最新新北师大版八年级数学试题

合集下载

初二数学实数北师大试卷

初二数学实数北师大试卷

一、选择题(每题3分,共30分)1. 下列各数中,属于实数的是()A. √-1B. √4C. √0D. √92. 下列各数中,不是有理数的是()A. 0.5B. -2.3C. 3/4D. √23. 下列各数中,是整数的是()A. -3/2B. 2.5C. -√4D. 44. 下列各数中,是正数的是()A. -3B. 0C. 1/2D. -1/25. 下列各数中,是负数的是()A. 0B. -√9C. 2/3D. 16. 下列各数中,是无限循环小数的是()A. 0.333...B. 0.6C. 0.25D. 0.77. 下列各数中,是有限小数的是()A. 0.333...B. 0.6C. 0.25D. 0.78. 下列各数中,是相反数的是()A. 3和-3B. 5和5C. -2和-2D. 4和-19. 下列各数中,是绝对值相等的是()A. -3和3B. -5和5C. 2和-2D. 0和110. 下列各数中,是实数的立方根的是()A. -8B. 27C. 0D. -1二、填空题(每题5分,共25分)11. 实数a,b,c满足a+b=0,则a和b互为()12. 有理数a,b,c满足a+b=c,则a和c互为()13. 实数a,b,c满足a+b+c=0,则a,b,c中至少有一个数是()14. 实数a,b,c满足a^2+b^2=c^2,则a,b,c构成()15. 下列各数中,是实数的平方根的是()三、解答题(每题10分,共30分)16. 简化下列各数:(1)√9 + √16(2)-√25 - √36(3)√64 - √8117. 计算下列各式的值:(1)2√2 + 3√3 - √6(2)-5√2 + 4√3 - 2√6(3)3√5 - 2√10 + √5018. 判断下列各数是否为实数的平方根,并说明理由:(1)√-4(2)√-9(3)√0答案:一、选择题1. B2. D3. D4. C5. B6. A7. C8. A9. B10. A二、填空题11. 相反数12. 相等13. 014. 直角三角形15. √9三、解答题16. (1)√9 + √16 = 3 + 4 = 7(2)-√25 - √36 = -5 - 6 = -11(3)√64 - √81 = 8 - 9 = -117. (1)2√2 + 3√3 - √6 = 2√2 + 3√3 - √(2×3)(2)-5√2 + 4√3 - 2√6 = -5√2 + 4√3 - 2√(2×3)(3)3√5 - 2√10 + √50 = 3√5 - 2√(2×5) + √(5×10) 18. (1)√-4 不是实数的平方根,因为负数没有实数平方根。

最新北师大版八年级数学上册单元测试题附答案全套

最新北师大版八年级数学上册单元测试题附答案全套

最新北师大版八年级数学上册单元测试题附答案全套第一章检测卷时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.下列各组线段中,能够组成直角三角形的一组是()A.3,4,4 B.3,4,6C.3,4,7 D.3,4,52.如图,在Rt△ABC中,∠A=90°,BC=2.5cm,AC=1.5cm,则AB的长为() A.3.5cm B.2cmC.3cm D.4cm3.如图,在Rt△ABC中,∠ACB=90°.若AB=15cm,则正方形ADEC和正方形BCFG 的面积之和为()A.150cm2B.200cm2C.225cm2D.无法计算4.适合下列条件的△ABC中,直角三角形的个数为()①a=6,b=8,c=10;②a∶b∶c=1∶2∶2;③∠A=32°,∠B=58°;④a=7,b=24,c=25.A.2个B.3个C.4个D.1个5.在△ABC中,AB=12,BC=16,AC=20,则△ABC的面积为()A.96 B.120C.160 D.2006.若△ABC的三边长a,b,c满足(a-b)(a2+b2-c2)=0,则△ABC是()A.等腰三角形B.直角三角形C.等边三角形D.等腰三角形或直角三角形7.如图是医院、公园和超市的平面示意图,超市在医院的南偏东25°的方向,且到医院的距离为300m,公园到医院的距离为400m.若公园到超市的距离为500m,则公园在医院的()A.北偏东75°的方向上B.北偏东65°的方向上C.北偏东55°的方向上D.无法确定8.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D ′处.若AB =3,AD =4,则ED 的长为( )A.32 B .3 C .1 D.439.某市在旧城改造中,计划在市内一块如图所示的三角形ABC 空地上种植草皮以美化环境,已知AB =13米,AD =12米,AD ⊥BC ,AC =20米.若这种草皮每平方米售价a 元,则购买这种草皮至少需要( )A .126a 元B .150a 元C .156a 元D .300a 元10.如图,长方体的高为9m ,底面是边长为6m 的正方形,一只蚂蚁从顶点A 开始爬向顶点B ,那么它爬行的最短路程为( )A .10mB .12mC .15mD .20m二、填空题(每小题3分,共24分)11.如图,一架长为4m 的梯子,一端放在离墙脚2.4m 处,另一端靠墙,则梯子顶端离墙脚________m.12.如图,在△ABC 中,AB =5cm ,BC =6cm ,BC 边上的中线AD =4cm ,则∠ADB 的度数是________.13.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,以点A 为圆心,AC 长为半径画弧,交AB 于点D ,则BD =________.14.如图是一个三级台阶,每一级的长,宽和高分别是50cm,30cm,10cm,A和B是这个台阶的两个相对的端点.若一只壁虎从A点出发沿着台阶面爬到B点,则壁虎爬行的最短路线的长是________.15.已知某长方形两邻边的差为2,对角线长为4,则此长方形的面积是________.16.如图所示的螺旋由一系列直角三角形组成,则OA2024=________.17.如图是一种饮料的包装盒,其长、宽、高分别为4cm,3cm,12cm,现有一长为16cm 的吸管插入到盒的底部,则吸管露在盒外部分的长度h的取值范围为____________.18.在△ABC中,若AC=15,BC=13,AB边上的高CD=12,则△ABC的周长为________.三、解答题(共66分)19.(8分)如图,正方形网格中有△ABC,若小方格边长为1,请你根据所学的知识,判断△ABC是什么三角形,并说明理由.20.(8分)如图,在Rt△ABC中,∠ABC=90°,AB=16cm,正方形BCEF的面积为144cm2,BD⊥AC于点D,求BD的长.21.(8分)如图,铁路上A,B两点相距25km,C,D为两村庄,AD⊥AB于点A,BC⊥AB 于点B.已知AD=15km,BC=10km,现在要在铁路AB旁建一个货运站E,使得C,D两村到E站距离相等,问E站应建在离A地多远的地方?22.(10分)如图,在△ABC中,D是BC的中点,DE⊥BC,垂足为D,交AB于点E,且BE2-AE2=AC2.(1)判断△ABC的形状,并证明你的结论;(2)若DE=3,BD=4,求AE的长.23.(10分)有一个如图所示的长方体透明玻璃鱼缸,假设其长AD=80cm,高AB=60cm,水深AE=40cm.在水面上紧贴内壁G处有一块面包屑,G在水面线EF上,且EG=60cm,一只蚂蚁想从鱼缸外的A点沿鱼缸壁爬进鱼缸内的G处吃面包屑.(1)该蚂蚁应该沿怎样的路线爬行才能使路程最短呢?请你画出它爬行的路线,并用箭头标注;(2)求蚂蚁爬行的最短路线长.24.(10分)如图,在Rt△ABC中,∠ACB=90°,AB=10cm,AC=6cm,动点P从点B 出发沿射线BC以2cm/s的速度移动,设运动的时间为t s.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值.25.(12分)图甲是任意一个直角三角形ABC,它的两条直角边的长分别为a,b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b的正方形内.(1)图乙、图丙中①②③都是正方形.由图可知:①是以________为边长的正方形,②是以________为边长的正方形,③是以________为边长的正方形;(2)图乙中①的面积为________,②的面积为________,图丙中③的面积为________;(3)图乙中①②面积之和为__________;(4)图乙中①②的面积之和与图丙中正方形③的面积有什么关系?为什么?由此你能得到关于直角三角形三边长的关系吗?参考答案与解析1.D 2.B 3.C 4.B 5.A 6.D 7.B 8.A 9.A10.C 解析:如图①,AB 2=62+152=261;如图②,AB 2=122+92=225.∵261>225,∴蚂蚁爬行的最短路程为15m.11.3.2 12.90° 13.414.130cm 15.6 16.45 17.3cm ≤h ≤4cm18.32或42 解析:∵AC =15,BC =13,AB 边上的高CD =12,∴AD 2=AC 2-CD 2,即AD =9;BD 2=BC 2-CD 2,即BD =5.如图①,CD 在△ABC 内部时,AB =AD +BD =9+5=14,此时,△ABC 的周长为14+13+15=42;如图②,CD 在△ABC 外部时,AB =AD -BD =9-5=4,此时,△ABC 的周长为4+13+15=32.综上所述,△ABC 的周长为32或42.19.解:△ABC 是直角三角形.(2分)理由如下:∵AC 2=22+42=20,AB 2=12+22=5,BC 2=32+42=25,∴AB 2+AC 2=BC 2,(6分)∴△ABC 是直角三角形.(8分)20.解:∵正方形BCEF 的面积为144cm 2,∴BC =12cm.(2分)∵∠ABC =90°,AB =16cm ,∴AC =20cm.(4分)∵BD ⊥AC ,∴S △ABC =12AB ·BC =12BD ·AC ,∴BD =485cm.(8分)21.解:设AE =x km ,则BE =(25-x )km.(2分)根据题意列方程,得152+x 2=(25-x )2+102,(6分)解得x =10.故E 站应建立在离A 地10km 处.(8分)22.解:(1)△ABC 是直角三角形.(1分)证明如下:连接CE .∵D 是BC 的中点,DE ⊥BC ,∴CE =BE .∵BE 2-AE 2=AC 2,∴CE 2-AE 2=AC 2,∴AE 2+AC 2=CE 2,∴△ACE 是直角三角形,∠A =90°,∴△ABC 是直角三角形.(4分)(2)∵DE ⊥BC ,∴∠BDE =90°.在Rt △BDE 中,DE =3,BD =4,∴BE 2=DE 2+BD 2=25,∴CE =BE =5.(6分)由(1)可知∠A =90°,∴AC 2=CE 2-AE 2=25-AE 2.∵D 是BC 的中点,∴BC =2BD =8.(8分)在Rt △ABC 中,AB =5+AE ,由勾股定理得BC 2-BA 2=AC 2,∴64-(5+AE )2=25-AE 2,∴AE =75.(10分)23.解:(1)如图,作点A 关于BC 的对称点A ′,连接A ′G 交BC 于点Q ,连接AQ ,蚂蚁沿着A →Q →G 的路线爬行时,路程最短.(5分)(2)∵在Rt △A ′EG 中,A ′E =2AB -AE =80cm ,EG =60cm ,∴由勾股定理得A ′G =100cm ,(8分)∴最短路线长为AQ +QG =A ′Q +QG =100cm.(10分)24.解:(1)∵在Rt △ABC 中,BC 2=AB 2-AC 2=102-62=64,∴BC =8cm.(3分) (2)由题意知BP =2t cm ,分两种情况进行讨论:①当∠APB 为直角时,点P 与点C 重合,BP =BC =8cm ,即t =4;(5分)②当∠BAP 为直角时,BP =2t cm ,CP =(2t -8)cm ,AC =6cm.在Rt △ACP 中,AP 2=62+(2t -8)2,在Rt △BAP 中,AB 2+AP 2=BP 2,(7分)∴102+[62+(2t -8)2]=(2t )2,解得t =254.故当△ABP 为直角三角形时,t =4或254.(10分)25.解:(1)a b c (3分) (2)a 2 b 2 c 2(6分)(3)a 2+b 2(7分)(4)S ①+S ②=S ③.(8分)由图乙和图丙可知大正方形的边长为a +b ,则面积为(a +b )2,图乙中把大正方形的面积分为了四部分,分别是:边长为a 的正方形,边长为b 的正方形,还有两个长为a 、宽为b 的长方形,(10分)根据面积相等得(a +b )2=a 2+b 2+2ab ,由图丙可得(a +b )2=c 2+4×12ab .所以a 2+b 2=c 2.(12分)第二章检测卷时间:120分钟 满分:120分一、选择题(每小题3分,共30分) 1.9的平方根是( ) A .±3 B .±13C .3D .-32.下列实数中是无理数的是( ) A.9 B.227C .πD .(3)03.下列各式计算正确的是( )A.2+3= 5 B.43-33=1C.23×33=6 3 D.27÷3=34.已知a+2+|b-1|=0,那么(a+b)2018的值为()A.-1 B.1C.32018D.-320185.若m=30-3,则m的取值范围是()A.1<m<2 B.2<m<3C.3<m<4 D.4<m<56.实数a,b在数轴上的位置如图所示,且|a|>|b|,则化简a2-|a+b|的结果为()A.2a+b B.-2a+bC.b D.2a-b7.估计8×12+18的运算结果应在哪两个连续自然数之间()A.5和6 B.6和7C.7和8 D.8和98.已知a=3+2,b=3-2,则a2+b2的值为()A.4 3 B.14C.14 D.14+439.若6-13的整数部分为x,小数部分为y,则(2x+13)y的值是()A.5-313 B.3C.313-5 D.-310.某等腰三角形的两条边长分别为23和52,那么这个三角形的周长为() A.43+5 2 B.23+102C.43+52或23+10 2 D.43+102二、填空题(每小题3分,共24分)11.-5的绝对值是________,116的算术平方根是________.12.在实数-2,0,-1,2,-2中,最小的是________.13.若代数式-x+3x有意义,则实数x的取值范围是____________.14.一个长方形的长和宽分别是62cm与2cm,则这个长方形的面积等于________cm2,周长等于________cm.15.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上在原点O处的点到达点O′,点P表示的数是2.6,那么PO′的长度是________.16.已知 3.456≈1.859,34.56≈5.879,则345600≈________.17.在下列式子或结论中:①a2+b2是最简二次根式;②(a+2b)2=a+2b;③x2-4=x+2·x-2;④若a=3-2,b=12+3,则a+b=0.其中正确的有________(填序号).18.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式.即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=14⎣⎡⎦⎤a2b2-⎝⎛⎭⎫a2+b2-c222.现已知△ABC的三边长分别为2,3,4,则△ABC的面积为________.三、解答题(共66分)19.(每小题3分,共6分)求下列各式中x的值:(1)(x-2)2+1=17; (2)(x+2)3+27=0.20.(每小题3分,共12分)计算下列各题:(1)8+32-2;(2)614+30.027-31-124125;(3)(6-215)×3-61 2;(4)(548-627+12)÷ 3.21.(6分)实数a,b在数轴上的位置如图所示,请化简:a-a2-b2+(a-b)2.22.(8分)如图,在四边形ABCD中,AB=AD,∠BAD=90°.若AB=22,CD=43,BC=8,求四边形ABCD的面积.23.(8分)已知x=1-2,y=1+2,求x2+y2-xy-2x+2y的值.24.(8分)高空抛物极其危险,是我们必须杜绝的行为.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=h5(不考虑风速的影响).(1)从50m高空抛物到落地所需时间t1是________s,从100m高空抛物到落地所需时间t2是________s;(2)t2是t1的多少倍?(3)经过1.5s,高空抛物下落的高度是多少?25.(8分)已知实数a ,b 满足|2017-a |+a -2018=a .(1)a 的取值范围是________,化简:|2017-a |=________;(2)张敏同学求得a -20172的值为2019,你认为她的答案正确吗?为什么?.26.(10分)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2.善于思考的小明进行了以下探索:设a +2b =(m +2n )2(其中a ,b ,m ,n 均为整数),则有a +2b =m 2+2n 2+22mn ,∴a =m 2+2n 2,b =2mn .这样小明就找到了一种把类似a +2b 的式子化为平方式的方法,请你仿照小明的方法探索并解决下列问题:(1)当a ,b ,m ,n 均为正整数时,若a +3b =(m +3n )2,用含m ,n 的式子分别表示a ,b ,得a =______________,b =________;(2)利用所探索的结论,找一组正整数a ,b ,m ,n 填空:________+________3=(________+________3)2;(3)若a +43=(m +3n )2,且a ,m ,n 均为正整数,求a 的值.答案1.A 2.C 3.D 4.B 5.B 6.C 7.B 8.B9.B 解析:∵3<13<4,∴6-13的整数部分x =2,小数部分y =6-13-2=4-13,则(2x +13)y =(4+13)(4-13)=16-13=3.10.B 解析:若腰长为23,则三边长分别为23,23,52,而23+23<52,不能构成三角形,不合题意,舍去;若腰长为52,则三边长分别为52,52,23,能构成三角形,符合题意,则三角形的周长为52×2+23=102+2 3.故选B. 11.5 1412.-2 13.x ≤3且x ≠0 14.12 142 15.π-2.6 16.587.917.①④ 18.315419.解:(1)(x -2)2=16,x -2=±4,∴x =6或-2.(3分)(2)(x +2)3=-27,x +2=-3,∴x =-5.(6分) 20.解:(1)原式=22+42-2=5 2.(3分)(2)原式=52+0.3-15=2.6.(6分) (3)原式=18-245-32=32-65-32=-6 5.(9分)(4)原式=(203-183+23)÷3=43÷3=4.(12分)21.解:从数轴可知a <0<b ,(2分) ∴a -a 2-b 2+(a -b )2=a -(-a )-b -(a -b )=a +a -b -a +b =a .(6分)22.解:∵AB =AD ,∠BAD =90°,AB =22,∴BD =AB 2+AD 2=4.(3分)∵BD 2+CD 2=42+(43)2=64,BC 2=64,∴BD 2+CD 2=BC 2,∴△BCD 为直角三角形,且∠BDC=90°.(6分)∴S 四边形ABCD =S △ABD +S △BCD =12×22×22+12×43×4=4+8 3.(8分) 23.解:原式=(1-2)2+(1+2)2-(1-2)(1+2)-2(1-2)+2(1+2)=3-22+3+22-(1-2)-2+22+2+22=6+1+42=7+4 2.(8分)24.解:(1)10 25(2分)(2)∵t 2t 1=2510=2,∴t 2是t 1的2倍.(5分) (3)由题意得h 5=1.5,即h 5=2.25,∴h =11.25m.(7分) 答:经过1.5s ,高空抛物下落的高度是11.25m.(8分)25.解:(1)a ≥2018 a -2017(3分) (2)她的答案不正确.(4分)理由如下:∵|2017-a |+a -2018=a ,∴a -2017+a -2018=a ,∴a -2018=2017,(6分)∴a -2018=20172,∴a -20172=2018.∴她的答案不正确.(8分)26.解:(1)m 2+3n 2 2mn (2分)(2)4 2 1 1(答案不唯一)(6分)(3)由题意得a =m 2+3n 2,b =2mn ,∴4=2mn ,且m ,n 为正整数,(8分)∴m =2,n =1或m =1,n =2,∴a =22+3×12=7或a =12+3×22=13.(10分)八年级数学上册《位置与坐标》单元测试卷(提高)一、选择题(每小题3分,共30分)1.(3分)点M 在x 轴的上侧,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( )A .(5,3)B .(﹣5,3)或(5,3)C .(3,5)D .(﹣3,5)或(3,5)2.(3分)若点A (m ,n )在第二象限,那么点B (﹣m ,|n |)在( )A .第一象限B .第二象限;C .第三象限D .第四象限3.(3分)若,则点P (x ,y )的位置是( )A .在数轴上B .在去掉原点的横轴上C .在纵轴上D .在去掉原点的纵轴上4.(3分)如果点P (m +3,m +1)在直角坐标系的x 轴上,P 点坐标为( )A .(0,2)B .(2,0)C .(4,0)D .(0,﹣4)5.(3分)如图,小明从点O 出发,先向西走40米,再向南走30米到达点M ,如果点M 的位置用(﹣40,﹣30)表示,那么(10,20)表示的位置是( )A.点A B.点B C.点C D.点D6.(3分)如果直线AB平行于y轴,则点A,B的坐标之间的关系是()A.横坐标相等B.纵坐标相等C.横坐标的绝对值相等D.纵坐标的绝对值相等7.(3分)A(﹣3,2)关于y轴的对称点是B,B关于x轴的对称点是C,则点C的坐标是()A.(﹣2,3)B.(﹣3,2)C.(3,﹣2)D.(3,2)8.(3分)已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为()A.(﹣4,0)B.(6,0)C.(﹣4,0)或(6,0)D.无法确定9.(3分)如图,在直角梯形ABCD中,若AD=5,点A的坐标为(﹣2,7),则点D的坐标为()A.(﹣2,2)B.(﹣2,12)C.(3,7)D.(﹣7,7)10.(3分)如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(1,﹣1)B.(﹣1,1)C.(﹣1,﹣2)D.(1,﹣2)二、填空题(每小题3分,共24分)11.(3分)在电影票上,如果将“8排4号”记作(8,4),那么(10,15)表示.12.(3分)如图,用(0,0)表示点O的位置,用(3,2)表示点M的位置,则点N的位置可表示为.13.(3分)点P(a,b)与点Q(1,2)关于x轴对称,则a+b=.14.(3分)已知A在灯塔B的北偏东30°的方向上,则灯塔B在小岛A的的方向上.15.(3分)已知点A(x,2),B(﹣3,y),若AB∥y轴,则x=,y=.16.(3分)已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是.17.(3分)已知点P的坐标(3+x,﹣2x+6),且点P到两坐标轴的距离相等,则点P的坐标是.18.(3分)如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是.三、解答题(共66分)19.(8分)写出如图中“小鱼”上所标各点的坐标并回答:(1)点B、E的位置有什么特点;(2)从点B与点E,点C与点D的位置看,它们的坐标有什么特点?20.(8分)如图所示,是聊城市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),请以某景点为原点,画出直角坐标系,并用坐标表示出下列景点的位置.光岳楼、湖心岛、金凤广场、动物园.21.(8分)一缉私船队B在A的南偏东30°方向,A、B两处相距1km.接通知后,缉私队立刻通过全球定位系统测得走私地点C在B的北偏东60°方向,A的南偏东75°方向,如果你是一名光荣的缉私队员,根据上述信息,你能判断出走私地点C离B处多远吗?22.(8分)如图所示是某台阶的一部分,如果点A的坐标为(0,0),B点的坐标为(1,1),(1)请建立适当的直角坐标系,并写出C,D,E,F的坐标;(2)说明B,C,D,E,F的坐标与点A的坐标比较有什么变化?(3)如果该台阶有10级,你能得到该台阶的高度吗?23.(10分)如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法)24.(12分)如图,四边形ABCD各个顶点的坐标分别为A(6,4),B(3,7),C(0,4),D(3,1).(1)求四边形ABCD的面积;(2)如果四边形ABCD绕点C旋转180°,试确定旋转后四边形各个顶点的坐标;(3)请你重新设计适当的坐标系,使得四个顶点的纵坐标不变,横坐标乘以﹣1后,所的图形与原图形重合.25.(12分)已知三角形三个顶点坐标,求三角形面积通常有三种方法:方法一:直接法.计算三角形一边的长,并求出该边上的高.方法二:补形法.将三角形面积转化成若干个特殊的四边形和三角形的面积的和与差.方法三:分割法.选择一条恰当的直线,将三角形分割成两个便于计算面积的三角形.现给出三点坐标:A(2,﹣1),B(4,3),C(1,2),请你选择一种方法计算△ABC的面积.北师大新版八年级数学上册《第3章位置与坐标》单元测试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2013春•萍乡期末)点M在x轴的上侧,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,3)B.(﹣5,3)或(5,3)C.(3,5)D.(﹣3,5)或(3,5)【解答】解:∵点距离x轴5个单位长度,∴点M的纵坐标是±5,又∵这点在x轴上侧,∴点M的纵坐标是5;∵点距离y轴3个单位长度即横坐标是±3,∴M点的坐标为(﹣3,5)或(3,5).故选D.2.(3分)(2015春•武威校级期中)若点A(m,n)在第二象限,那么点B(﹣m,|n|)在()A.第一象限B.第二象限;C.第三象限D.第四象限【解答】解:∵点A(m,n)在第二象限,∴m<0,n>0,∴﹣m>0,|n|>0,∴点B在第一象限.3.(3分)(2014秋•武威校级期中)若,则点P(x,y)的位置是()A.在数轴上B.在去掉原点的横轴上C.在纵轴上D.在去掉原点的纵轴上【解答】解:∵,x不能为0,∴y=0,∴点P(x,y)的位置是在去掉原点的横轴上.故选B.4.(3分)(2013秋•平川区期末)如果点P(m+3,m+1)在直角坐标系的x轴上,P点坐标为()A.(0,2)B.(2,0)C.(4,0)D.(0,﹣4)【解答】解:∵点P(m+3,m+1)在直角坐标系的x轴上,∴m+1=0,∴m=﹣1,把m=﹣1代入横坐标得:m+3=2.则P点坐标为(2,0).故选B.5.(3分)(2008•双柏县)如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(10,20)表示的位置是()A.点A B.点B C.点C D.点D【解答】解:根据如图所建的坐标系,易知(10,20)表示的位置是点B,故选:B.6.(3分)(2014秋•阜南县校级期末)如果直线AB平行于y轴,则点A,B的坐标之间的关系是()A.横坐标相等B.纵坐标相等C.横坐标的绝对值相等D.纵坐标的绝对值相等【解答】解:∵直线AB平行于y轴,∴点A,B的坐标之间的关系是横坐标相等.故选A.7.(3分)(2014秋•武威校级期中)A(﹣3,2)关于y轴的对称点是B,B关于x轴的对称点是C,则点C的坐标是()A.(﹣2,3)B.(﹣3,2)C.(3,﹣2)D.(3,2)【解答】解:由题意可得:A(﹣3,2)关于y轴的对称点是B(3,2),B关于x轴的对称点是C(3,﹣2).故选:C.8.(3分)(2016春•潮南区月考)已知点A(1,0),B(0,2),点P在x轴上,且△PAB 的面积为5,则点P的坐标为()A.(﹣4,0)B.(6,0)C.(﹣4,0)或(6,0)D.无法确定【解答】解:∵A(1,0),B(0,2),点P在x轴上,∴AP边上的高为2,又△PAB的面积为5,∴AP=5,而点P可能在点A(1,0)的左边或者右边,∴P(﹣4,0)或(6,0).故选C.9.(3分)如图,在直角梯形ABCD中,若AD=5,点A的坐标为(﹣2,7),则点D的坐标为()A.(﹣2,2)B.(﹣2,12)C.(3,7)D.(﹣7,7)【解答】解:如图,设AD与y轴的交点为E,在直角梯形ABCD中,∵点A的坐标为(﹣2,7),∴OB=2,OE=7,∵AD=5,∴DE=5﹣2=3,∴点D的坐标为(3,7).故选C.10.(3分)(2012•莆田)如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(1,﹣1)B.(﹣1,1)C.(﹣1,﹣2)D.(1,﹣2)【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2012÷10=201…2,∴细线另一端在绕四边形第202圈的第2个单位长度的位置,即点B的位置,点的坐标为(﹣1,1).故选B.二、填空题(每小题3分,共24分)11.(3分)(2013春•镇康县校级期末)在电影票上,如果将“8排4号”记作(8,4),那么(10,15)表示10排15号.【解答】解:∵“8排4号”记作(8,4),∴(10,15)表示10排15号.故答案为:10排15号.12.(3分)如图,用(0,0)表示点O的位置,用(3,2)表示点M的位置,则点N的位置可表示为(6,3).【解答】解:如图,点N的位置可表示为(6,3).故答案为(6,3).13.(3分)点P(a,b)与点Q(1,2)关于x轴对称,则a+b=﹣1.【解答】解:∵点P(a,b)与点Q(1,2)关于x轴对称,∴a=1,b=﹣2,即a+b=﹣1.14.(3分)(2014秋•雨城区校级期中)已知A在灯塔B的北偏东30°的方向上,则灯塔B 在小岛A的南偏西30°的方向上.【解答】解:由图可得,灯塔B在小岛A的南偏西30°的方向上.15.(3分)已知点A(x,2),B(﹣3,y),若AB∥y轴,则x=﹣3,y=不等于2的任意实数.【解答】解:∵点A(x,2),B(﹣3,y),AB∥y轴,∴x=﹣3,y不等于2的是任意实数.故答案为:﹣3,不等于2的任意实数.16.(3分)(2015春•赵县期末)已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是±4.【解答】解:由题意可得5×|OA|÷2=10,∴|OA|=,∴|OA|=4,∴点a的值是4或﹣4.故答案为:±4.17.(3分)已知点P的坐标(3+x,﹣2x+6),且点P到两坐标轴的距离相等,则点P的坐标是(4,4)或(12,﹣12).【解答】解:由点P到两坐标轴的距离相等,得3+x=﹣2x+6或3+x+(﹣2x+6)=0,解得x=1或x=9,点P的坐标(4,4)或(12,﹣12),故答案为:(4,4)或(12,﹣12).18.(3分)(2008•仙桃)如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).【解答】解:△ABD与△ABC有一条公共边AB,当点D在AB的下边时,点D有两种情况:①坐标是(4,﹣1);②坐标为(﹣1,﹣1);当点D在AB的上边时,坐标为(﹣1,3);点D的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).三、解答题(共66分)19.(8分)(2016春•潮南区月考)写出如图中“小鱼”上所标各点的坐标并回答:(1)点B、E的位置有什么特点;(2)从点B与点E,点C与点D的位置看,它们的坐标有什么特点?【解答】解:(1)点B(0,﹣2)和点E(0,2)关于x轴对称;(2)点B(0,﹣2)与点E(0,2),点C(2,﹣1)与点D(2,1),它们的横坐标相同纵坐标互为相反数.20.(8分)如图所示,是聊城市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),请以某景点为原点,画出直角坐标系,并用坐标表示出下列景点的位置.光岳楼(0,0)、湖心岛(﹣1.5,1)、金凤广场(﹣2,﹣1.5)、动物园(7,3).【解答】解:以光月楼为坐标原点建立直角坐标系,如图,所以光岳楼的坐标为(0,0)、湖心岛的坐标为(﹣1.5,1)、金凤广场的坐标为(﹣2,﹣1.5)、动物园的坐标为(7,3).故答案为(0,0),(﹣1.5,1),(﹣2,﹣1.5),(7,3).21.(8分)一缉私船队B在A的南偏东30°方向,A、B两处相距1km.接通知后,缉私队立刻通过全球定位系统测得走私地点C在B的北偏东60°方向,A的南偏东75°方向,如果你是一名光荣的缉私队员,根据上述信息,你能判断出走私地点C离B处多远吗?【解答】解:如右图所示,∠BAC=75°﹣30°=45°,∠ABC=30°+60°=90°,∴∠C=90°﹣45°=45°,∴∠BAC=∠C,∴△ABC是等腰直角三角形,∴BC=AB=1km,答:走私地点C离B处是1km.22.(8分)(2012春•昌江县校级月考)如图所示是某台阶的一部分,如果点A的坐标为(0,0),B点的坐标为(1,1),(1)请建立适当的直角坐标系,并写出C,D,E,F的坐标;(2)说明B,C,D,E,F的坐标与点A的坐标比较有什么变化?(3)如果该台阶有10级,你能得到该台阶的高度吗?【解答】解:(1)以A点为原点,水平方向为x轴,建立平面直角坐标系.所以C,D,E,F各点的坐标分别为C(2,2),D(3,3),E(4,4),F(5,5).(2)B,C,D,E,F的坐标与点A的坐标相比较,横坐标与纵坐标分别加1,2,3,4,5;(3)每级台阶高为1,宽也为1,所以10级台阶的高度是10,长度为11.23.(10分)(2011秋•汉川市期中)如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法)【解答】解:(1)所建立的平面直角坐标系如下所示:(2)点B和点C的坐标分别为:B(﹣3,﹣1)C(1,1);(3)所作△A'B'C'如下图所示.24.(12分)如图,四边形ABCD各个顶点的坐标分别为A(6,4),B(3,7),C(0,4),D(3,1).(1)求四边形ABCD的面积;(2)如果四边形ABCD绕点C旋转180°,试确定旋转后四边形各个顶点的坐标;(3)请你重新设计适当的坐标系,使得四个顶点的纵坐标不变,横坐标乘以﹣1后,所的图形与原图形重合.【解答】解:(1)由图可知四边形ABCD的对角线互相垂直,并且长都是6,所以面积=×6×6=18平方单位;(2)A′(﹣6,4),B′(﹣3,1),C(0,4),D′(﹣3,7);(3)以原坐标轴的(3,0)点为原点,以原坐标轴x轴为横轴,以四边形垂直x轴对角线为y轴建立坐标系.25.(12分)(2013秋•重庆校级期中)已知三角形三个顶点坐标,求三角形面积通常有三种方法:方法一:直接法.计算三角形一边的长,并求出该边上的高.方法二:补形法.将三角形面积转化成若干个特殊的四边形和三角形的面积的和与差.方法三:分割法.选择一条恰当的直线,将三角形分割成两个便于计算面积的三角形.现给出三点坐标:A(2,﹣1),B(4,3),C(1,2),请你选择一种方法计算△ABC的面积.【解答】解:本题宜用补形法.如图,过点A作x轴的平行线,过点C作y轴的平行线,两条平行线交于点E,过点B分别作x轴、y轴的平行线,分别交EC的延长线于点D,交EA的延长线于点F,∵A(2,﹣1),B(4,3),C(1,2),∴EF=BD=3,CD=1,CE=3,AE=1,AF=2,BF=4,∴S△ABC=S矩形BDEF﹣S△BDC﹣S△CEA﹣S△BFA=BD•DE﹣•DC•DB﹣•CE•AE﹣AF•BF,=12﹣1.5﹣1.5﹣4=5.(本题也可先由勾股定理的逆定理,判别出△ABC为直角三角形,再求面积).第四章检测卷时间:120分钟满分:120分题号,一,二,三,总分得分一、选择题(每小题3分,共30分)1.下列图象中,表示y 是x 的函数的个数有( )A .1个B .2个C .3个D .4个2.直线y =2x -4与y 轴的交点坐标是( )A .(4,0)B .(0,4)C .(-4,0)D .(0,-4)3.直线y =-2x +b 与x 轴的交点坐标是(2,0),则关于x 的方程2x -b =0的解是( )A .x =2B .x =4C .x =8D .x =104.已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是( )A .a >bB .a =bC .a <bD .以上都不对5.若直线y =kx +b 经过A (0,2)和B (3,0)两点,则这个一次函数的关系式是( )A .y =2x +3B .y =-23x +2 C .y =3x +2 D .y =x -16.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂物体质量x (kg)间有如下关系(其中x ≤12).下列说法不正确的是( )x,0,1,2,3,4,5y,10,10.5,11,11.5,12,12.5A.x 与y 都是变量,且x 是自变量B .弹簧不挂重物时的长度为10cmC .物体质量每增加1kg ,弹簧长度y 增加0.5cmD .所挂物体质量为7kg 时,弹簧长度为14.5cm7.正比例函数y =kx (k ≠0)的图象在第二、四象限,则一次函数y =x +k 的图象大致是( )8.为了鼓励节约用水,按以下规定收取水费:(1)若每户每月用水量不超过20立方米,则每立方米水费1.8元;(2)若每户每月用水量超过20立方米,则超过部分每立方米水费3元.设某户一个月所交水费为y (元),用水量为x (立方米),则y 与x 的函数关系用图象表示为( )9.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y(元)与通话时间x(min)之间的函数关系如图所示.小红根据图象得出下列结论:①l1描述的是无月租费的收费方式;②l2描述的是有月租费的收费方式;③当每月的通话时间为500min时,选择有月租费的收费方式省钱.其中,正确结论的个数是()A.0个B.1个C.2个D.3个10.如图,把直线y=-2x向上平移后得到直线AB,直线AB经过点(m,n),且2m+n =6,则直线AB的解析式是()A.y=-2x-3 B.y=-2x-6C.y=-2x+3 D.y=-2x+6二、填空题(每小题3分,共24分)11.若直线y=2x+1经过点(0,a),则a=________.12.已知一次函数y=(1-m)x+m-2,当m________时,y随x的增大而增大.13.已知函数y=(k-1)x+k2-1,当k________时,它是一次函数,当k________时,它是正比例函数.14.如图,射线OA,BA分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s,t分别表示行驶距离和时间,则这两人骑自行车的速度相差________km/h.15.已知关于x 的方程ax -5=7的解为x =1,则一次函数y =ax -12与x 轴交点的坐标为________.16.甲和乙同时加工一种产品,如图所示,图①、图②分别表示甲和乙的工作量与工作时间的关系.如果甲已经加工了75kg ,那么乙加工了________kg.17.过点(-1,7)的一条直线与x 轴、y 轴分别相交于点A ,B ,且与直线y =-32x +1平行.则在线段AB 上,横、纵坐标都是整数的点的坐标是______________.18.如图,已知点A 和点B 是直线y =34x 上的两点,A 点坐标是⎝⎛⎭⎫2,32.若AB =5,则点B 的坐标是________________.三、解答题(共66分)19.(8分)某市长途电话按时分段收费,3分钟内收费1.8元,以后每超过1分钟加收0.8元.若通话t 分钟(t ≥3).(1)求需付电话费y (元)与t (分钟)之间的函数关系式; (2)画出函数图象.20.(8分)已知一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求k,b的值;(2)若一次函数y=kx+b的图象与x轴的交点为A(a,0),求a的值.21.(9分)已知一次函数y=mx+3-m,当m为何值时,(1)y随x值的增大而减小;(2)一次函数的图象与直线y=-2x平行;(3)一次函数的图象与x轴交于点(2,0).22.(9分)已知一次函数y=kx+b的图象经过点A(0,2)和点B(-a,3),且点B在正比例函数y=-3x的图象上.(1)求a的值;(2)求一次函数的解析式并画出它的图象;(3)若P(m,y1),Q(m-1,y2)是这个一次函数图象上的两点,试比较y1与y2的大小.23.(10分)某销售公司推销一种产品,设x(件)是推销产品的数量,y(元)是付给推销员的月报酬.公司付给推销员的月报酬的两种方案如图所示,推销员可以任选一种与公司签订合同,看图解答下列问题:(1)求每种付酬方案y关于x的函数表达式;(2)当选择方案一所得报酬高于选择方案二所得报酬时,求x的取值范围.。

最新北师大版八年级数学上册《估算》同步测试题及解析

最新北师大版八年级数学上册《估算》同步测试题及解析

估算一.选择题(共10小题)1.在实数﹣,﹣2,0,中,最小的实数是()A.﹣2 B.0 C.﹣D.2.下列实数中小于0的数是()A.2016 B.﹣2016 C.D.3.在下列实数中,﹣3,,0,2,﹣1中,绝对值最小的数是()A.﹣3 B.0 C.D.﹣14.下面实数比较大小正确的是()A.3>7 B.C.0<﹣2 D.22<35.估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间6.若a,且a、b是两个连续整数,则a+b的值是()A.1 B.2 C.3 D.47.面积为2的正方形的边长在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间8.以下关于的说法,错误的是()A.=±2B.是无理数C.2<<3 D.=29.设a是小于1的正数,且,则a与b的大小关系是()A.a>b B.a<b C.a=b D.不能确定10.若a=﹣0.32,b=﹣3﹣2,;,则它们的大小关系是()A.a<b<c<d B.b<a<d<c C.a<d<c<b D.c<a<d<b二.填空题(共10小题)11.比较大小:﹣3 .12.比较大小关系:32.13.比较大小:2(填“>”或“<”或“=”)14.设a=﹣|﹣2|,b=﹣(﹣1),c=,则a、b、c中最大实数与最小实数的差是.15.的整数部分是.16.设n为整数,且n<<n+1,则n= .17.规定:[x]表示不超过x的最大整数,例如:[3.69]=3,[﹣3.69]=﹣4,.计算:= .18.已知a是的小数部分,则a2+2a+2= .19.若5+的整数部分为a,小数部分为b,则a= ,b= .20.已知a,b为两个连续整数,且a<<b,则的值为.三.解答题(共10小题)21.已知5+与5﹣的小数部分分别是a和b,求(a+b)(a﹣b)的值.22.已知x是的整数部分,y是的小数部分,求x(﹣y)的值.23.综合运用:(1)已知a﹣=,求a2+的值.(2)已知a是4+的小数部分,b是﹣+5的小数部分,c是(﹣+2)﹣1的整数部分,求a2c ﹣b2c的值.24.已知a+2是1的平方根,3是b﹣3的立方根,的整数部分为c,求a+b+c的值.25.(1)若|x﹣3|+(4+y)2+=0,求3x+y+z的值.(2)设2+的小数部分是a,求a(a+2)的值.26.已知m是的小数部分,求二次三项式m2+2m﹣3的值.27.将下列各数按从小到大的顺序排列,用“<”号连接起来、、、π、0、1.6.28.已知2a=3,2b2=6,2c2=18,求a、b、c三者之间的关系.29.比较大小,并通过观察归纳,用含A,B的式子表示出这种规律,并证明所写式子的正确性.4+5 2;8+2;5+5 2.30.已知k≥1,比较2和+的大小.参考答案与试题解析一.选择题(共10小题)1.(2016•聊城)在实数﹣,﹣2,0,中,最小的实数是()A.﹣2 B.0 C.﹣D.【分析】根据负数的绝对值越大,这个数越小,然后根据正数大于0,负数小于0进行大小比较即可.【解答】解:实数﹣,﹣2,0,中,最小的实数是﹣2,故选A【点评】此题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.2.(2016•桂林)下列实数中小于0的数是()A.2016 B.﹣2016 C.D.【分析】根据正数大于负数0,0大于负数进行选择即可.【解答】解:∵﹣2016是负数,∴﹣2016<0,故选B.【点评】本题考查了实数的大小比较,掌握在数轴上右边的数总大于左边的数.3.(2016•朝阳)在下列实数中,﹣3,,0,2,﹣1中,绝对值最小的数是()A.﹣3 B.0 C.D.﹣1【分析】先求出各数的绝对值,再比较大小即可解答.【解答】解:|﹣3|=3,||=,|0|=0,|2|=2,|﹣1|=1,∵3>2>>1>0,∴绝对值最小的数是0,故选:B.【点评】本题考查了实数的大小比较,解决本题的关键是求出各数的绝对值.4.(2016•常德)下面实数比较大小正确的是()A.3>7 B.C.0<﹣2 D.22<3【分析】根据实数比较大小的法则对各选项进行逐一分析即可.【解答】解:A、3<7,故本选项错误;B、∵≈1.7,≈1.4,∴>,故本选项正确;C、0>﹣2,故本选项错误;D、22>3,故本选项错误.故选B.【点评】本题考查的是实数的大小比较,熟知实数比较大小的法则是解答此题的关键.5.(2016•毕节市)估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【分析】利用”夹逼法“得出的范围,继而也可得出的范围.【解答】解:∵2=<=3,∴3<<4,故选B.【点评】此题考查了估算无理数的大小的知识,属于基础题,解答本题的关键是掌握夹逼法的运用.6.(2016•本溪)若a,且a、b是两个连续整数,则a+b的值是()A.1 B.2 C.3 D.4【分析】根据的整数部分是2,可知0<﹣2<1,由此即可解决问题.【解答】解:∵的整数部分是2,∴0<﹣2<1,∵a、b是两个连续整数,∴a=0,b=1,∴a+b=1,故选A.【点评】本题考查估算无理数大小,学会利用逼近法估算无理数大小是解题的关键,属于基础题中考常考题型.7.(2016•海南)面积为2的正方形的边长在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间【分析】面积为3的正方形边长是2的算术平方根,再利用夹逼法求得的取值范围即可.【解答】解:解:面积为2的正方形边长是,∵1<2<4,∴故选B.【点评】本题考查了算术平方根的定义和估算无理数的大小,运用“夹逼法”是解答此题的关键.8.(2016•西湖区校级自主招生)以下关于的说法,错误的是()A.=±2B.是无理数C.2<<3 D.=2【分析】根据算术平方根的定义以及数的分类和估算无理数的大小方法以及二次根式的化简即可得到问题答案.【解答】解:A、=2≠±2,故该选项错误;B、开方开不尽,所以是无理数,故该选项正确;C、因为<<,所以2<<3,故该选项正确;D、=2,计算正确,故该选项正确;故选A.【点评】本题考查了算术平方根的定义以及数的分类和估算无理数的大小方法以及二次根式的化简.9.(2016•濉溪县一模)设a是小于1的正数,且,则a与b的大小关系是()A.a>b B.a<b C.a=b D.不能确定【分析】先确定出a的取值范围,再比较大小即可.【解答】解:∵o<a<1,∴a可为,,等,∴a=时,b=,依此类推,∴b>a.故答案为B.【点评】本题考查了实数大小比较,要熟记正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.10.(2016•富顺县校级模拟)若a=﹣0.32,b=﹣3﹣2,;,则它们的大小关系是()A.a<b<c<d B.b<a<d<c C.a<d<c<b D.c<a<d<b【分析】首先根据一个数的平方的计算方法,负整数指数幂的运算方法,以及零指数幂的运算方法,分别求出a、b、c、d的大小;然后根据实数大小比较的方法,判断出它们的大小关系即可.【解答】解:a=﹣0.32=﹣0.09,b=﹣3﹣2=﹣,=9,=1,∵﹣,∴b<a<d<c.故选:B.【点评】(1)此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.二.填空题(共10小题)11.(2016•南京)比较大小:﹣3 <.【分析】先判断出﹣3与﹣2的符号,进而可得出结论.【解答】解:∵4<5<9,∴2<<3,∴﹣3<0,﹣2>0,∴﹣3<.故答案为:<.【点评】本题考查的是实数的大小比较,熟知正数与负数比较大小的法则是解答此题的关键.12.(2016•巨野县二模)比较大小关系:3>2.【分析】因为是两个无理数比较大小,所以应把根号外的数整理到根号内再进行比较.【解答】解:∵3=,2=,18>12,∴3>2.故答案为:>.【点评】此题主要考查了实数的大小的比较,此题要比较的两个数都是带根号的无理数时,应把根号外的数整理到根号内,然后比较被开方数的大小.13.(2016•绿园区一模)比较大小:>2(填“>”或“<”或“=”)【分析】根据2=<即可得出答案.【解答】解:∵2=<,∴>2,故答案为:>.【点评】本题考查了实数的大小比较,关键是得出2=<,题目比较基础,难度适中.14.(2016•句容市一模)设a=﹣|﹣2|,b=﹣(﹣1),c=,则a、b、c中最大实数与最小实数的差是 4 .【分析】先计算出a、b、c的值,再找出最大实数与最小实数,两者相减即可得出答案.【解答】解:∵a=﹣|﹣2|=﹣2,b=﹣(﹣1)=1,c==﹣3,∴则a、b、c中最大实数是b,最小实数是c,∴a、b、c中最大实数与最小实数的差是b﹣c=1﹣(﹣3)=4;故答案为:4.【点评】此题考查了实数的大小比较,用到的知识点是绝对值、相反数和立方根,关键是计算出a、b、c的值.15.(2016•合肥模拟)的整数部分是 4 .【分析】根据已知得出的取值范围,进而得出答案.【解答】解:∵16<17<25,∴4<<5,∴的整数部分是4,故答案为:4.【点评】此题主要考查了估计无理数的大小,得出的取值范围是解题关键.16.(2016•海宁市一模)设n为整数,且n<<n+1,则n= 4 .【分析】依据被开方数越大,对应的算术平方根越大进行估算即可.【解答】解:∵16<20<25,∴4<<5,∴n=4.故答案为:4.【点评】本题主要考查的是估算无理数的大小,掌握算术平方根的性质是解题的关键.17.(2016春•马鞍山期末)规定:[x]表示不超过x的最大整数,例如:[3.69]=3,[﹣3.69]=﹣4,.计算:= 2 .【分析】先依据被开方数越大对应的算术平方根越大估算出的大小,然后再求根据[x]的定义求得的值,最后依据减法法则求解即可.【解答】解:∵9<13<16,∴3<<4.∴[]=3.∴=3﹣1=2.故答案为:2.【点评】本题主要考查的是估算无理数的大小,估算出取值范围是解题的关键.18.(2016春•兴化市校级期中)已知a是的小数部分,则a2+2a+2= 4 .【分析】先求出的范围,求出a的值,代入求出即可.【解答】解:∵1<<2,∴a=﹣1,∴a2+2a+2=+2=3﹣2+1+2﹣2+2=4.故答案为:4.【点评】本题考查了估算无理数的大小,解决本题的关键是估算出的范围.19.(2016春•宁津县校级月考)若5+的整数部分为a,小数部分为b,则a= 8 ,b= ﹣3 .【分析】先估算的范围,再求出5+的范围,即可得出答案.【解答】解:∵3<<4,∴8<5+<9,∴a=8,b=5+﹣8=﹣3,故答案为:8,﹣3.【点评】本题考查了估算无理数的大小的应用,能正确估算的范围是解此题的关键.20.(2016春•苏州校级期中)已知a,b为两个连续整数,且a<<b,则的值为.【分析】利用“夹逼法”求得a、b的值,然后化简二次根式即可.【解答】解:∵4<7<9,a,b为两个连续整数,且a<<b,∴2<<3∴a=2,b=3,∴==.故答案是:.【点评】本题考查了估算无理数的大小.用有理数逼近无理数,求无理数的近似值.三.解答题(共10小题)21.(2016•阳泉模拟)已知5+与5﹣的小数部分分别是a和b,求(a+b)(a﹣b)的值.【分析】先估算出的大小,然后用含的式子表示出a、b最后代入计算即可.【解答】解:∵2<<3,∴7<5+<8,2<5﹣<3,∴a=5+﹣7=﹣2,b=5﹣﹣2=3﹣∴原式=(﹣2+3﹣)(﹣2﹣3+)=1×(2﹣5)=2﹣5.【点评】本题主要考查的是估算无理数的大小,求得a、b的值是解题的关键.22.(2016春•恩施市期末)已知x是的整数部分,y是的小数部分,求x(﹣y)的值.【分析】由于3<<4,由此可确定的整数部分x,接着确定小数部分y,然后代入所求代数式中计算出结果即可.【解答】解:∵3<<4,∴的整数部分x=3,小数部分y=﹣3,∴﹣y=3,∴x(﹣y)=3×3=9.【点评】此题考查了二次根式的性质,估算无理数的大小;利用二次根式的性质确定x、y的值是解决问题的关键.23.(2016春•川汇区期中)综合运用:(1)已知a﹣=,求a2+的值.(2)已知a是4+的小数部分,b是﹣+5的小数部分,c是(﹣+2)﹣1的整数部分,求a2c ﹣b2c的值.【分析】(1)利用完全平方公式即可求解;(2)首先估算出的范围,求出a、b的值,再根据负整数指数幂的意义得出c的值,然后代入计算即可.【解答】解:(1)∵a﹣=,∴(a﹣)2=11,∴a2+=13;(2)∵2<<3,∴a=﹣2.∵﹣3<﹣<﹣2,∴b=3﹣.∵(﹣+2)﹣1==2+,1<<2,∴c=3,∴a2c﹣b2c=c(a2﹣b2)=c(a+b)(a﹣b)=3×(﹣2+3﹣)(﹣2﹣3+)=3×(2﹣5)=6﹣15.【点评】本题考查了估算无理数的大小,完全平方公式,负整数指数幂的意义以及代数式求值,是基础知识,需熟练掌握.24.(2016春•滨州期中)已知a+2是1的平方根,3是b﹣3的立方根,的整数部分为c,求a+b+c 的值.【分析】直接利用平方根的定义结合立方根的定义得出a,b的值,再利用估算无理数的大小的方法得出c的值,进而得出答案.【解答】解:∵a+2是1的平方根,∴a+2=±1,解得:a=﹣3或﹣1,∵3是b﹣3的立方根,∴b﹣3=33,解得:b=30,∵<<,∴的整数部分为c=2,∴a+b+c=﹣3+30+2=29或a+b+c=﹣1+30+2=31.【点评】此题主要考查了平方根的定义以及立方根的定义和估算无理数的大小,正确把握相关定义是解题关键.25.(2014秋•古塔区校级期中)(1)若|x﹣3|+(4+y)2+=0,求3x+y+z的值.(2)设2+的小数部分是a,求a(a+2)的值.【分析】(1)根据绝对值,偶次方,二次根式的性质得出方程,求出每个方程的解,再代入求出即可;(2)先求出2+的范围,根据求出a的值,再代入求出即可.【解答】解:(1)∵|x﹣3|+(4+y)2+=0,∴x﹣3=0,4+y=0,z+2=0,∴x=3,y=﹣4,z=﹣2,∴3x+y+z=3×3﹣4﹣2=3;(2)∵2<<3,∴4<2+<5,∴a=2+﹣4=﹣2,∴a(a+2)=(﹣2)(﹣2+2)=7﹣2.【点评】本题考查了绝对值,偶次方,二次根式的性质,估算无理数的大小的应用,主要考查学生的理解能力和计算能力,题目比较好,难度适中.26.(2012秋•兴化市校级月考)已知m是的小数部分,求二次三项式m2+2m﹣3的值.【分析】根据1<<,可得m的值,根据代数式求值,可得答案.【解答】解:由1<<,得m=﹣1.当m=﹣1时,m2+2m﹣3=(﹣1)2+2(﹣1)﹣3=2﹣2+1+2﹣2﹣3=﹣2.【点评】本题考查了估算无理数的大小,利用了算术平方根越大被开方数越大,代数式求值.27.(2011秋•南江县校级期中)将下列各数按从小到大的顺序排列,用“<”号连接起来、、、π、0、1.6.【分析】根据负数<0<正数,直接比较大小即可.【解答】解:根据题意得:π.【点评】比较有理数的大小的方法:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.28.已知2a=3,2b2=6,2c2=18,求a、b、c三者之间的关系.【分析】求出a,b,c的值,比较即可.【解答】解:根据题意得:a=,b=±,c=±3,当a=,b=,c=3时,大小关系为a<b<c;当a=,b=,c=﹣3时,大小关系为c<a<b;当a=,b=﹣,c=3时,大小关系为b<a<c;当a=,b=﹣,c=﹣3时,大小关系为c<b<a.【点评】此题考查了实数的大小比较,求出a,b,c的值是解本题的关键.29.比较大小,并通过观察归纳,用含A,B的式子表示出这种规律,并证明所写式子的正确性.4+5 >2;8+>2;5+5 = 2.【分析】用作差法比较出两边式子的大小,得出规律即可.【解答】解:∵4+5﹣2=(﹣)2>0,8+﹣2=(﹣)2>0,5+5﹣2=(﹣)2=0,∴A+B≥2.故答案为:>,>,=.【点评】本题考查的是实数的大小比较,熟知利用作差法比较实数大小的方法是解答此题的关键.30.已知k≥1,比较2和+的大小.【分析】首先将两式平方,进而比较大小得出答案.【解答】解:∵(2)2=4k,(+)2=k﹣1+k+1+2=2k+2,且k≥1,∴k>,∴4k>2k+2,∴2>+.【点评】此题主要考查了实数比较大小,将两式平方后比较是解题关键.。

最新北师大版八年级下册数学期末试题

最新北师大版八年级下册数学期末试题

最新北师大版八年级下册数学期末试题八年级数学一、选择题1.下列从左边到右边的变形,是因式分解的是()A。

8m^3n+4mn^2=2mn(4m^2+2n)B。

m-n=(m-n)(m+mn+n)C。

(y+1)(y-3)=-(3-y)(y+1)D。

4yz-2yz+z=2y(2z-yz)+z^22.若a>b,则下列式子正确的是()A。

a-4>b-3B。

a<bC。

3+2a>3+2bD。

-3a>-3b3.若分式的值为零,则x等于()A。

2B。

-2C。

±2D。

04.如图,在□ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A。

1.5cmB。

2cmC。

2.5cmD。

3cm5.如下是一种电子计分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是()(图片无法显示)6.如图所示,将矩形ABCD纸对折,设折痕为MN,再把B点叠在折痕线MN上,(如图点B’),若AB=3,则折痕AE的长为()(图片无法显示)A。

3/3B。

3C。

2D。

2/37.在平面直角坐标系内,点P(m-3,m-5)在第三象限,则m 的取值范围是()A。

m<5B。

3<m<5C。

m<3D。

m<-38.如图,在周长为20cm的□ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为(图片无法显示)A。

4cmB。

6cmC。

8cmD。

10cm9.已知(3x+4)/(x-x-2)=-9/2,其中A、B为常数,则4A-B 的值为()A。

7B。

9C。

13D。

510.如图,△XXX的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=10,则PQ的长为(图片无法显示)A。

3/2B。

3/5C。

3/2D。

4二、填空题11.分解因式:-3a+12a^2-12a^3=3a(4a^2-4a+1)12.已知等边五边形ABCDE,∠A=15°,AB=BC=CD=DE=EF,则∠GEF=75°,因为五边形每个内角为108°,∠ABC=∠XXX°,所以∠ECD=∠DCB=18°,∠BAC=∠XXX∠CDE=72°,所以∠AED=∠ABD=54°,∠GED=∠GDE=∠ABD-∠ECD=54°-18°=36°,所以∠XXX∠GED+∠DEF=36°+39°=75°。

北师大初中八年级数学试卷

北师大初中八年级数学试卷

1. 下列数中,不是有理数的是()A. -3/4B. √2C. 0.5D. 32. 下列各式中,正确的是()A. (-2)×(-3) = 6B. (-2)×3 = -6C. (-2)×(-3) = -6D. (-2)×3 = 63. 下列各式中,正确的是()A. 2a + 3b = 5B. 2a - 3b = 5C. 2a + 3b = 5aD. 2a - 3b = 5a4. 下列各式中,正确的是()A. (a + b)² = a² + b²B. (a + b)² = a² + 2ab + b²C. (a - b)² = a² - 2ab + b²D. (a - b)² = a² + 2ab - b²5. 下列各式中,正确的是()A. (a + b)³ = a³ + b³B. (a + b)³ = a³ + 3a²b + 3ab² + b³C. (a - b)³ = a³ - 3a²b + 3ab² - b³D. (a - b)³ = a³ - 3a²b - 3ab² + b³6. 下列各式中,正确的是()A. √(4²) = 4B. √(4²) = 2C. √(9²) = 9D. √(9²) = 37. 下列各式中,正确的是()A. 2√(4) = 4B. 2√(4) = 2C. 2√(9) = 6D. 2√(9) = 38. 下列各式中,正确的是()A. a² = |a|B. a² = |a|²C. a³ = |a|D. a³ = |a|²9. 下列各式中,正确的是()A. (a + b)² = a² + 2ab + b²B. (a - b)² = a² - 2ab + b²C. (a + b)³ = a³ + 3a²b + 3ab² + b³D. (a - b)³ = a³ - 3a²b + 3ab² - b³10. 下列各式中,正确的是()A. 2√(4) = 4B. 2√(4) = 2C. 2√(9) = 6D. 2√(9) = 311. -5 + 3 = ()12. 2/3 × 4 = ()13. (-2)² = ()14. (a - b)² = ()15. (a + b)³ = ()16. √(16) = ()17. 2√(4) = ()18. a³ = ()19. (a + b)² = ()20. 2√(9) = ()三、解答题(每题10分,共40分)21. 简化下列各式:(1)-2/3 + 5/6(2)-3/4 × (-4/5)(3)-2/3 × 3/422. 解下列方程:(1)2x - 3 = 7(2)3x + 4 = -523. 计算下列各式的值:(1)(a + 2)² - (a - 2)²(2)(2a - 3b)³(3)√(16 + 9)24. 解下列不等式:(1)3x - 2 > 5(2)2x + 4 ≤ 8四、应用题(每题10分,共20分)25. 小明骑自行车去图书馆,他先以每小时15千米的速度骑行了2小时,然后以每小时10千米的速度骑行了3小时。

最新北师大版八年级数学上册第一二章测试题

最新北师大版八年级数学上册第一二章测试题

最新北师大版八年级数学上册第一----二测试题(含答案)一、选择题1. 4 的平方根是( )A . 2B . 16 C. ±2 D .±16 【答案】C2.设a =19-1,a 在两个相邻整数之间,则这两个整数是( )A .1和2B .2和3C .3和4D .4和5【答案】C3.实数a化简后为( ) A . 7 B . -7 C . 2a -15 D . 无法确定第2题图【答案】A 4. 4的算术平方根是( )A . 2B . -2C . ±2D . 16 【答案】A5.若0)3(12=++-+y y x ,则y x -的值为 ( )[来 A .1 B .-1 C .7D .-7【答案】C6. (-2)2的算术平方根是( )(A )2 (B ) ±2 (C )-2 (D )2 【答案】A7.下列运算正确的是( )A.25=±5B.43-27=1C.18÷2=9D.24·32=6 【答案】D8.在实数0、、2-中,最小的是( )A .2-B .C .0D【答案】A9.12a -,则( )A .a <12 B. a ≤12 C. a >12 D. a ≥12【答案】B10.下列各式中,正确的是()A . 3=-B .3=-C 3±D 3=±【答案】B 11.已知21+=m ,21-=n ,则代数式mn n m 322-+的值为( )A .9B .±3C .3D . 5 【答案】C12.计算75147-+27之值为何?A .53B .33C .311D . 911 【答案】A13. 17.计算631254129⨯÷之值为何? A .123 B .63C .33D .433 【答案】B14. 8的立方根是( ) A .2 B .-2 C .3 D .4【答案】A15.下列各式计算正确的是A =B .2+=C .=D .2=【答案】C16.下面计算正确的是( )A.3= 3= 235= 2=-【答案】B17.如图,△ABC 中,∠C =90°,AC =3,∠B =30°,点P 是BC 边上的动点,则AP 长不可能是(第7题图)(A )3.5 (B )4.2 (C )5.8 (D )7 【答案】D18.如图3,在△ABC 中,∠C=90°,BC=6,D,E 分别在AB,AC 上,将△ABC 沿DE 折叠,使点A 落在点A ′处,若A ′为CE 的中点,则折痕DE 的长为( )A .21 B .2 C .3 D .4图3A '【答案】B19.如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m 和8m.按照输油中心O 到三条支路的距离相等来连接管道,则O 到三条支路的管道总长(计算时视管道为线,中心O 为点)是( )A2m B.3m C.6m D.9m【答案】C20.下列运算正确的是( ) A .(1)1x x --+=+B=C22= D .222()a b a b -=-【答案】C21.下列说法正确的是A.0)2(π是无理数B.33是有理数 C.4是无理数 D.38-是有理数【答案】D22.如图,矩形OABC 的边OA 长为2 ,边AB 长为1,OA在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是(第6题图)(A )2.5 (B )2 2 (C ) 3 (D ) 5 【答案】D(第7题图)23.A .3B .-3C .±3D .【答案】A24.A. ±B .C . ±3D . 3【答案】D. 25.计算221-631+8的结果是( ) A .32-23 B .5-2C .5-3D .22【答案】A二填空题26我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3. 若S 1,S 2,S 3=10,则S 2的值是 .【答案】10327.把命题“如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么222a b c +=”的逆命题改写成“如果……,那么……”的形式:。

北师大八年级数学上册单元测试题全套及答案

北师大八年级数学上册单元测试题全套及答案

最新北师大版八年级数学上册单元测试题全套及答案第一章勾股定理综合测评时间: 满分:120分、精心选一选(每小题4分,共32 分)1. 在厶 ABC 中,/ B=90° ,若 BC=3 AC=5,贝U AB 等于( )A.3B.4C.5D.62. 下列几组数中,能组成直角三角形的是()4.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8 cm,另一只朝左挖,每分钟挖 6 cm,10分钟后,两只小鼹鼠相距( )6.图2中的小方格都是边长为 1的正方形,试判断厶 ABC 的形状为()、耐心填一填(每小题4分,共32 分)9. 写出两组勾股数: ________________ . _______________10. 在厶ABC 中,ZC = 90° , 若 BC : AC = 3 :4 , AB= 10,则 BC= ___ , AC = _____ .班级: ________ 姓名: _______ 得分: _______1 1 1A.—,B.3 ,4, 6C.5 ,12, 13D.0.8 , 1.2 , 1.53 4 ,53.如图 1, 正方形 ABCD 的面积为 100 cm 2, △ ABP 为直角三角形, / P=90 ° ,且PB=6 cm ,则AP 的长为 ( )A.10 cmB.6 cmC.8 cmD.无法确定A.50 cmB.80 cmC.100 cm D.140 cm5.已知a , b , cABC 的三边,且满足 a 2 b 2 a 2 b 2 c 2 = 0,则它的形状为( A.直角三角形C.等腰直角三角形B.等腰三角形D. 等腰三角形或直角三角形A .钝角三角形 B. 锐角三角形 C.直角三角形 D.以上都有可能[来源:学科网7. 如图3, 一圆柱高8 cm,底面半径为2 cm, —只蚂蚁从点 A 爬到点B 处吃食,要爬行的最短路程( 取3 )是()A. 20 cmB.10 cmC.14 cmD.无法确定8.已知 Rt △ ABC 中,/ C=90°, 若 BC + AC = 14 cm , AB= 10 cm ,则该三角形的面积是( 2A.24 cm2B.36 cmC.48 cm2D.60 cm11. 如图4,等腰三角形ABC的底边长为16,底边上的高AD长为6,则腰AB的长度为___________13. 一个三角形的三边长之比为 5 : 12 : 13,它的周长为60,则它的面积是 _______ . 14. 图6是一个三级台阶,它的每一级长、宽、高分别是2米,0.3米,0.2米,A ,B 是这个台阶上两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿台阶面 爬行到B 点的最短路程是 米.屋门只有242 cm 高,100 cm 宽.你认为小明能把床垫拿进屋吗?________________________________________________________________________ .(填"能”或"不能”)16.图7是一束太阳光线从仓库窗户射入的平面示意图,小强同学测得 米,AC = 4.5米,MC= 6米,则太阳光线 MA 的长度为 _______ 米.17. (10分)如图8,甲渔船以8海里/时的速度离开港口 O 向东北方向航行,乙渔船以5 4 BN ^ —米,NC=—米,BC = 133三、细心做一做(共56分)12.如图 5,/ OAB =Z OBC=Z OCD= 90°, AB= BC = CD= 1, OA= 2,贝U OD 2 = _____15. 一天,小明买了一张底面是边长为 260 cm 的正方形,厚30 cm 的床垫回家,至U 了家门口,才 发现6海里/时的10,在一棵树的10米高处有两只猴子,一只猴子爬下树后走到离树 20米处的池塘D 后直接跃到A 处,距离以直线计算,若两只猴子所经过的距离相等,试求该树的19. (12分)如图 A 处.另一只爬到树顶速度离开港口 O 向西北方向航行,它们同时出发 .一个半小时后,甲、乙两渔船相距多少海里?9,已知在厶 ABC 中,AB=13, AD=12 AC=15, CD=9 求厶 ABC 的面积.18. (10分)如图高度.20. (12分)如图11, 一块草坪的形状为四边形 ABCDr 其中/ B=90 , AB=8 m BC=6 m CD=24 mAD=26 m.求这块草坪的面积.来源:Z#xx#]21. (12分)对任意符合条件的直角三角形保持其锐角顶点 A 不动,改变BC 的位置,使 E , D ,且/ BAE = 90°,/ CAD = 90° (如图 12).【分析】所给数据如图中所示,且四边形 ACFD 是一个正方形,它的面积和四边形ABFE 的面积相等.第一章勾股定理综合测评一、 1.B 2.C 3.C 4.C 5.D 6.C 7.B 8.A二、 9.答案不唯一,如 3,4,5 ; 60,80,100 10.6 8 11.10 12.7 13.120 14.2.5 15.台匕冃匕16.7.533三、 17.解:由题意得 OA — 812 (海里),OB — 69 (海里), AOB 90,所以△ AOB22是直角三角形.由勾股定理,得 OA 2 OB 2 AB 2,即AB 2 =92+122=225,所以AB= 15 (海里).答略.18. 解:因为 AD=12 AC=15 CD=9所以AD+cD=144+8仁225= AC 2,所以△ ADC 为直角三角形,且/ ADC=90 .在 Rt △ ABD 中,AB=13, AD=12 由勾股定理得 BD 2 =AB 2 - AD 2 = 25,所以ED =5,所以 BC = BD+DC=5+9=1411所以 S AABC =• BC• AD=— X 14X 12=84 .2 219. 解:由题意知 AD+DB=BC+CA 且 CA=20米,BC=10米,设 BD=x 贝U AD=30-x .【解答】结合上面的分析过程验证勾股定理[来源:学科网]在Rt △ ACD中,CD+CA^AE2,即(30-x ) 2= ( 10+x) 2+202,解得x=5,故树高CD=10+x=15 (米).20. 解:如图,连接AC,因为/ B=90,所以在Rt△ ABC中,由勾股定理得AC2=AB2+BC2=82+62=100, 所以AC=10.又因为CD=24, AD=26所以在△ ACD中, AC+CD^A E J,所以△ ACD是直角三角形.1 1 1 1” *所以S 四边形ABC=S^ACD-S△ AB(= — AC?CD ——AB?BC —X 10X 24 -——X 8X6 =120-24=96 (m)."22 2 2 2/故该草坪的面积为96 m. '-一/21解:由分析可得S 正方形ACFD= S 四边形ABFE=S^ BAE+ S^ BFE・1 1即b2= c2+ (b+a) (b-a).2 2整理,得2b2= c2+ (b+ a) (b-a) .*源学一科网心所以a2+ b2= c2.第二章实数检测题【本检测题满分:100分,时间:90分钟】、选择题(每小题3分,共30分)1 .下列无理数中,在一2与1之间的是()A. —LB.—:;C.D .2. (2014 •南京中考)8的平方根是()A . 4B . ±4C .2 .刁D . ±皿3.若a,b为实数,且满足|a—2|+ . b2 =0, 则b —a的值为()A . 2B . 0C.—2 D . 以上都不对4.卜列说法错误的是()A. 5是25的算术平方根B.1是1的一个平方根C . (—4)2的平方根是一4D.0的平方根与算术平方根都是5.要使式子- x有意义,则x的取值范围是()A . x> 0 B. x>- 2 C. x> 2 D. x< 26.若a, b均为正整数,且a> .7 , b> 3 2,则a + b的最小值是( )A. 3B.4C.57.在实数-,。

北师大版初二数学试卷

北师大版初二数学试卷

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √-1B. √4C. πD. 0.333…2. 下列各数中,无理数是()A. √9B. √-1C. 0.333…D. 33. 已知 a > b,则下列不等式中正确的是()A. a + b > b + aB. a - b > b - aC. a b > b aD. a / b > b / a4. 下列各式中,正确的是()A. (a + b)² = a² + b²B. (a - b)² = a² - b²C. (a b)² = a² b²D. (a / b)² = a² / b²5. 下列各式中,正确的是()A. (a + b)³ = a³ + b³B. (a - b)³ = a³ - b³C. (a b)³ = a³ b³D. (a / b)³ = a³ / b³6. 已知 a、b、c 是等差数列,且 a = 2,b = 4,则 c = ()A. 6B. 8C. 10D. 127. 已知 a、b、c 是等比数列,且 a = 2,b = 4,则 c = ()A. 8B. 16C. 32D. 648. 下列函数中,一次函数是()A. y = x² + 2x + 1B. y = 2x - 3C. y = 3x³ + 2x² + 1D. y = √x9. 下列函数中,二次函数是()A. y = x² + 2x + 1B. y = 2x - 3C. y = 3x³ + 2x² + 1D. y = √x10. 下列函数中,反比例函数是()A. y = x² + 2x + 1B. y = 2x - 3C. y = 3x³ + 2x² + 1D. y = 1 / x二、填空题(每题5分,共25分)11. 已知 a + b = 5,a - b = 3,则 a = ,b = 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年最新新北师大版八年级数学试题
三角形的证明测试题一、选择题(每题3分,共24分)
1. 到三角形三个顶点的距离相等的点是三角形( )的交点.
A. 三个内角平分线
B. 三边垂直平分线
C. 三条中线
D. 三条高
2.已知△ABC的三边长分别是6cm、8cm、10cm,则△ABC的面积是( )
A.24cm2
B.30cm2
C.40cm2
D.48cm2
3.已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是( )
A.7㎝
B.9㎝
C.12㎝或者9㎝
D.12㎝
4. 面积相等的两个三角形( )
A.必定全等
B.必定不全等
C.不一定全等
D.以上答案都不对
5.一个等腰三角形的顶角是40,则它的底角是( )
A.40
B.50
C.60
D.70
6. 如图,在△ABC和△DEF中,已知AC=DF,BC=EF,要使
△ABC≌△DEF,还需要的条件是( )
A.D
B.ACB=F
C.DEF
D.ACB=D
7.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则A的度数为( )
语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。

如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。

现在,不少语文教师在分析课文时,把文章解
体的支离破碎,总在文章的技巧方面下功夫。

结果教师费劲,学生头疼。

分析完之后,学生收效甚微,没过几天便忘的一干二净。

造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。

常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。

久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。

A.30 B.36 C.45 D.70
死记硬背是一种传统的教学方式,在我国有悠久的历史。

但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素
养煞费苦心。

其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。

相反,它恰是提高学生语文水平的重要前提和基础。

8.如图,△ABC≌△AEF,AB=AE,E,则对于结论X k B 1 . c o m
①AC=AF;②FAB=③EF=BC;④EAB=FAC,其中正确结论的个数是( )
A.1个
B.2个
C.3个
D.4个
课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。

为什么?还是没有彻底“记死”的缘故。

要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。

可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学
生个人搜集,每天往笔记本上抄写,教师定期检查等等。

这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。

这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。

相关文档
最新文档