二次根式的综合运用.doc-教师版

合集下载

八年级数学下册第十六章二次根式16.3二次根式的加减第1课时教案新新人教

八年级数学下册第十六章二次根式16.3二次根式的加减第1课时教案新新人教

16.3二次根式的加减第1课时【教学目标】知识与技能:1.理解二次根式合并的原理,能进行二次根式的合并.2.掌握二次根式加减的法则,会运用法则进行二次根式的加减.过程与方法:先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导二次根式的计算和化简.培养学生较熟练的运算能力.情感态度与价值观:帮助学生正确对待学习,养成良好的学习习惯,寻找有效的学习方法.【重点难点】重点:理解二次根式合并的原理,掌握二次根式加减的法则,会运用法则进行二次根式的加减.难点:掌握二次根式加减的法则,能熟练运用法则进行二次根式的加减.【教学过程】一、创设情境,导入新课:[问题情境]如图,面积为48 cm2的正方形四个角是面积为3 cm2的小正方形,现将四个角剪掉,制作一个无盖的长方体盒子,求这个长方体的底面边长和高分别是多少?解:原大正方形边长为=4(cm),小正方形边长为 cm.长方体的底面的边长为4-2.接下来怎样计算呢?这就是这节课我们要学习的二次根式的加减.二、探究归纳活动1:二次根式的合并的条件1.(1)什么是最简二次根式?(2)化简二次根式并找出被开方数相同的二次根式:①②③④⑤⑥⑦(3)上面二次根式哪些能合并?答案:①与⑥③与⑤④与⑦.2.归纳:二次根式的合并的条件把二次根式化成最简二次根式,被开方数相同的二次根式能合并.活动2:探索二次根式加减的法则1.填空:3+2=(3+2),其运算根据是______答案:分配律2.+=4+3①=(4+3)②=7.问题:(1)其中第①步是怎样运算的?______ ;答案:化成最简二次根式(2)第②步运算根据是________.答案:分配律3.思考:同类项可以合并,被开方数相同的最简二次根式能合并吗?提示:能.4.归纳:二次根式加减的法则:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.活动3:例题讲解【例1】确定下列哪组二次根式能合并.(1),(2),(3),(4),分析:化成最简二次根式后,被开方数相同的二次根式可以合并.解:(1)=3与不能合并;(2)=与能合并;(3)=5,=10,5与10不能合并;(4)与不能合并.点拨:二次根式合并的方法1.将二次根式都化为最简二次根式;2.把被开方数相同的二次根式合并.【例2】计算:(1)+2+-.(2)a+-.分析:先把各二次根式化成最简二次根式,再把被开方数相同的二次根式合并.解:(1)+2+-=++2-=++2-=+.(2)a+-=+2-+=+(2+1)=+3.总结:二次根式加减的步骤:1.化简:将每一个二次根式都化为最简二次根式.2.判断:判断哪些二次根式的被开方数相同,把被开方数相同的二次根式结合在一起.3.合并:合并被开方数相同的二次根式,将二次根式的系数相加,被开方数不变.三、交流反思这节课我们学习了二次根式的加减运算,在运算时要注意按照:“一化二找三合并”的步骤进行,细心运算.四、检测反馈1.计算:-=________.A.B.2 C.D.2+2.化简-(-1)的结果是()A.2-1B.2-C.1D.2+3.下列根式中,不能与合并的是()A.B.C.D.4.计算-9的结果是()A.-B.C.-D.5.下列计算正确的是()A.4-3=1B.+=C.2=D.3+2=56.已知最简二次根式与能合并,则a的值可以是()A.5B.3C.7D.87.请确定下列二次根式是否能合并,说明理由.(1)和;(2)和;(3)和.8.计算:(1)-(2)+6-3x五、布置作业教科书第15页习题16.3第1,2,3题六、板书设计七、教学反思本节课学习了二次根式加减,关键是掌握二次根式加减的步骤:(1)化:将每一个二次根式都化为最简二次根式;(2)找:找出被开方数相同的二次根式,把被开方数相同的二次根式结合在一起;(3)合并:将被开方数相同的二次根式的系数相加,被开方数不变.并能运用步骤进行计算.。

二次根式教师版

二次根式教师版

二次根式知识点一:二次根式的概念形如()的式子叫做二次根式。

注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。

知识点二:取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义。

知识点三:二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0()。

注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。

这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。

知识点四:二次根式()的性质()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。

注:二次根式的性质公式()是逆用平方根的定义得出的结论。

上面的公式也可以反过来应用:若,则,如:,.文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。

注:1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即;若a是负数,则等于a的相反数-a,即;2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简。

知识点六:与的异同点1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a 可以是正实数,0,负实数。

但与都是非负数,即,。

因而它的运算的结果是有差别的,,而2、相同点:当被开方数都是非负数,即时,=;时,无意义,而.二次根式的乘除二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.a·b= ab a≥0,b≥0);(b≥0,a>0).3. 计算:23369__________=⨯=。

二次根式的定义和性质1C(教师版)

二次根式的定义和性质1C(教师版)

学科教师辅导讲义【解析】a -18.把式子()10a a a--p 根号外面的式子适当的改变后移到根号内 【解析】a -题型三:最简二次根式 同类二次根式【例7】下列根式中,最简二次根式的是( )(A)3.0 (B)52 (C)c ab 22 (D)92+a 【解题思路】利用定义解决问题【解析】D【方法总结】先看被开方数中是否有分母;再看被开方数中各因数的指数是否为1.【例8】在下列各组二次根式中:①215831和; ②;2a a 和 ③222a a 与;④)0(>>+--+n m nm n m n m n m 和,是同类二次根式的是( ) A .①② B .②③ C .①③ D .①④【解题思路】利用定义解决问题.【解析】D【方法总结】同类二次根式的判断必须先把非最简二次根式化成最简二次根式,若被开方数相同则是同类二次根式,否则不是.【例9】已知最简二次根式3243a a b ++与()4126b b a b ++-+是同类二次根式,求a 和b 的值.【解题思路】利用定义解决问题.【解析】1,1a b ==.【方法总结】利用同类二次根式的条件(1)根指数相同(2)被开方数相同列出方程组求出a 和b 的值,但必须在最简根式的基础上【练习】1.下列二次根式中与是同类二次根式的是( ).A .B .C .D .【解析】D2.(2007上海市)在下列二次根式中,与是同类二次根式的是( )A .B .C .D .【解析】C3.下列根式中是最简二次根式的是( )A .33x B. 2a C. 2ab D. 2ab 【解析】D4.最简二次根式32153a a +-与是同类二次根式,求a 的值【解析】42153,5a a a +=-=. 5.已知最简根式32x y x y +-与642y x y ++-是同次根式,且y 是偶数。

求y 的值。

【解析】36x y y +=+,2x =.64y -≤≤,∴6,4,2,0,2,4y =---.题型四:【例10】用“<”连接32-和65-.【解题思路】本题涉及分子有理化相关.【解析】65-<32-【方法总结】∵13232-=+15.当ab <0时,化简b a 2的结果是( )A.b a -B.b a -C.b a --D.b a【解析】A16.如果2121--=--x x x x ,那么x 的取值范围是( ) A.1≤x ≤2 B.1<x ≤2 C.x ≥2 D.x >2【解析】D17.下列二次根式中,是最简二次根式的是( )A.a 16B.b 3C.a b D.45 【解析】B18.在根式2、75、501、271、15中与3是同类二次根式的有( ) A.1个 B.2个 C.3个 D.4个【解析】B19.实数a 、b 在数轴上对应的位置如图,则=---22)1()1(a b ( )A.b-aB.2-a-bC.a-bD.2+a-b【解析】C20.化简2)21(-的结果是( )A.21-B.12-C.)12(-±D.)21(-± 【解析】B21.已知b a 3b 4b a ++与是同类二次根式(,a b 均为正整数),则a 、b 的值是( )A. 0a =,2b =B. 1a =,1b =C. 1b ,1a 2b ,0a ====或D. 0b ,2a ==【解析】C22.下列各组二次根式中,是同类二次根式的是( )A .a a a 321与 B .232a a 与 C .3233a a 与 D .2a a a a 12与 【解析】D23.(2007江苏扬州)如图,数轴上点表示的数可能是( )· · · · a b 0 1A .B .C .D .【解析】B.24.m 为何值时,最简二次根式25m -与2m 84+是同类二次根式?【解析】1m =-25.m 为何值时,二次根式6m 24-与43m 26-(其中126m -,23m -均为最简二次根式)是同类二次根式? 【解析】158m = 26.化简:a 31)3a (-- 【解析】3a --27.求当二次根式24x 的值等于4时x 的值.【解析】2x =±28.若二次根式26x -+有意义,化简│x-4│-│7-x │.【解析】-329.设19的整数部分为m ,小数部分为n,求32m n -的值 【解析】31914-30. 化简计算 已知:11881,222x y x y y x x y x y x =-+-+++-+-求代数式的值。

二次根式的运算与应用

二次根式的运算与应用

二次根式的运算与应用二次根式是代数学中的一个重要概念,它在数学和现实生活中都有着广泛的运用。

本文将详细介绍二次根式的运算方法以及它在实际问题中的应用。

一、二次根式的运算方法二次根式是形如√a的一种数学表达式,其中a为非负实数。

在二次根式的运算中,我们常常需要进行加减乘除等操作。

1. 加法和减法运算对于相同根号下的二次根式,可以将它们的系数相加或相减,并保持根号下的数值不变。

例如√5 + √3 = √5 + √3。

对于不同根号下的二次根式,我们无法简单相加减,需要通过合并二次根式的形式进行化简。

例如,√2 + √3 的化简过程如下:√2 + √3 = (√2 + √3) * 1 = (√2 + √3) * (√2 - √3) / (√2 - √3)= (√2)^2 - (√3)^2 / (√2 - √3)= 2 - 3√6 + 3√6 - 3= -1因此,√2 + √3 = -1。

2. 乘法运算二次根式的乘法运算可以通过将根号下的数值相乘,并将根号下的根式进行合并来简化。

例如,√2 * √3 = √6。

另外,当根号下的数值相同,但是系数不同时,也可以进行乘法运算。

例如,2√2 * 3√2 = 6 * 2 = 12。

3. 除法运算二次根式的除法运算可以通过将根号下的数值相除,并将根号下的根式进行合并来简化。

例如,√6 / √2 = √(6/2) = √3。

另外,当根号下的数值相同,但是系数不同时,也可以进行除法运算。

例如,6√2 / 2√2 = 6 / 2 = 3。

二、二次根式的应用1. 几何应用二次根式在几何学中有广泛的应用。

例如,当计算一个正方形的对角线长度时,可以利用二次根式来求解。

设正方形的边长为a,则对角线的长度d可表示为d = √2 * a。

另外,当计算一个圆的周长或面积时,也需要使用二次根式。

例如,一个半径为r的圆的周长C等于2πr,面积A等于πr^2,其中π为圆周率。

2. 物理应用在物理学中,二次根式也有着重要的应用。

提高版5.二次根式性质和运算复习专题(教师版)

提高版5.二次根式性质和运算复习专题(教师版)

课题:二次根式的性质和运算专题个性化教学辅导教案 组长签名:________学生姓名年 级 初二 学 科 数学 上课时间 年 月 日教师姓名课 题二次根式的性质和运算专题教学目标1、理解二次根式的概念,了解被开方数是非负数的理由.2、掌握二次根式的乘除法法则和化简二次根式的常用方法,熟练进行二次根式的乘除运算.3、了解最简二次根式的概念和性质,能运用二次根式的有关性质进行化简.4、理解并掌握同类二次根式的概念和二次根式的加减法法则,会合并同类二次根式,进行简单的二次根式加减运算;5、会利用运算律和运算法则进行二次根式的混合运算.教学过程 教师活动学生活动1.把多项式x 2﹣8x +16分解因式,结果正确的是( ) A .(x ﹣4)2B .(x ﹣8)2C .(x +4)(x ﹣4)D .(x +8)(x ﹣8)【考点】54:因式分解﹣运用公式法. 【解答】解:x 2﹣8x +16=(x ﹣4)2. 故选:A .2.某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?若设第一次买了x 本资料,列方程正确的是( ) A .240x−20﹣120x=4 B .240x+20﹣120x=4 C .120x﹣240x−20=4D .120x﹣240x+20=4【考点】B 6:由实际问题抽象出分式方程.【解答】解:设他上月买了x 本笔记本,则这次买了(x +20)本, 根据题意得:120x﹣240x+20=4.故选D .3.约分:①5ab20a 2b = ,②x 2−9x 2−6x+9= . 【考点】66:约分.【解答】解:①5ab20a 2b = 14a ; ②x 2−9x 2−6x+9 = (x+3)(x−3)(x−3)2=x+3x−3.4.已知x ﹣y =﹣1,xy =3,求x 3y ﹣2x 2y 2+xy 3的值.【考点】55:提公因式法与公式法的综合运用. 【解答】解:原式=xy (x 2﹣2xy +y 2) =xy (x ﹣y )2,把x ﹣y =﹣1,xy =3代入得:原式=3.5.先化简,再求值:x 2+2x+1x 3−x÷(1+1x),其中x =3.【考点】6D :分式的化简求值. 【解答】解:原式=(x+1)2x(x+1)(x−1)•xx+1 =1x−1 当x =3时, 原式=216.解方程:1x−2+3=1−x2−x .【考点】B 3:解分式方程.【解答】解:两边乘x ﹣2得到,1+3(x ﹣2)=x ﹣1, 1+3x ﹣6=x ﹣1, x =2,∵x =2时,x ﹣2=0,∴x =2是分式方程的增根,原方程无解.问题1二次根式的性质1.若√2x −1+√1−2x +1在实数范围内有意义,则x 满足的条件是( ) A .x ≥12 B .x ≤12 C .x =12 D .x ≠12 【考点】72:二次根式有意义的条件. 【解答】解:由题意可知:{2x −1≥01−2x ≥0解得:x =12 ,故选(C )【点评】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.问题2二次根式的运算法则2.已知(4+√7)•a =b ,若b 是整数,则a 的值可能是( ) A .√7 B .4+√7C .8﹣2√7D .2﹣√7【考点】76:分母有理化.【解答】解:因为(4+√7)•a =b ,b 是整数, 可得:a =8﹣2√7, 故选C【点评】此题考查分母有理化问题,关键是根据分母有理化的法则进行解答.3.计算:√8÷√2+(2﹣√2014)0﹣(﹣1)2014+|√2﹣2|+(﹣12)﹣2.【考点】79:二次根式的混合运算;6E :零指数幂;6F :负整数指数幂. 【解答】解:原式=√8÷2+1﹣1+2﹣√2+4 =2+1﹣1+2﹣√2+4 =8﹣√2.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂.问题1 二次根式的性质对应知识点:(1)二次根式的概念;(2)二次根式的性质问题2 二次根式的运算对应知识点: (1)分母有理化;(2)二次根式的混合运算;【基础知识重温】(一)二次根式概念和性质(1)概念:一般地,我们把形如(a ≥0)•的式子叫做二次根式,“”称为二次根号.(2)二次根式的性质① 非负性:a a ()≥0是一个非负数. ②()()a aa 20=≥.③ a a a a a a 200==≥-<⎧⎨⎩||()()(二)二次根式的乘除法运算法则 (1)乘法法则:(a ≥0,b ≥0),即两个二次根式相乘,根指数不变,只把被开方数相乘. (2)除法法则:b a ba =(a≥0,b >0),即两个二次根式相除,根指数不变,把被开方数相除.(3)最简二次根式(1)被开方数不含有分母;(2)被开方数中不含能开得尽方的因数或因式. 满足这两个条件的二次根式叫最简二次根式.(4)同类二次根式的概念几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.(5)二次根式的加减法二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.【精准突破1】二次根式的性质【例题精讲】【例题1-1】要使二次根式√2x +6在实数范围内有意义,则实数x 的取值范围在数轴上表示正确的是( ) A . B . C .D .【考点】72:二次根式有意义的条件;C 4:在数轴上表示不等式的解集. 【解答】解:由题意得,2x +6≥0, 解得,x ≥﹣3, 故选:C .【例题1-2】己知x ,y 为实数,且y =12+√6x −1+√1−6x ,则x •y 的值为( )A .3B .13C .16D .112【考点】72:二次根式有意义的条件. 【解答】解:∵y =12+√6x −1+√1−6x ,∴6x ﹣1=0,解得:x =16,则y =12, 故xy =16×12=112.故选:D .【例题1-3】实数a ,b 在数轴上对应点的位置如图所示,化简|a |+√(a −b)2的结果是( )A .﹣2a +bB .2a ﹣bC .﹣bD .b【考点】73:二次根式的性质与化简;29:实数与数轴. 【解答】解:由图可知:a <0,a ﹣b <0,则|a |+√(a −b)2 =﹣a ﹣(a ﹣b ) =﹣2a +b . 故选:A .【精准突破2】二次根式的运算法则【例题精讲】【例题2-1】下列化简错误的是( ) A .√1625=45B .√1916=134C .√2764=38√3D .﹣√715=﹣65√5【考点】73:二次根式的性质与化简. 【解答】解:A 、√1625=45,故原题计算正确; B 、√1916=√2516=54,故原题计算错误; C 、√2764=3√38,故原题计算正确; D 、﹣√715=﹣√365=﹣65√5,故原题计算正确; 故选:B .【例题2-2】下列二次根式中,与√2之积为有理数的是( ) A .√18 B .√34 C .√12 D .﹣√27【考点】76:分母有理化.【解答】解:A 、√18=3√2,3√2×√2=6,符合题意; B 、原式=√32,√32×√2=√62,不符合题意; C 、原式=2√3,2√3×√2=2√6,不符合题意; D 、原式=﹣3√3,﹣3√3×√2=﹣3√6,不符合题意, 故选A【例题2-3】若最简二次根式√a +23b−1与√4b −a 是同类二次根式,则(a ﹣2b )2017= .【考点】77:同类二次根式;74:最简二次根式.【解答】解:由题意可知:{3b −1=2a +2=4b −a,解得:{a =1b =1,∴(a﹣2b)2017=(﹣1)2017=﹣1,故答案为:﹣1.+√48)÷2√3.【例题2-4】化简:(3√12﹣2√13【考点】79:二次根式的混合运算.+4√3)÷2√3【解答】解:原式=(6√3﹣2√33=28√3÷2√33.=143【巩固一】二次根式的性质1.下列各式中一定是二次根式的是()A.√x+2B.√x C.√x2+2D.√a2b【考点】71:二次根式的定义.【解答】解:(A)当x+2<0时,原式无意义,故A不一定是二次根式;(B)当x<0时,原式无意义,故B不一定是二次根式;(C)∵x2≥0,∴x2+1≥1,故C一定是二次根式;<0时,原式无意义,故D不一定是二次根式,(D)当a2b故选(C)2.若代数式√x+1有意义,则实数x的取值范围是()(x−2)2A.x>1B.x≠2C.x≥1且x≠2D.x≥﹣1且x≠2【考点】72:二次根式有意义的条件.【解答】解:由题意得,x+1≥0且(x﹣2)2≠0,解得x≥﹣1且x≠2.故选D.3.若√(2a+4)2=2a+4,则a的取值范围为()A .a ≥2B .a ≤2C .a ≥﹣2D .a ≤﹣2 【考点】73:二次根式的性质与化简. 【解答】解:∵√(2a +4)2=|2a +4|=2a +4, ∴2a +4≥0, ∴a ≥﹣2 故选(C )4.当1<P <2时,代数式√(1−p)2+(√2−p )2的值为 . 【考点】73:二次根式的性质与化简. 【解答】解:∵1<P <2, ∴1﹣p <0,2﹣p >0,∴√(1−p)2+(√2−p )2=p ﹣1+2﹣p =1, 故答案为:1.【巩固二】二次根式的运算法则1. 计算√24﹣9√23的结果是( ) A .√6 B .﹣√6C .﹣43√6 D .43√6【考点】78:二次根式的加减法.【解答】解:√24﹣9√23=2√6﹣9×√63=2√6﹣3√6=﹣√6.故选:B .2.等式√x +1•√x −1=√x 2−1成立的条件是( )A .x ≥1B .x ≥﹣1C .﹣1≤x ≤1D .x ≥1或x ≥﹣1 【考点】75:二次根式的乘除法.【解答】解:∵√x +1•√x −1=√x 2−1成立, ∴x +1≥0,x ﹣1≥0. 解得:x ≥1. 故选:A .3.下列二次根式,不能与√12合并的是 (填写序号即可).①√48; ②−√125; ③√113; ④√32; ⑤√18.【考点】77:同类二次根式.【解答】解:√12=2√3,①√48=4√3,②﹣√125=﹣5√5;③√113=2√33,④√32,⑤√18=3√2. 不能与√12合并的是﹣√125和√18.故答案为:②⑤.4.计算:(1)3√223×(−18√15)÷12√25. (2)√12+√27+14√48−15√13.(3)(2√5﹣√2)0+|2﹣√5|+(﹣1)2017﹣13×√45.【考点】75:二次根式的乘除法;78:二次根式的加减法.79:二次根式的混合运算;6E :零指数幂.【解答】(1)解:原式=3√83×(﹣18√15)×2√52=﹣3×18×2×√83×15×52 =﹣34√100=﹣34×10 =﹣152.(2)解:原式=2√3+3√3+14×4√3﹣15×√33 =2√3+3√3+√3﹣5√3=√3.(3)解:原式=1+√5﹣2﹣1﹣√5【查漏补缺】1.使代数式1√x+3+√4−3x 有意义的整数x 有( )A .5个B .4个C .3个D .2个 【考点】72:二次根式有意义的条件.【解答】解:由题意,得x +3>0且4﹣3x ≥0,解得﹣3<x ≤43,整数有﹣2,﹣1,0,1,故选:B.2.若3,m,5为三角形三边,化简:√(2−m)2﹣√(m−8)2得()A.﹣10B.﹣2m+6C.﹣2m﹣6D.2m﹣10【考点】73:二次根式的性质与化简;K6:三角形三边关系.【解答】解:由三角形三边关系可知:2<m<8∴2﹣m<0,m﹣8<0∴原式=﹣(2﹣m)+(m﹣8)=﹣2+m+m﹣8=2m﹣10故选(D)【举一反三】1.若最简二次根式√2x+y−53x−10和√x−3y+11是同类二次根式.(1)求x、y的值.(2)求√x2+y2的值.【考点】77:同类二次根式.【解答】解:(1)由题意得,3x﹣10=2,2x+y﹣5=x﹣3y+11,解得x=4,y=3;(2)当x=4,y=3时,√x2+y2=√42+32=5.2.计算:2y √xy5﹙﹣32√x3y﹚÷(13√yx).【考点】75:二次根式的乘除法.(2)2y √xy5﹙﹣32√x3y﹚÷(13√yx)=﹣2y ×32×3√xy5×x3y×xy=﹣9y√x5y5=﹣9x2y√xy.【方法总结】1.二次乘法法则可以推广到多个二次根式相乘的运算: ≥0,≥0,…..≥0).2.在进行二次根式的除法运算时,对于公式中被开方数a 、b 的取值范围应特别注意, a ≥0,b >0,因为b 在分母上,故b 不能为0.3.运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.1.下列式子为最简二次根式的是( )A .√x5 B .√8 C .√3x 2y D .√x 2−9 【考点】74:最简二次根式.【解答】解:A 、被开方数含分母,故A 不符合题意;B 、被开方数含能开得尽方的因数或因式,故B 不符合题意;C 、被开方数含能开得尽方的因数或因式,故C 不符合题意;D 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D 符合题意; 故选:D .2.已知y =√4−x +√x −4+3,则yx 的值为( ) A .43 B .﹣43 C .34 D .﹣34 【考点】72:二次根式有意义的条件.【解答】解:由题意得,4﹣x ≥0,x ﹣4≥0,解得x =4,则y =3,则y x =34,故选:C .3.下列变形正确的是( )A .√(−4)(−9)=√−4×√−9B .√1614=√16×√14=4×12=2 C .√(a +b)2=|a +b | D .√252−242=25﹣24=1【考点】75:二次根式的乘除法;73:二次根式的性质与化简.【解答】解:A 、√(−4)(−9)=√4×√9,故A 选项错误;B 、√1614=√65×√14=√65×12=√652,故B 选项错误;C 、√(a +b)2=|a +b |,故C 选项正确;D 、√252−242=√(25+24)(25−24)=7,故D 选项错误.故选:C .4.实数a ,b 在数轴上的位置如图所示,则化简√(a −1)2﹣√(a −b)2+b 的结果是( )A .1B .b +1C .2aD .1﹣2a【考点】73:二次根式的性质与化简;29:实数与数轴.【解答】解:由数轴可得:a ﹣1<0,a ﹣b <0,则原式=1﹣a +a ﹣b +b =1.故选:A .5.计算:(1)4√12÷(﹣√6)×13√12. (2)√48﹣2×√274+(12)﹣1+(π﹣2017)0.【考点】75:二次根式的乘除法.79:二次根式的混合运算;6E :零指数幂;6F :负整数指数幂.(1)解:原式=﹣2√2÷√6×2√33 =﹣2√3×2√33 =﹣43. (2)解:原式=4√3﹣2×3√32+2+1=√3+3.【第1,2天】当周完成一.选择题1.下列各式中①√3;②√−5; ③√a 2; ④√x −1(x ≥1); ⑤√83; ⑥√x 2+2x +1一定是二次根式的有( )个.A .3B .4C .5D .6 【考点】71:二次根式的定义.【解答】解:①√3符合二次根式的定义,故正确.②√−5无意义,故错误.③√a 2中的a 2≥0,符合二次根式的定义,故正确.④√x −1(x ≥1)中的x ﹣1≥0,符合二次根式的定义,故正确.⑤√83是开3次方,故错误.⑥√x 2+2x +1中的x 2+2x +1=(x +1)2≥0,符合二次根式的定义,故正确. 故选:B .2.实数a 、b 在数轴上的对应点如图,化简√a 2﹣√b 2+√(a −b)2的结果是( )A .2a ﹣2bB .0C .﹣2aD .2b【考点】73:二次根式的性质与化简;29:实数与数轴.【解答】解:由数轴可得:∵﹣1<a <0,0<b <1,∴a ﹣b <0,∴√a 2﹣√b 2+√(a −b)2=﹣a ﹣b ﹣(a ﹣b )=﹣2a .故选:C .3.计算2√12×√34÷√3的结果是( ) A .√32 B .√34 C .√3 D .2√3【考点】75:二次根式的乘除法.【解答】解:原式=12√36÷√3 =3÷√3 =√3 故选(C )4.下列各式中计算正确的是( )A .3√2﹣√2=2√2B .2+√2=2√2C .√12−√102=√6−√5 D .√2+√3=√5 【考点】78:二次根式的加减法.【解答】解:3√2﹣√2=2√2,A 正确;2与√2不能合并,B 错误;√12−√102=2√3−√102=√3−√102,C 错误;√2与√3不是同类二次根式,不能合并,D 错误,故选:A .5.若y =√x −12+√12−x ﹣6,则xy = .【考点】72:二次根式有意义的条件.【解答】解:由题意可知:{x −12≥012−x ≥0,解得:x =12,∴y=0+0﹣6=﹣6,∴xy=﹣3,故答案为:﹣36.计算:(2√3﹣√6)2+(√54+2√6)÷√3.【考点】79:二次根式的混合运算.【解答】解:原式=12﹣12√2+6+√54÷3+2√6÷3=18﹣12√2+3√2+2√2=18﹣7√2.7.一个直角三角形的两边m、n恰好满足等式m﹣√2n−12+√12−2n=8,求第三条边上的高的长度.【考点】7B:二次根式的应用.【解答】解:∵m﹣√2n−12+√12−2n=8,∴2n﹣12=0,∴n=6,m=8,则①当m、n为直角三角形时,第三条边长为√62+82=10,所以第三条边上的高的长度为:6×8=4.8;10②当m为斜边、n为直角边时,所以第三条边上的高的长度为:6.答:第三条边上的高的长度为4.8或6.【第7天】(同时放在下一讲的复习检查)1.式子√a+1有意义,则实数a的取值范围是()a−2A.a≥﹣1B.a≠2C.a≥﹣1且a≠2D.a>2【考点】72:二次根式有意义的条件.【解答】解:式子√a+1有意义,a−2则a+1≥0,且a﹣2≠0,解得:a≥﹣1且a≠2.故选:C.2.计算:(5√48﹣6√27+4√15)÷√3﹣4√5.【考点】79:二次根式的混合运算.【解答】解:原式=5√48÷3﹣6√27÷3+4√15÷3﹣4√5=20﹣18+4√5﹣4√5=2.【第15天】(同时放在下下讲的复习检查)1.计算3√45÷√15×23√223.【考点】75:二次根式的乘除法.【解答】解:原式=3×3√5÷√55×23×√83 =9√5÷√55×23×2√63=45×4√69 =20√6.2.计算:√48﹣6√13+(√3+2)(√3﹣2) 【考点】79:二次根式的混合运算.【解答】解:原式=4√3﹣2√3+3﹣4 =2√3﹣1.【第28天】(同时放在下下下一讲的复习检查)1.下列各等式成立的是( )A .4√5×2√5=8√5B .5√3×4√2=20√5C .4√3×3√2=7√5D .5√3×4√2=20√6【考点】75:二次根式的乘除法.【解答】解:A 、4√5×2√5=8×5=40,故选项错误;B 、5√3×4√2=20√3×2=20√6,故选项错误;C 、4√3×3√2=12√3×2=12√6,故选项错误;D 、5√3×4√2=20√3×2=20√6,故选项正确.故选D .2.计算:(2√32﹣√12)×(12√8+√23)﹣(√3﹣2)2.【考点】79:二次根式的混合运算.【解答】解:原式=(√6﹣√22)(√2+√63)﹣(3﹣4√3+4)=2√3+2﹣1﹣√3﹣7+4√33﹣6.=17√33教学反思。

二次根式计算专题——30题(教师版含答案)

二次根式计算专题——30题(教师版含答案)

二次根式计算专题——30题(教师版含答案)二次根式计算专题——30题(教师版含答案)在代数学中,二次根式是指形如√a的数,其中a是非负实数。

二次根式的计算是代数学的重要组成部分,对于学生来说也是一项基本技能。

本文将介绍30道关于二次根式的计算题,并附上教师版含答案,供教师参考。

题目1: 计算√9的值。

解答: 由于9是一个完全平方数,所以√9=3。

题目2: 计算√25的值。

解答: 由于25是一个完全平方数,所以√25=5。

题目3: 计算√2的值。

解答: √2是一个无理数,无法精确计算,可以使用近似值1.414进行计算。

题目4: 计算√32的值。

解答: 首先将32分解为16×2,再将16分解为4×4,可以得到√32=√(4×4×2)=4√2。

题目5: 计算√(3×5)的值。

解答: √(3×5)=√15。

题目6: 计算√(8×12)的值。

解答: 首先将8和12分别分解为2×2×2和2×2×3,可以得到√(8×12)=√(2×2×2×2×2×3)=4√6。

题目7: 计算√(a^2×b^2)的值。

解答: √(a^2×b^2)=√(a^2)×√(b^2)=|a|×|b|。

题目8: 计算√(16÷4)的值。

解答: 首先计算16÷4=4,然后√4=2,所以√(16÷4)=2。

题目9: 计算√(x^2÷y^2)的值。

解答: √(x^2÷y^2)=√(x^2)÷√(y^2)=|x|÷|y|。

题目10: 计算√(4^2÷2^2)的值。

解答: 首先计算4^2=16和2^2=4,然后16÷4=4,所以√(4^2÷2^2)=√4=2。

八年级数学下册-第16章 二次根式(教师版)

八年级数学下册-第16章 二次根式(教师版)

2023-2024学年人教版数学八年级下册章节知识讲练1.理解二次根式的意义。

2.掌握二次根式的几个运算性质。

重点:掌握二次根式的运算性质难点:掌握运算性质的推导过程知识点01:二次根式的定义【高频考点精讲】形如)0(≥a a 的代数式叫二次根式(1)式子中含有二次根号“”;(2)a 可以表示数也可以表示代数式(3)二次根式)0(≥a a 表示非负数a 的算术平方根,0≥a ,即二次根式的两个非负性知识点02:二次根式的主要性质【高频考点精讲】(1)())0(2≥=a a a(2)⎪⎩⎪⎨⎧<-=>==)0()0(0)0(2a a a a a a a (3))0,0(≥≥∙=b a b a ab (4))0,0(≥>=b a ab a b 二次根式的性质是根式化简的依据。

知识点03:最简二次根式【高频考点精讲】被开方数中不含分母,并且被开方数中不含开的尽方的因数或因式,像这样的二次根式成为最简二次根式。

最简二次根式的条件:①根号内不含有开的尽方的因数或因式②根号内不含有分母③分母不含有根号检测时间:120分钟试题满分:100分难度系数:0.53一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023秋•崂山区期末)下列计算正确的是()A.﹣=B.=4C.()2=2D.=﹣2解:A 、,故A 不符合题意;B 、,故B 不符合题意;C、,故C 符合题意;D、,故D 不符合题意;故选:C .2.(2分)(2023秋•梅县区期末)下列计算正确的是()A.B.C.D.解:不能合并,故选项A 错误,不符合题意;,故选项B 错误,不符合题意;÷3==,故选项C 错误,不符合题意;,故选项D正确,符合题意;故选:D.3.(2分)(2023秋•鄞州区校级期末)若某三角形的三边长分别为2,5,n,则化简+|8﹣n|的结果为()A.5B.2n﹣10C.2n﹣6D.10解:∵三角形的三边长分别为2,5,n,∴5﹣2<n<5+2,∴3<n<7,∴+|8﹣n|=|3﹣n|+|8﹣n|=n﹣3+8﹣n=5,故选:A.4.(2分)(2023秋•平阴县期末)下列二次根式中,最简二次根式的是()A.B.C.D.解:A.=3,不符合题意;B.=2,不符合题意;C.是最简二次根式,符合题意;D.=,不符合题意;故选:C.5.(2分)(2023秋•射洪市期末)已知实数a在数轴上的位置如图所示,则化简:的结果为()A.2B.﹣2C.2a﹣6D.﹣2a+6解:根据实数a在数轴上的位置得知:2<a<4,即:a﹣2>0,a﹣4<0,故原式=a﹣2+4﹣a=2.故选:A.6.(2分)(2023秋•长沙期末)下列计算正确的是()A.B.C.D.解:A.与不能合并,所以A选项不符合题意;B.6﹣=5,所以B选项不符合题意;C.×==,所以C选项符合题意;D.=|﹣2|=2,所以D选项不符合题意.故选:C.7.(2分)(2023春•铁西区期中)若与最简二次根式能合并成一项,则t的值为()A.6.5B.3C.2D.4解:=2,而与最简二次根式能合并成一项,所以2t﹣1=3,解得t=2,故选:C.8.(2分)(2023春•沂南县期中)下列运算中,结果正确的是()A.B.2×=3C.÷=D.解:A.=2,所以A选项不符合题意;B.2×=2×3=6,所以B选项不符合题意;C.÷==,所以C选项符合题意;D.3﹣=2,所以D选项不符合题意;故选:C.9.(2分)(2023春•涵江区期中)已知n是正整数,是整数,则n的最小值是()A.0B.2C.3D.7解:∵,且是整数,∴7n是个完全平方数,(完全平方数是能表示成一个整式的平方的数)∴n的最小值是7.故选:D.10.(2分)(2023春•雄县期中)已知,,求a2﹣b2的值.嘉琪同学的解题步骤如下:a2﹣b2=(a+b)(a﹣b)…①=…②=…③=0…④其中,首先出错的步骤是()A.①B.②C.③D.④解:a2﹣b2=(a+b)(a﹣b)===.首先出错的步骤是②.故选:B.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2023秋•成华区期末)计算:=1.解:=2024﹣2023=1,故答案为:1.12.(2分)(2023秋•绥化期末)若,那么x+y=2.解:∵+y2=0,∴2﹣x=0,y=0,∴x=2,y=0;故x+y=2.故答案为:2.13.(2分)(2022秋•思明区校级期末)已知:最简二次根式与的被开方数相同,则a+b=8.解:由题意,得:解得:,∴a +b =8.14.(2分)(2023•安徽二模)式子在实数范围内有意义,则x 的取值范围是x ≤3.解:由题意得,3﹣x ≥0,解得,x ≤3,故答案为:x ≤3.15.(2分)(2023•洪泽区二模)若式子在实数范围内有意义,则x 的取值范围是x ≥﹣3.解:根据题意得:x +3≥0,解得x ≥﹣3.故答案为:x ≥﹣3.16.(2分)(2023秋•简阳市期末)下列二次根式,,,,中,是最简二次根式的为,.解:=10,=2,=,故这些二次根式中是最简二次根式的为:,.故答案为:,.17.(2分)(2023秋•覃塘区期末)观察下列等式:第1个等式:a 1==﹣1,第2个等式:a 2==,第3个等式:a 3==2﹣,第4个等式:a 4==﹣2,…按上述规律,计算a 1+a 2+a 3+…+a n =﹣1.解:第1个等式:a 1==﹣1,第2个等式:a 2==,第3个等式:a 3==2﹣,第4个等式:a 4==﹣2,…a 1+a 2+a 3+…+a n=﹣1+﹣+…+﹣=﹣1故答案为:﹣1.18.(2分)(2023•南岗区校级模拟)计算的结果为.解:原式=3﹣2=.故答案为:.19.(2分)(2022秋•临猗县期末)已知y =﹣﹣1,求x +y =2.解:由题意得:,解得:x =3,则y =﹣1,x +y =3﹣1=2,故答案为:2.20.(2分)(2023春•璧山区校级期中)已知实数a ,b ,c 在数轴上的对应点,如图所示,化简=﹣b.解:∵a <0,c ﹣a >0,b ﹣c <0,∴原式=|a |﹣|c ﹣a |+|b ﹣c |=﹣a ﹣c +a +c ﹣b =﹣b .故答案为:﹣b .三.解答题(共8小题,满分60分)21.(6分)(2023•沙坪坝区校级开学)解不等式组或化简计算.(1);(2).解:(1),解①得:x>1,解②得:x≤2,所以不等式组的解集为:1<x≤2;(2)原式==﹣122.(6分)(2023秋•凌海市期中)高空抛物极其危险,是我们必须杜绝的行为.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=(不考虑风速的影响)(1)从50m高空抛物到落地所需时间t1是多少s,从100m高空抛物到落地所需时间t2是多少s;(2)t2是t1的多少倍?(3)经过1.5s,高空抛物下落的高度是多少?解:(1)当h=50时,t1==(秒);当h=100时,t2===2(秒);(2)∵==,∴t2是t1的倍.(3)当t=1.5时,1.5=,解得h=11.25,∴下落的高度是11.25米.23.(8分)(2022秋•永兴县期末)如图,正方形ABCD的面积为8,正方形ECFG的面积为32.(1)求正方形ABCD 和正方形ECFG 的边长;(2)求阴影部分的面积.解:(1)正方形ABCD 的边长为:BC =,正方形ECFG 的边长为:CF =;(2)∵BF =BC +CF ,BC =2,CF =4,∴BF =6;∴S △BFG =GF •BF =24;又S △ABD =AB •AD =4,∴S 阴影=S 正方形ABCD +S 正方形ECFG ﹣S △BFG ﹣S △ABD =8+32﹣24﹣4,=12.24.(8分)(2023秋•岳阳楼区期末)阅读下面解题过程.例:化简.解:.请回答下列问题.(1)归纳:请直接写出下列各式的结果:①=﹣;②=+.(2)应用:化简.(3)拓展:=.(用含n 的式子表示,n 为正整数)解:(1)①==﹣;②==+;故答案为:①;②+;(2)=+++...+=﹣+﹣+﹣+...+﹣=﹣;(3)=+++...+=+++...+=(﹣1+﹣+﹣+...+﹣)=,故答案为:.25.(8分)(2023春•黔东南州期中)先阅读,后解答:,;像上述解题过程中,与、与相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化.(1)的有理化因式是;的有理化因式是.(2)将下列式子进行分母有理化:①=;②=;③=2﹣;④=﹣1.(3)类比(2)中④的计算结果,计算:.解:(1)的有理化因式是,的有理化因式是.故答案为:,.(2)①;②;③;②.故答案为:、、、.(3)===.26.(8分)(2023春•亭湖区校级期末)阅读材料已知下面一列等式:;;;(1)请用含n的等式表示你发现的规律;(2)利用等式计算:;(3)计算:.解:(1)根据题意,由规律可得:它的一般性等式为,故答案为:;(2)====;(3)===.27.(8分)(2022秋•市中区期末)观察下列各式:=1+﹣=1=1+﹣=1=1+﹣=1请你根据上面三个等式提供的信息,猜想:(1)=1(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式:=1+;(3)利用上述规律计算:(仿照上式写出过程)解:(1)=1=1;故答案为:1;(2)=1+=1+;故答案为:=1+;(3).28.(8分)(2022春•定州市期中)阅读下列解题过程:===﹣=﹣2;===2+2;请解答下列问题:(1)观察上面解题过程,计算;(2)请直接写出的结果.(n≥1)(3)利用上面的解法,请化简:+++…++.解:(1)原式==+;(2)归纳总结得:=﹣(n≥1);(3)原式=﹣1+﹣+﹣+…+﹣+﹣=10﹣1=9。

《二次根式》word教案 (公开课)2022年北师大版 (5)

《二次根式》word教案 (公开课)2022年北师大版 (5)

2.7二次根式〔第3课时〕教学设计一、学生情况分析前面学习了实数,实数的运算法那么,最简二次根式及二次根式的化简,已能进行实数的四那么运算.但熟练程度不高,同时对根号内含字母的二次根式的化简比拟生疏..为今后的数学学习扫清了计算方面的障碍.二、教学任务分析二次根式〔第3课时〕是义务教育课程标准北师大版实验教科书八年级上册第二章?实数?第7节内容.本节内容分为3个课时,本课时是第3课时.继续稳固二次根式的概念,熟练二次根式的化简,进而完善实数的运算.二次根式化简掌握以后,初中阶段实数的运算根本完成,本节课就是进一步完善二次根式的运算。

假设能够在含字母的二次根式的化简方面再深化一下,那么在今后的学习中,实数的计算问题根本解决了.经历本节课的学习,学生对实数的运算,就有了较全面的了解。

因此本节课的目标定为:1.进一步理解二次根式的概念,进一步熟练二次根式的化简。

2. 了解根号内含有字母的二次根式的化简3.利用二次根式的化简解决简单的数学问题.通过独立思考,能选择合理的方法解决问题.4.在运算过程中稳固知识,通过与人交流总结方法.根号内含字母的二次根式的化简对学生来说是一个难点.三、教学过程设计本节课设计了六个教学环节:第一环节:复习引入;第二环节:知识稳固;第三环节:问题解决;第四环节:知识提升;第五环节:课时小结;第六环节:作业布置.第一环节:复习引入内容:〔1〕最简二次根式的概念;〔2〕二次根式化简过程中,你有哪些体会?〔3〕上节课课后作业:假设414.12≈,732.13≈,449.26≈,求23.你是怎样解决的? 意图:借助复习,在稳固旧知的同时,导入新课. 第二环节:知识稳固例4 计算:〔1〕3223-;〔2〕81818+-;〔3〕3)6124(÷-. 解:〔1〕3223-=33322223⨯⨯-⨯⨯=631621-=6)3121(-=661; 〔2〕81818+-=162222322+⨯-⨯=2412223+-=245; 〔3〕3) 6124(÷-= 361324÷-÷= 361324÷-÷ = 3618⨯-= 66224⨯-⨯= 26122-= 2611. 说明:可以放手让学生独立完成,然后通过交流,发现问题,给出一个统一的意见.收集第〔3〕小题有多少种解决方法.让学生说说想法.以上过程每位同学都是怎样化简的,方法好不好,能做到快而准确吗?化简:〔1〕10152-;〔2〕31312+-;〔3〕8)2118(⨯-.第三环节:问题解决如以下图,图中小正方形的边长为1,试求图中梯形的面积,你有哪些方法,与同伴交流.让学生充分发表意见.〔1〕直接求法.过点D 作AB 边上的高DE ,可发现边AB ,DC 及DE都是某一个小直角三角形的斜边.根据勾股定理可求得AB =25, CD =2,DE =23,面积梯形AB CD 的面积是23)225(21⨯+=18. 〔2〕间接求法.将梯形ABCD 补成一个5×7长方形,用长方形的面积减去3个小三角形的面积,得梯形ABCD 的面积是11212421552175⨯⨯-⨯⨯-⨯⨯-⨯=18. 第四环节:知识提升问题:2a 〔0>a 〕等于多少?根据算术平方根的定义,可知a a =2〔0>a 〕.例5 化简:〔1〕3325b a 〔0>a ,0>b 〕;〔2〕3)(y x +〔0≥+y x 〕;〔3〕a b b a 〔0>a ,0>b 〕. 解:〔1〕3325b a =ab b a ⋅2225=ab b a ⋅2225=ab ab 5;〔2〕3)(y x +=)()(2y x y x +⋅+=y x y x ++)(;〔3〕a b b a =2a ab b a =ab a b a 1⨯=ab b 1. 0>a ,0>b 时化简:〔1〕)(a b b a ab +;〔2〕324b a ;〔3〕ab b a⨯-)1(; 〔4〕b a a b ab a 155102÷⋅. 解:〔1〕)(a b b a ab +=a b ab b a ab ⨯+⨯=ab ab b a ab ⨯+⨯ =22b a +=b a +;〔2〕324b a =b b a ⋅2222=b b a ⋅2222=b ab 2;〔3〕ab b a⨯-)1(=ab b ab a ⨯-⨯1=ab b ab a ⨯-⨯1=a b b ⨯-2 =a b b -;〔4〕b a a b ab a 155102÷⋅=ba ab ab a ÷⋅÷⨯)15510(2=a b a 32310⋅ =222310a ba b a ⋅⋅=222310a ba b a ⋅⋅=222310aab b a ⋅⋅=ab a b a ⋅⋅2310 =ab ab 310. 2. 求代数式ab b a ⨯-)1(的值,其中3=a ,2=b . 解:由题知0>a ,0>b .ab b a ⨯-)1(=ab b ab a ⨯-⨯1=ab b ab a⨯-⨯1=2ab b - =a b b -.当3=a ,2=b 时,a b b -=322-.第五环节:课堂小结〔1〕二次根式的化简:二次根式的化简一定要化成最简二次根式.〔2〕利用式子a a =2〔0>a 〕可将根号内含字母的二次根式化简,结果也要化成最简二次根式.第六环节:课后作业习题 2.11 1, 3补充作业:化简:〔1〕)263)(232(+-; 〔2〕)483814122(23+-; 〔3〕)0,0()2(≥≥⋅+-y x xy yx x y xy ; 〔4〕)0,0()(33≥≥⋅-+b a ab ab ab b a ;〔5〕)0(4322763232≥+-a a ab a b ab a . 答案:〔1〕64216-;〔2〕6648-;〔3〕x y xy +-2;〔4〕ab ab ab b a -+22;〔5〕a ab 325. 五、教学反思[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一期课题:二次根式的综合运用一、知识解析1、二次根式的主要性质:(1)、)0(0≥≥a a ; (2)、()()02≥=a a a ;(3)、()()⎩⎨⎧<-≥==002a a a a a a ;(4)、积的算术平方根的性质:)0,0(≥≥⋅=b a b a ab ;(5)、商的算术平方根的性质:()0,0>≥=b a bab a ; (6)、若0≥>b a ,则b a >。

例1、x 是怎样的实数时,下列各式在实数范围内有意义?(1)x x 232--+; (2)11+--x x ; (3) 242-+x x 。

思路点拨:本题考查二次根式的意义.解:(1) 要使x x 232--+在实数范围内有意义,则必有⎩⎨⎧≥-≥+02302x x ,∴232≤≤-x ∴当232≤≤-x 时,x x 232--+在实数范围内有意义;(2) 要使11+--x x 在实数范围内有意义,则必有⎩⎨⎧≠+≥-010x x , ∴10-≠≤x x 且∴当10-≠≤x x 且时,11+--x x 在实数范围内有意义; (3) 要使242-+x x 在实数范围内有意义,则必有⎩⎨⎧≠-≥+02042x x ,∴22≠->x x 且∴当22≠->x x 且时,242-+x x 在实数范围内有意义.小结:这道题目要求的是二次根式有意义时,未知数的取值范围。

假如未知数是在二次根号中,则需要利用算术平方根的非负性进行说明,若刚好未知数存在于分式的分母部分,则需要使分母不等于0,例如(2)、(3)中的情况讨论。

例2、根据下列条件,求字母x 的取值范围:(1)x x x -=+-1122; (2)()()13222=-+-x x 。

思路点拨:二次根式重要性质()()⎩⎨⎧<-≥==002a a a a a a 的运用。

解:(1)()x x x x x -=-=-=+-1111222,01≤-∴x ,∴1≤x 。

(2)()()1323222=-+-=-+-x x x x ,⎩⎨⎧≤-≥-0302x x ,∴32≤≤x小结:解答这两道题目,要求理解二次根式有意义的条件,并且要理解绝对值符号的去除方法。

例3、当x =1-2时,求2222ax x a x x+-++222222ax x x a x x +-+-+221ax +的值.提示:注意:x 2+a 2=222)(a x +,∴ x 2+a 2-x 22a x +=22a x +(22a x +-x ),x 2-x 22a x +=-x (22a x +-x ).解:原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+-=)()(22222222222222x a x a x x x a x x a x a x x x -++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++=x1. 当x =1-2时, 原式=211-=-1-2.【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222a x xa x +--+-)11(22x x a x --++221ax +=x1.2、二次根式的运算(1)二次根式的乘除运算Ⅰ 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号。

Ⅱ 注意知道每一步运算的算理; Ⅲ 乘法公式的推广:(要注意括号内的限制条件)(2)、二次根式的加减运算(注意最简二次根式的理解)先化为最简二次根式,再类比整式加减运算,明确二次根式加减运算的实质; (3)、二次根式的混合运算Ⅰ、对二次根式的混合运算首先要明确运算的顺序,即先乘方、开方,再乘除,最后算加减,如有括号,应先算括号里面的;Ⅱ、 二次根式的混合运算与整式、分式的混合运算有很多相似之处,整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。

例4、计算:(1)、x x xx 31246÷⎪⎪⎭⎫ ⎝⎛-; (2)、a ab a b ab a 3132763532+- (b≥0) 思路点拨:(1)计算时首先把各个二次根式化为最简二次根式,再用整式的运算法则运算;(2)如果可以约分化简或者乘方化为有理数,那么可以先运算再化简;(3)除法不能直接约分化简的,应将除法转化为乘法; (4)适当可以借用乘法公式化简运算过程。

解:(1)原式=xx x x 311246⨯⎪⎪⎭⎫ ⎝⎛-(2) )∵成立且a b 31,0≥, ∴0≥a,∴ 原式a ab a a b a ab 331333635⋅+⋅-=a ab aab ab ab 32113215=⎪⎭⎫⎝⎛+⋅=小结:计算过程中,如果二次根式可以化为最简二次根式,那么必须先化简,这样可以让计算根简便;化简二次根式的时候必须注意准确性;二次根式的混合运算要注意运算顺序,运算法则的使用及注意结果要化成最简形式。

例5、已知a 、b 、c 为△ABC 的三边长,化简()()()()2222b ac c b a c b a c b a --+--+-++++。

思路点拨:利用三角形任意两边之和大于第三边和a a =2进行化简。

解:∵a 、b 、c 为△ABC 的三边长,∴原式b a c c b a c b a c b a --+--+-++++=小结:这道题目涉及到实际运用,那么,解答这道题目,必须先掌握好三角形三边大小关系和如何去掉绝对值符号的方法。

三角形两边和大于第三边、两边差小于第三边,这个定理可以确定原式中绝对值号里面数的符号。

去掉绝对值符号,还要理解,如果绝对值符号里面的数据为非负数,则绝对值符号可以直接去掉;若绝对值符号里面的数据为负数,则去掉绝对值号后,必须化为相反数。

例6、已知01064422=+--+y x y x ,求⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫⎝⎛+x y x x x y x y x x 51932232的值。

思路点拨:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即21=x ,y=3.其次,根据二次根式的加减运算,先把各项化成最简二次根式,•再合并同类二次根式,最后代入求值.解:4x2+y2-4x-6y+10=0()()3,21312096144010644222222==∴=-+-∴=+-++-=+--+y x y x y y x x y x y xx y xx x y x y x x 51932232+-+=∴原式xyx x xy x x xy x x 652+=+-+=当x=21,y=3时,原式63422362121+=+⨯= 例7、已知:如图,每个小方格的边长都为1,则点C 到线段AB 所在直线的距离等于多少?解:连接AC 、BC ,AB 的长为103122=+,设AB 边上的高为h ,则41021=⋅h ,1054108==∴h 。

即点C 到线段AB 所在直线的距离等于1054。

总结升华:对于此类问题,要注意勾股定理的应用.注意结合图形发现解决问题的办法,即利用数形结合的思想.二、课堂练习1、若x ,y 为实数,且y =x 41-+14-x +21,求x y y x ++2-x y y x +-2的值。

2、8、已知m 22212m m +-3、化简()2232144--+-x x x 得( )A.2B.-4x-4C.-2D.4x-4 4、计算()128122----5、m 、n ,使22m n a +=且mn =a ±将变成222m n mn +±,即变成2()m n ±开方,从而使得化简。

例如,()()()22223322236223625+=++=++=±=请仿照上例解下列问题:(1 (26、已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值. 提示:先将已知条件化简,再将分式化简最后将已知条件代入求值.【解】∵ x =2323-+=2)23(+=5+26,y =2323+-=2)23(-=5-26.∴ x +y =10,x -y =46,xy =52-(26)2=1.32234232yx y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +- =10164⨯=652. 【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷.。

相关文档
最新文档