北师大版八年级数学知识点汇总

合集下载

初二数学知识点北师大版

初二数学知识点北师大版

初二数学知识点北师大版学习从来无捷径。

每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学作为主科之一,和语文英语一样,也是要记、要背、要讲练的。

下面是小编给大家整理的一些初二数学的知识点,希望对大家有所帮助。

初二上学期数学知识点归纳数据的分析1、平均数①一般地,对于n个数x1x2...xn,我们把(x1+x2++xn)叫做这n个数的算数平均数,简称平均数记为。

②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数。

2、中位数与众数①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

②一组数据中出现次数最多的那个数据叫做这组数据的众数。

③平均数、中位数和众数都是描述数据集中趋势的统计量。

④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。

⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息。

⑥各个数据重复次数大致相等时,众数往往没有特别意义。

3、从统计图分析数据的集中趋势4、数据的离散程度①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。

一组数据中数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量。

②数学上,数据的离散程度还可以用方差或标准差刻画。

③方差是各个数据与平均数差的平方的平均数。

④其中是x1,x2.....xn平均数,s2是方差,而标准差就是方差的算术平方根。

⑤一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。

八年级数学知识点分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)×(a+b).学好数学的关键就在于要适时适量地进行总结归类,接下来小编就为大家整理了这篇人教版八年级数学全等三角形知识点讲解,希望可以对大家有所帮助。

北师大版八年级上册数学知识点归纳总结

北师大版八年级上册数学知识点归纳总结

北师大版八年级上册数学知识点归纳总结一、整数1.整数的概念整数包括正整数、负整数和零,用于表示不同方向的数值,可以表示纯数量也可以表示位置;整数的计算规律包括加法、减法、乘法和除法,要注意正负数的运算规则和加减法规则;2.整数的比较整数大小的比较可以利用数轴进行表示,也可以通过大小比较的规则进行判断;二、分式1.分式的概念分式是含有分数的数值表达式,由分子和分母组成,分式中有约分和通分的概念;2.分式的加减法分式的加减法需要通分后进行计算,要注意计算过程中保持分母一致;3.分式的乘除法分式的乘法即将分子和分母分别相乘,分式的除法即将分子和分母倒置后相乘,也需要注意进行约分和化简;三、一元一次方程1.一元一次方程的概念一元一次方程是指只含有一个未知数,并且未知数的最高次幂为1的方程,通常可以用字母表示;2.一元一次方程的解法解一元一次方程的方法有加减消元法、倍加消元法和代入法,在解题中要注意整理方程和验证解;3.一元一次方程及其实际问题一元一次方程可以用来解决诸如商场打折、运动比赛、等时速运动等实际问题,需要根据实际情况建立方程并解决;四、图形的性质1.四边形的性质四边形包括矩形、正方形、菱形、平行四边形等,各种四边形有不同的性质和判定条件;2.三角形的性质三角形包括等边三角形、等腰三角形、直角三角形等,要掌握不同三角形的性质和判定条件;3.图形的面积和周长计算计算不同图形的周长和面积需要掌握相应的公式和计算方法,如正方形、矩形、三角形、圆等;五、比例与相似1.比例的概念比例是指两个量之间的对应关系,可以表示为两个有理数的比,也可以用分式、百分数等形式表示;2.比例的性质和应用比例的求解和应用涉及到多种问题,如物品的混合、速度、面积比等实际问题,需要掌握不同解法和计算方法;3.相似三角形的性质和判定相似三角形有相似的对应边和角,可以利用辅助线、相似三角形的相似定理等方法判定相似三角形;六、二次根式1.二次根式的概念与性质二次根式包括平方根和立方根,具有乘方和开方的性质,要注意二次根式的运算和化简;2.二次根式的运算二次根式的运算包括加减乘除、化简、估算等,需要掌握不同的运算方法和技巧;3.二次根式及其应用二次根式在实际中有广泛的应用,如水果的分割、建筑物的设计等,需要掌握相关的计算方法和应用技巧;七、平面直角坐标系1.平面直角坐标系的概念与性质平面直角坐标系是利用两条相互垂直的坐标轴来定位点的位置,可以表示平面上的任意点;2.点的坐标和点的对称点的坐标可以通过与坐标轴的交点来确定,点的对称包括关于x 轴、y轴和原点的对称,需要掌握坐标的计算和点的对称性质;3.直线的方程和性质直线的方程可以表示为一般式、斜截式、截距式、点斜式等形式,需要根据条件确定直线的方程和性质;八、统计与概率1.统计的概念与方法统计是指收集、整理和分析数据的方法,包括频数分布、频率分布、累计频率分布、频数直方图、频率多边形等;2.概率的概念与计算概率是指某一事件发生的可能性,可以通过实验、频率和古典概率进行计算,需要掌握计算概率的方法和技巧;以上就是北师大版八年级上册数学知识点的归纳总结,希望对你有所帮助。

八年级数学知识点北师版

八年级数学知识点北师版

八年级数学知识点北师版数学是一门需要循序渐进掌握的学科,而数学知识点则是数学学习的基础和关键。

八年级是初中数学学习的重中之重,掌握好这个阶段的数学知识点,对于高中数学及以后的学习都有十分重要的作用。

本文将介绍北师版八年级数学知识点,希望对初中数学学习有所帮助。

一、有理数有理数是由整数和分数组成的数。

八年级主要学习有理数四则运算、有理数大小比较、有理数绝对值等。

其中,有理数大小比较是理解有理数的正负和大小的关键,掌握这个知识点对于后面学习有理数的加减乘除及高中中学分数解析式等知识点十分重要。

二、代数式与方程代数式是用字母和数字表示的式子,方程则是含有等号的代数式。

在八年级,学生需要掌握代数式的展开和因式分解,解代数式方程的基本方法以及一元一次方程和一元一次方程组等知识点。

掌握好代数式和方程的基础知识,对于高中的代数运算和函数概念的理解以及高考数学复习都有很大的帮助。

三、几何几何是与形状、大小和相对位置有关的数学知识领域。

在八年级,学生需要学习平面图形的性质、三角形的性质、相似及全等三角形、勾股定理和三角函数等知识点。

其中三角形的性质和勾股定理是掌握高中三角函数和向量概念的基础,相似及全等三角形则是理解初中和高中的几何概念的关键。

四、函数函数是数学中的基础概念,也是高中数学领域的核心概念之一。

在八年级,学生需要掌握函数概念、函数的表示方法、函数的性质等知识点。

熟练掌握这些知识点,可以为高中二次函数、指数函数、对数函数等知识点的理解和掌握打下坚实的基础。

五、统计与概率统计与概率是数学中的一个重要分支,涉及到数理统计、概率论、数理逻辑等知识。

在八年级,学生需要掌握频数、频率、百分数、样本和总体、事件与样本空间、基本事件、复合事件等知识点。

这些知识点是高中数学概率和统计知识的基石,掌握好这些知识点对于高中数学学习和高考数学都是极其重要的。

八年级的数学知识点涉及到代数、几何、函数和概率等多个领域,对学生的数学素养和思维能力要求也越来越高。

八年级上册数学北师大版知识点总结

八年级上册数学北师大版知识点总结

第一章勾股定理1. 勾股定理:直角三角形两直角边的平方和等于斜边的平方。

如果直角三角形的两直角边长分别为\(a\),\(b\),斜边长为\(c\),那么\(a^2 + b^2 = c^2\)。

2. 勾股定理的逆定理:如果三角形的三边长\(a\),\(b\),\(c\)满足\(a^2 + b^2 = c^2\),那么这个三角形是直角三角形。

第二章实数1. 无理数:无限不循环小数叫做无理数。

2. 平方根:如果一个数的平方等于\(a\),那么这个数叫做\(a\)的平方根。

一个正数有两个平方根,它们互为相反数;\(0\)的平方根是\(0\);负数没有平方根。

3. 算术平方根:正数\(a\)的正的平方根叫做\(a\)的算术平方根,记作\(\sqrt{a}\)。

4. 立方根:如果一个数的立方等于\(a\),那么这个数叫做\(a\)的立方根。

正数的立方根是正数,负数的立方根是负数,\(0\)的立方根是\(0\)。

第三章位置与坐标1. 在平面内,确定物体的位置一般需要两个数据。

2. 平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

水平的数轴称为\(x\)轴或横轴,竖直的数轴称为\(y\)轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

3. 点的坐标:对于平面内任意一点\(P\),过点\(P\)分别向\(x\)轴、\(y\)轴作垂线,垂足在\(x\)轴、\(y\)轴上对应的数\(a\),\(b\)分别叫做点\(P\)的横坐标、纵坐标,有序数对\((a,b)\)叫做点\(P\)的坐标。

4. 各象限内点的坐标的特征:点\(P(x,y)\)在第一象限:\(x>0\),\(y>0\);点\(P(x,y)\)在第二象限:\(x0\),\(y>0\);点\(P(x,y)\)在第三象限:\(x0\),\(y0\);点\(P(x,y)\)在第四象限:\(x>0\),\(y0\)。

北师大版八年级数学知识点

北师大版八年级数学知识点

北师大版八年级数学知识点一、勾股定理。

1. 勾股定理内容。

- 直角三角形两直角边的平方和等于斜边的平方。

如果直角三角形的两条直角边长度分别是a和b,斜边长度为c,那么a^2+b^2=c^2。

2. 勾股定理的证明。

- 常见的证明方法有赵爽弦图证法等。

通过图形的拼接、面积的计算来证明等式成立。

3. 勾股定理的逆定理。

- 如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形。

4. 勾股数。

- 满足a^2+b^2=c^2的三个正整数,称为勾股数,如3、4、5;5、12、13等。

二、实数。

1. 无理数的概念。

- 无限不循环小数叫做无理数。

例如√(2)、π等。

2. 实数的分类。

- 实数包括有理数和无理数。

有理数包括整数(正整数、0、负整数)和分数(有限小数和无限循环小数);无理数是无限不循环小数。

3. 实数的运算。

- 实数的运算顺序与有理数运算顺序相同,先算乘方、开方,再算乘除,最后算加减,有括号的先算括号里面的。

- 在进行实数运算时,有理数的运算法则和运算律同样适用。

例如加法交换律a + b=b + a,乘法分配律a(b + c)=ab+ac等。

4. 平方根与立方根。

- 平方根:如果x^2=a(a≥slant0),那么x叫做a的平方根,记作x=±√(a),其中√(a)是a的算术平方根。

- 立方根:如果x^3=a,那么x叫做a的立方根,记作x = sqrt[3]{a}。

三、位置与坐标。

1. 确定位置的方法。

- 在平面内确定一个物体的位置需要两个数据。

例如用有序数对(x,y)来表示平面内点的位置。

2. 平面直角坐标系。

- 由两条互相垂直、原点重合的数轴组成。

水平的数轴叫做x轴或横轴,竖直的数轴叫做y轴或纵轴,两轴交点O称为原点。

- 坐标平面被坐标轴分成四个象限,右上部分为第一象限(x>0,y>0),左上部分为第二象限(x<0,y>0),左下部分为第三象限(x<0,y<0),右下部分为第四象限(x>0,y<0)。

北师大版初中数学各册章节知识点总结

北师大版初中数学各册章节知识点总结

北师大版初中数学各册章节知识点总结第一册:《初二上册》1.直角三角形:直角三角形的定义、直角三角形的性质、勾股定理。

2.平面图形的表示:点、线、线段、射线、角度、平行线、垂直线、相交线等基本概念。

3.二次根式:二次根式的定义、运算法则。

4.初中平面几何基本定理:垂线定理、等腰三角形的性质、三角形中位线定理、角平分线定理等。

5.多边形:多边形的定义、正多边形、变位积分、多边形的内角和、多边形的外角和。

6.梅涅劳斯定理:梅涅劳斯定理的概念、定理的应用。

第二册:《初二下册》1.线性方程:线性方程的定义、解线性方程的常用方法。

2.三角函数的定义和初步认识:三角函数的定义、正弦函数、余弦函数、正切函数等。

3.平行线与相交线:平行线的性质、平行线之间的角对、相交线之间的角对等。

4.二次函数:二次函数的基本性质、二次函数图像的性质与应用。

5.海伦公式:海伦公式的概念、海伦公式的应用。

第三册:《初三上册》1.集合:集合的概念、集合的运算、集合的表示等。

2.图形的相似:图形相似的概念、相似比、相似三角形的性质等。

3.三角形的性质:三角形的角与边的关系、角边关系等。

4.空间几何基本概念:欧几里得空间几何学的基本概念、空间图形与平面图形的关系等。

5.高中数学预修知识:比例与相似、复数等。

第四册:《初三下册》1.数系的扩充:有理数和无理数的概念、实数的分类等。

2.几何体的计算:几何体的表面积、几何体的体积等。

3.空间几何基本定理:角的平分线、角的辅助线等。

4.三角恒等式:三角函数的反函数、三角函数的周期等。

第五册:《九年级上册》1.一次函数:一次函数的定义、一次函数图像的性质、线性规律等。

2.向量几何:向量的定义、向量的运算、向量的平行和垂直等。

3.数的四则运算:整数、有理数、无理数的四则运算等。

4.二次方程与不等式:二次方程的定义、解二次方程的方法等。

5.三角形的面积:三角形的名字、面积的计算公式等。

第六册:《九年级下册》1.指数与对数:指数、对数和底数的概念、指数与对数的性质等。

北师大版八年级数学知识点

北师大版八年级数学知识点

一、数与代数
1.基本数与分数:包括整数、真分数、带分数、换算等。

2.小数:包括小数的读法和写法、小数与分数的关系、小数的运算等。

3.比例与比例计算:包括比例的定义、比例的性质、比例的计算等。

4.百分数与百分数计算:包括百分数的意义、百分数的计算、百分数
与小数的关系等。

二、空间与图形
1.二维图形:包括平面图形的名称、特征和性质,如三角形、四边形、平行四边形、正方形、矩形、菱形等。

2.空间几何体:包括立体图形、棱柱、棱锥、圆柱、圆锥、球体、正
方体等的特征和性质。

3.二维图形与三维图形的关系:包括二维图形在立体图形表面的展开、平行投影、立体图形的视图等。

三、函数与方程
1.一次函数与线性方程:包括直线的斜率与截距、斜率的表示和计算、线性方程的解法等。

2.二次函数与二次方程:包括二次函数的图像、顶点坐标、二次方程
的解法等。

3.图像与方程:包括函数图象与方程的关系、通过题目给出的条件建
立方程等。

四、统计与概率
1.平均数:包括算术平均数的概念、算法、利用平均数解题等。

2.统计图表:包括频数分布表、条形统计图、折线统计图、饼图等的解读和绘制。

3.概率:包括事件的概念、概率的计算与统计、独立事件和互不独立事件等。

以上只是北师大版八年级数学的一部分知识点,通过学习这些知识点可以帮助学生建立数学基本概念,培养数学思维和解题能力。

但由于篇幅限制,无法涵盖所有的数学知识点,请根据教材的内容进行详细学习。

八年级数学知识大纲(北师版)

八年级数学知识大纲(北师版)

八年级数学上册知识大纲(北师版)第一章 勾股定理1 探索勾股定理(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a,b 和c 分别表示直角三角形的两直角边和斜边,那么222c b a =+。

(2)割补法证明勾股定理2 能得到直角三角形吗(1)勾股定理逆定理:如果三角形的三边长a ,b,c 满足222c b a =+,那么这个三角形是直角三角形.(2)勾股数:3,4,5;6,8,10;5,12,13;8,15,17;7,24,25… 3 蚂蚁怎样走最近-—最短路径问题(长方体、正方体、圆柱体、圆锥体等)第二章 实数1 数不够用了(1)无理数:无限不循环小数叫做无理数.(2)有理数总可以用有限小数或无限循环小数表示,反过来,任何有限小数或无限循环小数也都是有理数.2 平方根(1)算术平方根:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,记为a 。

特别地,我们规定0的算术平方根是0,即00=。

(2)平方根:一般地,如果一个数x 的平方等于a ,即a x =2,那么这个数x 就叫做a 的平方根(也叫二次方根),记为a ±。

求一个数a 的平方根的运算,叫做开平方,其中a 叫做被开方数。

(3)一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。

3 立方根(1)立方根:一般地,如果一个数x 的立方等于a ,即a x =3,那么这个数x 就叫做a 的立方根(也叫三次方根)。

求一个数a 的立方根的运算,叫做开立方。

(2)正数的立方根是正数;0的立方根是0;负数的立方根是负数。

4 公园有多宽5 用计算器开方6 实数(1)有理数和无理数统称为实数,即实数可分为有理数和无理数。

(2)实数也可以分为正实数、0、负实数。

(3)实数与数轴上的点一一对应.7 二次根式(1)二次根式:一般地,式子)0(≥a a 叫做二次根式.(2)二次根式乘除运算法则:)0,0();0,0(>≥=≥≥⋅=⋅b a b a ba b a b a b a (3)最简二次根式:一般地,被开方数不含分母,也不含能开得尽方的因数或因式,这样的二次根式,叫做最简二次根式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②三个角角形是等边三角形。
4、直角三角形
(1)定理:在直角三角形中,如果一个锐角是30度,那么它所对的直角边等于斜边的一半。
(2)勾股定理及其逆定理
直角三角形两条直角边的平方和等于斜边的平方
如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形
(2)将这个代数式代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程式,此为“代”
(3)解这个一元一次方程,把求得的一次方程的解代入方程中,求得另一个未知数的值,组成方程组的解,此为“解”。这种解方程组的方法称为代入消元法。简称代入法。
3、对某些二元一次方程组可通过方程两边分别相加(减),消去其中一个未知数,到一个一元一次方程,从而求出它的解,解这种类型的方程组的主要步骤,是观察求未知数的系数的绝对值是否相同,若互为相反数就用加,若相同,就用减,达到消元目的。这种通过两式相加(减)消去一个未知数解二元一次方程组的方法叫做加减消元法,简称加减法。
1.三角形中有两个角互余
2.勾股定理的逆定理
特色题型:蚂蚁怎样走最近
第二章 实数
1 认识无理数
2 平方根
3 立方根
4 估算
5 用计算器开方
6 实数
7 二次根式
回顾与思考
复习题
1、无理数
定义
有理数与无理数的区别
2、平方根
1.定义;2.平方根与开平方的定义;3.算术平方根;4.平方根与算数平方根的联系与区别;5.平方根的性质:一个正数有两个平方根,且他们互为相反数;0只有一个平方根是0;负数没有平方根
4、运用二元一次方程组解应用题
步骤:(1)设:弄清楚题意和题目中的数量关系,用字母表示题目中的两个未知数;(2)“列”:找出能够表达应用题全部含义的两个等量关系,根据这两个相等关系列出需要的代数式,从而列出方程并组成方程组(3)“解”:解这个方程组,求出未知数的值(4)“验”:检验这个解是否正确,并看它是否符合题意。
一组数据中出现次数最多的那个数据叫做这组数据的众数。
3、极差、方差、标准差
极差:最大值与最小值的差。
方差:
标准差:标准差是方差的算数平方根
极差、方差、标准差都是反映一组数据离散程度的特征数,一般地,一组数据的极差、方差或标准差较小,这组数据就越稳定。
第七章证平行线的证明
1 为什么要证明
2 定义与命题
5.旋转不改变图形的大小和形状。
难点:作图及与坐标系结合求点的坐标
第四章 因式分解
1、因式分解
2、提公因式法
3、运用公式法
回顾与思考
复习题
1.定义;把一个多项式化成几个整式积的形式,叫做多项式的分解因式
注意;必须分解到每个多项式因式不能再分解为止;
(整式乘法与因式分解的过程互逆)
3.因式分解的方法;
第三章 位置与坐标
1 确定位置
2 平面直角坐标系
3 轴对称与坐标变化
回顾与思考
复习题
1、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向,水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,两条数轴的交点0称为直角坐标系的原点。
2.基本性质;(1)两边加或减同一个整式,不等号方向不变;(2)两边同时乘以或除以同一个正数,不等号方向不变;(3)两边同时乘以或除以同一个正数,不等号方向不变;
3.解或解集;能使不等式成立的未知数的值,叫做不等式的解。不等式的解不唯一,把所有满足不等式的解集合在一起,构成不等式的解集。
4.解不等式;求不等式解集的过程。
(2)作正比例函数y=kx的图像时,除原点外,还需要找一个点,一般找(1,k)点
(3)在正比例函数y=kx图像中,当k>0时,k的值越大,函数图像与x轴正方向所成的锐角越大
(4)在正比例函数y=kx的图像中,当k>0时,y的值随x值的增大而增大,k<0时,y的值随x值的增大而减小。
(5)一次函数y=kx+b中,y的值随x的变化而变化的情况跟正比例函数的图像的性质相同。对照正比例函数图像的性质,可知一次函数的图像不过原点,但和两个坐标轴相交。在做一次函数的图像时,也需要描两个点。一般选取(0,b),
北师大版八年级数学知识点汇总
知识点汇总
八年级上册
前三章为
期中考试部分
第一章 勾股定理
1 探索勾股定理
2 能得到直角三角形吗
3 勾股定理的应用
回顾与思考
复习题
一、勾股定理
a2+b2=c2(两条直角边的平方和等于斜边的平方)
勾股数:满足 a2+b2=c2的三个正整数,成为勾股数
二、直角三角形的判定方法:
2、图形的旋转
3、中心对称
4、简单的图案设计
回顾与思考
复习题
1.的概念;在平面内,将一个图形沿某个方向移动一定的距离,平移不改变图形的形状和大小
2.的基本性质;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。
3.平移的三要素:原图形位置、平移方向、平移距离。
4.旋转;平面内,将一个图形绕着一个定点沿某个方向,转动一个角度,这样的图形运动叫图形的旋转。定点----旋转中心。角度----旋转角
特别注意;一元一次不等式必须满足的条件(不等号左右两边都是整式;只含有一个未知数;未知数的最高次数是一次)
二、一元一次不等式组
1.定义;关于同一个未知数的几个一元一次不等式合在一起组成;
2.解法;同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解;
第三章 图形的平移与旋转
1、图形的平移
二、等腰三角形的性质
(1)定义:有两条边相等角形是等腰三角形。
(2)性质:①等腰三角形的底角相等。(“等边对等角”)
(3)判定:①定义; ②三线合一; ③有两角相等的三角形是等腰三角形
3、等边三角形
(1) 定义:三边的三角形是等边三角形。
(2)性质:①三角都等于60度
②具有等腰三角形的一切性质。
(3)判定:①定义
易错题型;一元二次方程的应用(不会设未知数;找不到等量关系)
第六章 数据的分析
1 平均数
2 中位数与众数
3 从统计图分析数据的集中趋势
4 数据的离散程度
回顾与思考
复习题
1、平均数:1.算术平均数;2.加权平均数
2、中位数与众数
一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的平均数;
2、点的坐标:对于平面内任意一点p,过点p分别向X轴、Y轴作垂线,垂足在X轴、Y轴上对应的数a、b分别叫做点p的横坐标、纵坐标,有序实数对(a,b)叫做点p的坐标。
3、象限:平面直角坐标系中,两个数轴把平面分成四个部分,每一个部分都称为象限,按逆时针方向分别称为第一、第二、第三、第四象限。
4、坐标轴上的点的坐标至少有一个是0:横轴上的点的纵坐标为0,横坐标为任意实数,纵坐标上的点的横坐标为0,纵坐标为任意的实数。
注意:本章综合类题型特别多,对学生的综合分析题目的能力要求较高,同时,要学会不同题型辅助线的作法
第二章 一元一次不等式与一元一次不等式组
1、不等关系
2、不等式的基本性质
3、不等式的解集
4、一元一次不等式
5、一元一次不等式与一次函数
6、一元一次不等式组
回顾与思考
复习题
1.定义;一般的,用符号≤或<或>或≥连接的式子叫做不等式
5、定理的概念:经过证明的真命题称为定理,而证明所需的定义、公理和其它定理都编写在要证明的这个定理的前面。除公理、定义外,其他的真命题必须通过证明才能证实。等式的有关性质和不等式的有关性质都可以看作公理。在等式或不等式中,一个量可以用它的等量来代替。如:如果a=b,b=c,那么a=c。这一个性质也看做公理,称为“等量代换”。
7、平行线的性质
公理:两直线平行,同位角相等。
定理:两直线平行,内错角相等。
定理:两直线平行,同旁内角互补。
8、证明的一般步骤:(1)根据题意,画出图形;(2)根据条件、结论,结合图形,写出证明的过程;(3)经过分析,找出由已知推出求证的途径,写出证明过程。
9、三角形内角和定理:三角形的内角和180度。
A.提公因式法;B.运用公式法;C.十字相乘法
2、分解因式的步骤
(1)若多项式各项有公因式,则再提取公因式。
(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式。
(3)十字交叉相乘
(4)分组分解法
(5)拆分法
本章很大程度地检测了学生对之前所学知识的检测,如果本章学不好,下一章分式也会落下。
3 鸡兔同笼
4 增收节支
5 里程碑上的数
6 二元一次方程(组)与一次函数
7 用二元一次方程组确定一次函数表达式
8*三元一次方程组
回顾与思考
复习题
1、二元一次方程组的定义及解的由来
2、解二元一次方程组
解方程组的基本思路是“消元”——把“二元”变为“一元”
(1)将其中的一个方程中的某个未知数用含有另一个未知数的代数式表示出来,简称“变”
10、推论1:三角形的一个外角等于和它不相邻的两个内角的和。
推论2:三角形的一个外角大于任何一个和它不相邻的内角。
八年级下册
前四章为
期中考试部分
第一章三角形的证明
1、等腰三角形
2、直角三角形
3、线段的垂直平分线
4、角平分线
回顾与思考
复习题
一、复习三角形全等(SAS、SSS、AAS、ASA、HL)
注:SSA,AAA不能作为判定三角形全等的方法,判定两个三角形全等时,必须有边的参与,若有两边一角相等时,角必须是两边的夹角
相关文档
最新文档