旋流器设计计算[1]
油水分离水力旋流器优化设计与仿真

2020年第20卷第6期环境保护与治理㊀㊀㊀㊀油水分离水力旋流器优化设计与仿真屈丹龙1ꎬ李㊀毅2(1.中国石化油田事业部ꎬ北京㊀1007282.山东省油田采出水处理及环境污染治理重点实验室ꎬ中国石化石油工程设计有限公司ꎬ山东东营㊀257026)㊀㊀摘㊀要:针对埕岛油田某海上平台采用水力旋流器油水分离效果较差的问题ꎬ设计优化了旋流管结构ꎬ大锥角由原来的25ʎ调整为15ʎꎻ入口形式由单切向入口调整为阿基米德螺旋线双入口ꎬ通过FLUENT软件进行了仿真模拟ꎬ分析了优化过程中旋流管内部流场的速度㊁压力㊁轨迹线等变化情况ꎬ为旋流管入口结构设计及锥角的选取提供了依据ꎮ关键词:海上采油平台ꎻ水力旋流器ꎻ阿基米德螺旋线ꎻ油水分离ꎻ仿真模拟DOI:10.3969/j.issn.1672 ̄7932.2020.06.0070㊀前言水力旋流器是一种高效的油水分离设备ꎬ在油田采出水处理领域尤其在海上采油平台得到了广泛应用ꎬ埕岛油田某海上平台采用水力旋流器对三相分离器分出采出水进行油水分离ꎬ除油率在40%~50%之间ꎮ为了提高水力旋流器除油率ꎬ本文进行了旋流管优化设计与仿真研究ꎮ影响旋流管油水分离效率的因素主要分为外部工况因素和内部旋流管结构因素ꎬ其中外部工况因素主要有油滴粒径㊁温度㊁油水密度差㊁黏度等[1 ̄3]ꎬ内部结构因素主要为旋流管内部结构尺寸㊁锥角㊁入口形式等[4 ̄6]ꎮ埕岛油田某海上平台水力旋流器内旋流管为4段式结构ꎬ根据功能不同分别为旋流腔㊁大锥段㊁小锥段和平尾段(见图1)ꎮ油水混合液在压力作用下自进水口高速切向进入旋流腔ꎬ在旋流腔内形成高速旋转的流体ꎬ入口形式是影响旋流管的流场分布及压力损失的重要因素[7]ꎮ锥角是影响旋流管内流场分布㊁动量矩及分离效率的重要因素[8ꎬ9]ꎮ图1㊀旋流管结构示意㊀㊀本文在对入口形式初步优化的基础上ꎬ继续对锥角和入口形式进行优化ꎬ并通过FLUENT软件对该平台的旋流管内部结构进行了优化设计与仿真ꎮ1㊀基础资料1.1㊀水质资料埕岛油田某海上平台三相分离器分出采出水温度:55ħꎬ油品密度:0 919g/cm3ꎬ水中含油量:200~400mg/Lꎬ悬浮固体含量:35mg/Lꎮ1.2㊀旋流管尺寸初始旋流管各部分内径㊁长度尺寸见表1ꎬ另外ꎬ大锥角25ʎꎬ小锥角2ʎꎮ2㊀CFD模型建立2.1㊀边界条件(表2)表1㊀初始旋流管结构尺寸mm表2㊀边界条件参数2.2㊀多相流模型选择 Euler ̄Mixture 模型计算ꎮ3㊀仿真结果与分析3.1㊀初始旋流管仿真与分析首先对初始旋流管进行建模及流态模拟计算ꎮ根据旋流管内径检测结果建立旋流管三维模型ꎬ对模型进行了网格划分ꎬ网格数量为50万ꎮ3.1.1㊀旋流管内流场速度矢量速度矢量指标可以用来指示流场内流体的流动方向以及速度大小ꎬ能够直观地判断流态的变化情况ꎬ由图2可以看出ꎬ在大锥段中部截面处ꎬ局部速度矢量方向明显出现不规则偏流ꎬ表明局部流态已发生变化ꎮ这可能是由于在缩颈过程中ꎬ轴向方向上局部产生了不均匀的回压ꎬ造成局部流态的紊乱ꎮ3.1.2㊀旋流管内流场静压力分布进水口横截面静压分布情况见图3ꎬ静压涡核中心与速度矢量中心同样偏向于管体几何中心的右侧ꎬ分析可能是由流场中局部压力不均匀所导致ꎮ3.1.3㊀旋流管内流体轨迹线追踪流体轨迹线指标能够直观地显示出旋流管内流体质子的运动轨迹情况ꎮ如图4所示ꎬ整个截面流场呈现出明显的旋流状态ꎬ但旋涡中心点偏离了旋流管的几何中心ꎮ图2㊀初始尺寸旋流管大锥段截面速度矢量图3㊀初始尺寸旋流管进水口截面静压力分布图4㊀初始尺寸旋流管进水口截面流体轨迹分布3.2㊀大锥角优化仿真结果及分析设计模型将旋流管旋流腔和大锥段长度延长ꎬ锥角缩小至15ʎꎬ并通过模拟分析考察调整尺寸后旋流管的运行工况ꎮ2020年第20卷第6期环境保护与治理㊀㊀㊀㊀3.2.1㊀旋流管内流场速度矢量由图5可以看出ꎬ调整锥角后ꎬ局部流态紊乱的现象得到明显改善ꎬ在大锥段中部截面处ꎬ流场仍处于明显的旋流状态ꎬ并没有发生明显的偏流现象ꎮ图5㊀调整锥角后旋流管大锥段截面速度矢量3.2.2㊀旋流管内流场静压力分布由图6可以看出ꎬ旋流管内压力分布基本均匀ꎬ静压涡核中心与旋流管体几何中心基本保持一致ꎮ图6㊀调整锥角后旋流管进水口截面静压力分布3.2.3㊀旋流管内流场轨迹线追踪由图7可以看出ꎬ调整锥角后ꎬ整个截面流场呈现出明显的旋流状态ꎬ而且旋涡中心点与旋流管的几何中心轴线基本保持一致ꎮ3.3㊀入口结构优化仿真结果与分析在旋流管外径相同的情况下ꎬ阿基米德螺线形入口导流能力强ꎬ可使混合液获得更长的流道ꎬ在旋流腔内形成稳定㊁有序的旋流流场ꎬ降低液滴剪切破碎的可能性[4]ꎮ前期将旋流管设计为阿基米德螺线形双入口获得了良好的模拟效果[10]ꎬ本次同样设计为阿基米德螺线形双入口ꎬ考察入口形式和锥角的叠加效果ꎮ图7㊀调整锥角后旋流管进水口截面流体轨迹分布3.3.1㊀入口结构优化速度矢量分布由图8可以看出ꎬ经大锥角和入口结构优化后ꎬ旋流管内呈明显的旋流速度分布ꎬ流态较理想ꎮ图8㊀旋流器中间截面的速度分布矢量3.3.2㊀入口结构优化压力分布由旋流管顶部横截面压力云(图9)可看出ꎬ旋流管内压力自外壁向中心轴线呈逐渐降低的环状梯度分布ꎬ旋流管内压力随着流场流线递减ꎬ压力分布合理ꎮ3.3.3㊀入口结构优化油相浓度分布旋流管横截面油相浓度分布如图10显示ꎬ油相浓度分布与压力梯度分布具有一定的相关性ꎬ旋流管内油相浓度自中心向外壁逐渐降低ꎬ靠近管壁处油相浓度较低ꎬ靠近中心轴线油相浓度最高ꎮ屈丹龙ꎬ等.油水分离水力旋流器优化设计与仿真图9㊀中间截面的压力分布云图图10㊀旋流管内油相浓度分布㊀㊀在获得了油相浓度分布差异后ꎬ通过设置在旋流管顶部中心的出油管排出浓度较高的油相混合液ꎬ从而得到良好的油水分离效果ꎮ4㊀结论a)埕岛油田某海上平台水力旋流器旋流管内压力分布不均㊁流场紊乱㊁离心力不强ꎬ造成水力旋流器除油效果不理想ꎮb)旋流管优化设计后将大锥角由原来的25ʎ调整为15ʎꎬ入口形式由单切向入口调整为阿基米德螺旋线双入口ꎬ旋流管内部流场㊁速度㊁压力更为合理ꎬ离心力强㊁稳定性好㊁涡流区域少ꎬ油水分离效果得到提升ꎮ5㊀参考文献[1]㊀WolbertDꎬMaBFꎬAurelleYꎬetal.Efficiencyestima ̄tionofliquid ̄liquidhydrocyclonesusingtrajectoryanal ̄ysis[J].AicheJournalꎬ1995ꎬ41(41):1395 ̄1402.[2]㊀夏福军ꎬ邓述波ꎬ张宝良.水力旋流器处理聚合物驱含油污水的研究[J].工业水处理ꎬ2002ꎬ22(2):14 ̄16.田地面工程ꎬ2012ꎬ31(11):49.[4]㊀王振波ꎬ陈磊ꎬ金有海.不同流量条件下导叶式液一液水力旋流器流场测试[J].流体机械ꎬ2008ꎬ36(9):11 ̄15.[5]㊀丁旭明ꎬ王振波ꎬ金有海.两种入口结构旋流器性能对比试验研究[J].化工机械ꎬ2005ꎬ33(2):69 ̄71.[6]㊀李枫ꎬ刘彩玉ꎬ蒋明虎ꎬ等.水力旋流器中阿基米德螺线入口的设计[J].化工机械ꎬ2004ꎬ33(3):139 ̄141.[7]㊀蒋明虎ꎬ赵立新ꎬ李枫ꎬ等.液 ̄液水力旋流器的入口形式及其研究[J].石油矿厂机械ꎬ1998ꎬ27(2):3 ̄5.[8]㊀蒋明虎ꎬ刘道友ꎬ赵立新ꎬ等.锥角对水力旋流器压力场和速度场的影响[J].化工机械ꎬ2011ꎬ38(5):572 ̄576.[9]㊀赵立新ꎬ王尊策ꎬ李枫ꎬ等.液液水力旋流器流场特性与分离特性研究(一) 锥角变化对切向速度场的影响[J].化工装备技术ꎬ1999ꎬ20(4)7 ̄10.[10]龚俊ꎬ叶俊红ꎬ姚明修.基于FLUENT的水力旋流器入口结构参数优化设计流场仿真[J].山东化工ꎬ2019ꎬ48(6):182 ̄184.OptimizationDesignandSimulationofOil ̄waterSeparationHydrocycloneQuDanlong1ꎬLiYi2(1.SINOPECOilfieldDepartmentꎬBeijingꎬ100728ꎻ2.ShandongKeyLaboratoryofOilfieldProducedWa ̄terTreatmentandEnvironmentalPollutionControlꎬSINOPECPetroleumEngineeringDesignCorpora ̄tionꎬShandongꎬDongyingꎬ257026)Abstract:Accordingtothepooreffectofhydrocycloneonoil ̄waterseparationinanoffshoreplatformofChengdaoOilfieldꎬthehydrocyclonestructurewasoptimizedbyadjustingthelargeconeanglefrom25ʎto15ʎ.TheinletformwasalsoadjustedfromasingletangentialinlettoanArchimedesspiraldoubleinlet.ThroughthesimulationofFLUENTsoftwareꎬthechangesofvelocityꎬpressureandtrajectoryinthein ̄ternalflowfieldofhydrocycloneduringtheoptimiza ̄tionprocesswereanalyzedꎬwhichprovidedthebasisfortheinletstructuredesignofhydrocycloneandtheselectionofconeangle.Keywords:offshoreoilproductionplatformꎻhydro ̄cycloneꎻArchimedeshelixꎻoil ̄waterseparationꎻsimulation。
旋流式液气分离器的设计

毕业论文(设计)题目名称:旋流式液气分离器的设计题目类型:毕业设计学生姓名:狄磊院(系):机械工程学院专业班级:装备10901班指导教师:张琴辅导教师:时间:至目录毕业论文(设计)任务书 (Ⅰ)开题报告 (Ⅱ)指导教师审查意见 (Ⅲ)评阅教师评语 (Ⅳ)答辩会议记录 (Ⅴ)中文摘要 (Ⅵ)外文摘要 (Ⅶ)1 绪论 (7)选择旋流式液气分离器的意义 (7)国内外现状和进展趋势 (7)国外现状和进展趋势 (7)国内现状和进展趋势 (9)2 方案论证 (9)旋流式液气分离方案的可行性 (9)旋流式分离器的结构及工作原理 (10)3 分离器的整体设计 (11)旋流器的直径和长度的计算 (11)分离器结构设计 (13)分离器整体结构设计 (13)脱气结构 (15)钻井液入口的尺寸 (15)旋流器的结构设计 (15)外筒体的设计 (17)接口管设计 (18)外部结构 (21)4、要紧零部件的设计及校核计算 (22)筒体和封头的壁厚计算 (22)外容器筒体、封头壁厚计算 (22)旋流器筒体封头壁厚计算 (24)人孔 (25)人孔选择 (25)人孔补强 (26)支座 (26)分离器的总质量 (26)支座的选用及安装要求 (28)5 分离器的安装 (28)焊接 (28)安装顺序 (29)6 壳体的有限元分析 (32)7 总结 (35)参考文献 (37)致谢 (39)附录一 (40)附录二 (43)旋流式液气分离器的设计学生:狄磊,长江大学机械工程学院指导教师:张琴,长江大学机械工程学院【摘要】旋流分离器,是一种利用离心沉降原理将非均相混合物中具有不同密度的相分离的机械分离设备。
在具有密度差的混合物以必然的方式及速度从入口进入旋流分离器后,在离心力场的作用下,密度大的相被甩向周围,并顺着壁面向下运动,作为底流排出;密度小的相向中间迁移,并向上运动,最后作为溢流排出。
如此就达到了分离的目的。
旋流分离技术可用于液液分离、气液分离、固液分离、气固分离等。
多管旋风分离器的设计计算公式

多管旋风分离器的设计计算公式多管旋风分离器的设计计算公式是根据气体和固体颗粒的流动特性和分离原理进行推导的。
该分离器通过产生旋流在固体颗粒与气体之间产生离心力,使得固体颗粒被扔到分离器的外墙,而纯净的气体则从分离器的上部排出。
以下是多管旋风分离器的设计计算公式:1.设计分离器尺寸:-内径(D):根据气体流量和分离效果要求来确定,通常选择在100mm到2000mm之间。
-高度(H):根据气体流速和旋流的惯性力要求来确定,通常选择在2到4倍D之间。
2.分离器的旋流衰减公式:- Vc = K * (Q / A) ^ (2/3)其中,Vc是旋流速度(m/s),K是校正系数(通常在0.35到0.55之间),Q是气体流量(m^3/s),A是旋流器断面积(m^2)。
3.分离器的分离效率公式:- η = 1 - exp(-0.35 * B * (Vc / U) ^ (0.35 - 0.159 * log10(Vc / U)))其中,η是分离效率,B是分离器高度与内径的比值(H/D),U是分离器的总进气速度(m/s)。
需要注意的是,以上公式是基于经验公式和试验结果得出的,并具有一定的应用范围和适用条件。
在实际设计中,还需要考虑分离器的材质、结构和运行参数等因素,以确保设计的有效性和可靠性。
另外,关于多管旋风分离器的设计拓展,可以考虑以下方面:-分离器的材质选择:根据分离介质的性质和工况条件,选择合适的耐磨、耐腐蚀材料,如不锈钢、钛合金等。
-分离器的结构改进:优化旋流器的结构和尺寸,增加分离效率和处理能力,如采用多级分离器、多出口设计等。
-分离器的控制和优化:结合自动化控制和流体力学模拟技术,优化分离器的运行参数和分离效果,提高分离器的稳定性和可调节性。
-分离器的节能降耗:采用节能措施,如热回收和余热利用,减少分离器的能耗和环境影响。
-分离器的应用领域拓展:除了气固分离外,还可以应用于气液分离、液固分离等领域,如石油化工、环保工程等。
旋流器选型设计计算

一、输入参数:(在淡绿色的格子内输入数据)日处理量:1200d/t小时处理量:50d/t给矿浓度:45%溢流浓度:30%底流浓度:矿石比重 2.9矿浆比重 1.42矿浆时流量:235.06m3/h 日流量:5641.38m3/d 循环量:旋流器锥角:20°旋流器直径:500mm单台能力:220m3/h1219cm 188cm 旋流器压力:0.15Mpa 292.20m3/h;共需台数:1.33台43.35μm二、旋流器计算(1)选择旋器直径,计算旋流器体积处理q V =292.20m3/hKa=0.995K D =0.824d f ——给矿口当量直径,cmd f =17.04b、h——分别为给矿口宽度和高度,cm;旋流器溢流管、沉砂管直径旋流器给矿口宽、高 式中 q V ——按给矿体积计的处理量,m 3/h;K a ——水力旋流器锥角修正系数;K D ——水力旋流器直径修正系d95溢流上限粒度 :单台旋流器计算处理能力:旋流器选型设计p o ——旋流器给矿口工作压力,MPa; d o ——溢流管直径,cm;D——旋流器筒体直径,cm.(2)按样体给出的范围确定沉砂口直径,并验算其单位截面积负荷(按固体量计),使其在0.5~2.5t/(cm 2·h)范围内。
(3)计算旋流器实际需要的给矿压 (4)计算溢流上限粒度d 95,使其满足溢流粒度的要求。
旋流器给矿及溢流中各个不同粒级含量之间关系可参见表2。
d 95=43.35粒级/μm-7410203040506070-40 5.611.317.32431.539.548-2013172326上限粒度,d 95430320240180含量/% 式中 d 95——溢流上限粒度,μm;C f ——给矿重量浓度,%; d u ——沉砂口直径,cm;ρ——矿浆中固体物料密度,t/m3; D、d o 、p o 、K D 、——同式(1).表2 旋流器给矿及溢流中各个不同粒级含量之间关系公式:R = [δ(δn -1)/δn (δ-1)]×100%60%矿浆浓度R=0.45;矿比重δ= 2.9δn=1.4180933公式:浓度R =0.45;干矿重Q=1200矿浆比重δn =1.42a=1880.46a=Q/Rδn 输入变量:求: 矿浆比重 δn? 已知:,矿浆浓度 R, 矿比重δ即:δn=δ/(R(1-δ)+δ)输入变量:求: 矿浆量a m3 ? 已知:矿浆浓度R,干矿重Q t; 矿浆比重量之间关系8090955871.580.53546551409474。
旋液式油水分离器的设计

目录任务书 (I)开题报告 (III)指导老师审查意见 ............................................................................................................. X I 评阅老师评语 .................................................................................................................... X II 答辩会议记录 (XIII)中外文摘要 (XIV)1前言 (1)2.选题背景 (2)3方案论证 (5)3.1油水分离器的主要特点 (5)3.2工作原理 (6)4.旋液式油水分离器结构 (8)5.旋液分离器尺寸的计算 (9)5.1主直径的选取 (9)5.2旋流器其它结构参数的设计 (10)5.3溢流口流量和底流口流量的计算 (13)6.水力旋流器的制造和安装 (14)6.1 水力旋流器在制造上的要求 (14)6.2材料选择 (15)6.3 常用的制造方法 (16)6.4安装 (18)7几何参数对水力旋流器性能的影响 (18)7.1进料口尺寸 (18)7.2旋流器直径 (19)7.3锥角 (19)7.4溢流管尺寸 (19)7.5底流口尺寸 (19)8操作参数对水力旋流器的影响 (19)8.1分离效率与进口流量之间的关系 (19)8.2分流比F与分离效率之间的关系 (20)8.3分流比与压降比之问的关系 (20)9.影响旋流器分离效率的因数 (21)9.1旋流器的准数 (21)9.2主要影响因素 (21)9.2.1 尺寸变量 (21)9.2. 2操作变量 (23)9.2. 3物性变量 (23)10.结论和认识 (24)参考文献 (25)致谢 (26)1前言水力旋流器(Hydrocyclonc)是一种分离非均相液体混合物的设备,它是在离心力的作用下根据两相或多相之间的密度差来实现两相或多相分离的。
水力旋流器分流比

水力旋流器分流比
水力旋流器是一种常见的分离设备,主要用于固液和液液分离。
在水力旋流器中,分流比是一个重要的操作参数。
分流比是指进入旋流器的两种液体(或固体)流量之比。
通常情况下,分流比越大,分离效果越好。
但是,当分流比超过一定值时,分离效果反而会变差。
因此,选择合适的水力旋流器分流比非常重要。
在水力旋流器的设计和操作中,需要根据具体的分离要求来选择合适的水力旋流器分流比。
一般来说,分流比的选择应该根据几个因素来考虑:
1. 进料的性质:包括进料的浓度、粒度分布、密度等。
2. 分离要求:包括分离效率、分离粒度等。
3. 设备类型:不同类型和规格的水力旋器,其最佳分流比可能有所不同。
因此,选择水力旋流器分流比需要根据具体情况来进行,以达到最佳的分离效果。
水力旋流器

水力旋流器目录水力旋流器构造及原理:流体运动的基本形式单元参数设计技术参数:水力旋流器简史水力旋流器水力旋流器水力旋流器[1]是利用离心力来加速矿粒沉降的分级设备,它需要压力给矿,故消耗动力大,但占地面积小、价格便宜,处理量大,分级效率高,可获得很细的溢流产品,多用于第二段闭路磨矿中的分级设备。
水力旋流器是用于分离去除污水中较重的粗颗粒泥砂等物质的设备。
有时也用于泥浆脱水。
分压力式和重力式两种,常采用圆形柱体构筑物或金属管制作。
水靠压力或重力由构筑物(或金属管)上部沿切线进入,在离心力作用下,粗重颗粒物质被抛向器壁并旋转向下和形成的浓液一起排出。
较小的颗粒物质旋转到一定程度后随二次上旋涡流排出。
构造及原理:水力旋流器由上部一个中空的圆柱体,下部一个与圆柱体相通的倒椎体,二者组成水力旋流器的工作筒体。
除此,水力旋流器还有给矿管,溢流管,溢流导管和沉砂口。
水力旋流器用砂泵(或高差)以一定压力(一般是0.5~2.5公斤/厘米)和流速(约5~12米/秒)将矿浆沿切线方向旋入圆筒,然后矿浆便以很快的速度沿筒壁旋转而产生离心力。
通过离心力和重力的作用下,将较粗、较重的矿粒抛出。
水力旋流器在选矿工业中主要用于分级、分选、浓缩和脱泥。
当水力旋流器用作分级设备时,主要用来与磨机组成磨矿分级系统;用作脱泥设备时,可用于重选厂脱泥;用作浓缩脱水设备时,可用来将选矿尾矿浓缩后送去充填地下采矿坑道。
水力旋流器无运动部件,构造简单;单位容积的生产能力较大,占面积小;分级效率高(可达80%~90%),分级粒度细;造价低,材料消耗少。
悬浮液以较高的速度由进料管沿切线方向进入水力旋流器,由于受到外筒壁的限制,迫使液体做自上而下的旋转运动,通常将这种运动称为外旋流或下降旋流运动。
外旋流中的固体颗粒受到离心力作用,如果密度大于四周液体的密度(这是大多数情况),它所受的离心力就越大,一旦这个力大于因运动所产生的液体阻力,固体颗粒就会克服这一阻力而向器壁方向移动,与悬浮液分离,到达器壁附近的颗粒受到连续的液体推动,沿器壁向下运动,到达底流口附近聚集成为大大稠化的悬浮液,从底流口排出。
毕业设计(论文)-重介质选煤三产品重介质旋流器设计

目录目录 (I)摘要 (1)Abstract (2)1 文献综述 (3)1.1 选煤工艺的发展 (3)1.2 重介质选煤的特点及应用 (4)1.3 重介质选煤工艺 (5)1.4 课题选题背景及主要内容 (6)1.4.1 课题选题背景 (6)1.4.2 课题主要内容 (7)2 旋流器基本理论 (8)2.1 重介质旋流器分选机理 (8)2.2 三产品重介质旋流器 (9)2.2.1 三产品重介质旋流器工作原理 (10)2.2.2 三产品重介质旋流器的结构 (10)2.2.3 三产品重介质旋流器的特点 (12)2.2.4 旋流器的工艺调试方法 (14)2.3 重介质选旋流器分选效率 (15)2.3.1 分选效率评定方法 (16)2.3.2 影响重介质旋流器分选效果的因素 (16)3 三产品重介质旋流器选型计算 (18)3.1 旋流器处理能力的确定 (18)3.1.1 理论分析 (18)3.1.2 旋流器处理能力的计算 (22)3.2 悬浮液浓度计算 (23)3.3 重介质旋流器入料方式 (23)3.4 设计洗煤厂规格 (24)3.5 洗煤厂重介质旋流器的选型 (24)4 三产品重介质旋流器的结构设计 (26)4.1 三产品重介质旋流器的主要尺寸 (27)4.2 入料口直径 (27)4.3 溢流口 (28)4.3.1 与生产能力的关系 (28)4.3.2 与分流比的关系 (28)4.3.3 与分离粒度的关系 (29)4.3.4 与分离精度的关系 (29)4.4 二段旋流器锥比 (30)4.5 两段旋流器的间联接管 (30)4.6 底流口 (30)4.6.1 与生产能力的要求 (31)4.6.2 与分离粒度和分离效率的关系 (31)4.6.3 与分流比的关系 (31)5 总结 (32)6 致谢 (33)7参考文献 (34)摘要煤炭是工业的“粮食”,是我国最主要的能源,它占我国能源生产和消耗均在75%以上。
随着采煤机械化程度的提高和地质条件的变化,原煤质量有逐渐恶化的趋势,选煤是提高煤炭质量的最重要手段,是煤炭工业的重要生产环节。