把这个多项式。

也可以叫做分解因式。

定义解析:(1)等式左边必须是(2)分解因式的结果必须是以的形式表示;(3)分解因式必须分解到每个因式都有不能分解为止。

二、合作探究探究一:下列从左到右的变形中,哪些是分解因式?哪些不是分解因式?为什么? (1)22111x x x x x x ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭ (2)()222424ab ac a b c +=+ (3)24814(2)1x x x x --=-- (4)222()ax ay a x y -=- (5)2224(2)a ab b a b -+=- (6)2(3)(3)9x x x +-=- 解:(7)下列从左边到右边的变形,是因式分解的是 A 、29)3)(3(x x x -=+- B 、))((2233n mn m n m n m ++-=- C 、)1)(3()3)(1(+--=-+y y y y D 、z yz z y z z y yz +-=+-)2(2242 探究二:连一连:9x 2-4y2a (a +1)24a 2-8ab +4 b 2-3a (a +2) -3a 2-6a 4(a -b )2a 3+2a 2+a (3x +2y )(3x -2y ) 三、提升训练1. 下列各式从左到右的变形是分解因式的是( ). A .a (a -b )=a 2-ab ; B .a 2-2a +1=a (a -2)+1 C .x 2-x =x (x -1); D .x 2-yy ⨯1=(x +y1)(x -y1)2.连一连:a 2-1 (a +1)(a -1) a 2+6a +9 (3a +1)(3a -1) a 2-4a +4 a (a -b )9a2-1 (a+3)2a2-ab (a-2)2第四章因式分解第二节提公因式法(一)一、学习重难点重点: 能观察出多项式的公因式,并根据分配律把公因式提出来.难点:让学生识别多项式的公因式.1、一个多项式中各项都含有的因式,叫做这个多项式各项的.2、公因式是各项系数的与各项都含有的字母的的积多项式ma+mb+mc都含有的相同因式是,多项式3x2-6xy+x都含有的相同因式是。

3、如果一个多项式的各项含有公因式,那么就可以把这个提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做4.提公因式法分解因式与单项式乘以多项式有什么关系?二、合作探究探究一:找出下列多项式的公因式:(1)3x+6 (2)7x2-21x(3)8a 3b 2-12ab 3c +abc (4)-24x 3-12x 2+28x . 探究二:分解因式:(1)3x +6; (2)7x 2-21x ;(3)8a 3b 2-12ab 3c +abc (4)-24x 3-12x 2+28x . 互相交流,总结出找公因式的一般步骤:首先: 其次: 探究三:用提公因式法分解因式: (1)c b a c ab b a 233236128+-(2))(6)(4)(8a x c x a b a x a ---+-(3)5335y x y x +-(4)c b a c ab b a 233236128+-第四章因式分解第二节提公因式法(二)学习重难点重点:能观察出公因式是多项式的情况,并能合理地进行分解因式.难点:准确找出公因式,并能正确进行分解因式.一、教材精读:1、一个多项式中各项都含有的因式,叫做这个多项式各项的.(1)–2x2y+4xy2–2xy的公因式:(2)a(x–3)+2b(x–3)的公因式:2、如果一个多项式的各项含有公因式,那么就可以把这个提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做二、练习提升探究一:把下列各式分解因式:(1)x(a+b)+y(a+b)(2)3a(x-y)-(x-y)探究二:1.在下列各式等号右边的括号前插入“+”或“–”号,使等式成立:(1)2–a= (a–2)(2)y–x= (x–y)(3)b+a= (a+b)(4)(b–a)2= (a–b)2(5)–m–n= (m+n)(6)–s2+t2= (s2–t2)2.把下列各式分解因式:(1)a(x–y)+b(y–x)(2)2(y-x)2+3(x-y)(3)6(p+q)2-12(q+p)(4)a(m-2)+b(2-m)(5)3(m–n)3–6(n–m)2(6)mn(m-n)-m(n-m)2探究三、能力提升1.分解因式:x(a-b)2n+y(b-a)2n+1=_______________________.第四章 因式分解第三节运 用 公 式 法(一)【学习目标】(1)了解运用公式法分解因式的意义; (2)会用平方差公式进行因式分解;(3)了解提公因式法是分解因式,首先考虑方法,再考虑用平方差公式分解因式.(4)在引导学生逆用乘法公式的过程中,发展学生的观察能力培养学生逆向思维的意识,同时让学生了解换元的思想方法. 【学习方法】.自主探究与小组合作交流相结合. 【学习重难点】重点:让学生掌握运用平方差公式分解因式.难点:将某些单项式化为平方形式,再用平方差公式分解因式;培养学生多步骤分解因式的能力.【学习过程】模块一 预习反馈 一.学习准备:1.请同学们阅读教材的内容,并完成书后习题2.预习过程中请注意:⑴不懂的地方要用红笔标记符号;⑵完成你力所能及的随堂练习和习题;二.教材精读:1、平方差公式:a 2–b 2= 填空: (1)(x+3)(x –3) = (2)(4x+y )(4x –y )= ; (3)(1+2x )(1–2x )= ;(4)(3m +2n )(3m –2n )= .2、把(a +b )(a -b )=a 2-b 2反过来就是a 2-b 2=a 2-b 2= 中左边是两个数的 ,右边是这两个数的 与这两个数的 的 。

根据上面式子填空:(1)9m 2–4n 2= ; (2)16x 2–y 2= ;(3)x 2–9= ; (4)1–4x 2= . 模块二 合作探究探究一:把下列各式因式分解:(1) x 2-16 (2)25–16x 2(3)9a 2–241b (4) 9 m 2-4n 2探究二:将下列各式因式分解:(1)9(x –y )2–(x +y )2 (2)2x 3–8x (3)3x 3y –12xy (4)a 4-81模块三 形成提升 1、判断正误:(1)x 2+y 2=(x+y )(x –y ) ( )(2)–x 2+y 2=–(x +y )(x –y ) ( )(3)x 2–y 2=(x+y )(x –y ) ( )(4)–x 2–y 2=–(x+y )(x –y ) ( ) 2、下列各式中不能用平方差公式分解的是( )A.-a 2+b 2B.-x 2-y 2C.49x 2y 2-z 2D.16m 4-25n 23、分解因式3x 2-3x 4的结果是( )A.3(x+y 2)(x-y 2)B.3(x+y 2)(x+y)(x-y)C.3(x-y 2)2D.3(x-y)2(x+y) 24、把下列各式因式分解:(1)4–m 2 (2)9m 2–4n 2(3)a 2b 2-m 2 (4)(m -a )2-(n +b )2(5)(6)-16x 4+81y 45、分解多项式:(1)16x 2y 2z 2-9; (2)a 2b 2-m 2(2)81(a+b)2-4(a-b)2 (4)(m -a )2-(n +b )2模块四 小结反思一.这一节课我们一起学习了哪些知识和思想方法?二.本课典型:平方差公式分解因式。

三.我的困惑:请写出来: 课外拓展思维训练:1.下列多项式中能用平方差公式分解因式的是( )A 、22)(b a -+ B 、mn m 2052- C 、22y x -- D 、92+-x2.分解因式:1.2224)1(a a -+ 2. x 3- x第四章 因式分解第三节 运 用 公 式 法(二)【学习目标】(1)会用完全平方公式进行因式分解;(2)清楚地知道提公因式法是分解因式的首先考虑的方法,再考虑用平方差公式或完全平方公式进行分解因式.(3)通过观察,推导分解因式与整式乘法的关系,感受事物间的因果联系. 【学习方法】.自主探究与小组合作交流相结合. 【学习重难点】重点: 会用完全平方公式进行因式分解 难点: 对完全平方公式的运用能力. 【学习过程】模块一 预习反馈 一.学习准备:1.请同学们阅读教材57页~58页的内容,并完成书后习题 2.预习过程中请注意:⑴不懂的地方要用红笔标记符号;⑵完成你力所能及的随堂练习和习题;二.教材精读:1、分解因式学了哪些方法?2、填空: (1)(a+b )(a-b ) = ;(2)(a+b )2= ;(3)(a –b )2= ; 根据上面式子填空:(1)a 2–b 2= ;(2)a 2–2ab+b 2= ;(3)a 2+2ab+b 2= ; 结论:形如 与 的式子称为完全平方式.由分解因式与整式乘法关系可以看出:如果 ,那么 ,这种分解因式的方法叫运用公式法。

模块二 合作探究探究一: 观察下列哪些式子是完全平方式?如果是,请将它们进行因式分解.(1)x 2–4y 2 (2)x 2+4xy –4y 2 (3)4m 2–6mn+9n 2(4)m 2+9n 2+6mn (5)x 2–x+ (6)251056+-x x探究二:把下列各式因式分解:41(1)a 2b+b 3-2ab 2(2) ;(3) (4)(5)(6)(m 2-2m )2-2(m 2-2m)+1模块三 形成提升1.下列多项式能用完全平方公式分解因式的是( ) A .m 2-mn+n 2B .(a+b )2-4ab C .x 2-2x+41 D .x 2+2x -1 2.若a+b=4,则a 2+2ab+b 2的值是( )A .8B .16C .2D .4 3.如果是一个完全平方式,那么k 的值是__________;4.下列各式不是完全平方式的是( )A .x 2+4x+1 B .x 2-2xy+y 2C .x 2y 2+2xy+1 D .m 2-mn+41n 25.把下列各式因式分解:(1)x 2–4x+4 (2)9a 2+6ab+b 2(3)m 2–9132+m (4)3ax 2+6axy+3ay 2(5)–x 2–4y 2+4xy (6)()()1682++++n m n m模块四 小结反思一.这一节课我们一起学习了哪些知识和思想方法? 二.本课典型:完全平方公式进行因式分解。

相关文档
最新文档