桂电《商务智能与数据挖掘》简答题答案

合集下载

数据挖掘考试题及答案

数据挖掘考试题及答案

数据挖掘考试题及答案### 数据挖掘考试题及答案#### 一、选择题(每题2分,共20分)1. 数据挖掘的目的是发现数据中的:- A. 错误- B. 模式- C. 异常- D. 趋势答案:B2. 以下哪项不是数据挖掘的常用算法:- A. 决策树- B. 聚类分析- C. 线性回归- D. 神经网络答案:C3. 关联规则挖掘中,Apriori算法用于发现:- A. 频繁项集- B. 异常值- C. 趋势- D. 聚类答案:A4. K-means算法是一种:- A. 分类算法- B. 聚类算法- C. 预测算法- D. 关联规则挖掘算法答案:B5. 以下哪个指标用于评估分类模型的性能:- A. 准确率- B. 召回率- C. F1分数- D. 所有以上答案:D#### 二、简答题(每题10分,共30分)1. 描述数据挖掘中的“过拟合”现象,并给出避免过拟合的策略。

答案:过拟合是指模型对训练数据拟合得过于完美,以至于失去了泛化能力。

避免过拟合的策略包括:使用交叉验证、正则化技术、减少模型复杂度、获取更多的训练数据等。

2. 解释什么是“数据清洗”以及它在数据挖掘中的重要性。

答案:数据清洗是指从原始数据中识别并纠正(或删除)错误、重复或不完整的数据的过程。

它在数据挖掘中至关重要,因为脏数据会导致分析结果不准确,影响最终的决策。

3. 描述“特征选择”在数据挖掘中的作用。

答案:特征选择是数据挖掘中用来降低数据维度、提高模型性能和减少计算成本的过程。

通过选择最有信息量的特征,可以去除冗余或无关的特征,从而提高模型的准确性和效率。

#### 三、应用题(每题25分,共50分)1. 假设你正在分析一个电子商务网站的用户购买行为,描述你将如何使用数据挖掘技术来识别潜在的营销机会。

答案:首先,我会使用聚类分析来识别不同的用户群体。

然后,通过关联规则挖掘来发现不同用户群体的购买模式。

接着,利用分类算法来预测用户可能感兴趣的产品。

数据挖掘试题及答案

数据挖掘试题及答案

数据挖掘试题及答案数据挖掘是一门利用数据分析技术从大量的数据集中发现规律、模式和知识的过程。

它对我们理解和利用数据提供了有力的支持,被广泛应用于商业、科学研究等领域。

下面是一些常见的数据挖掘试题及其答案。

试题一:什么是数据挖掘?答案:数据挖掘是指利用计算机技术和统计学方法,从大规模数据集中发现隐藏在其中的有价值的信息和知识的过程。

它包括数据预处理、特征选择、模型构建以及模式识别和知识发现等步骤。

试题二:数据挖掘的主要任务有哪些?答案:数据挖掘的主要任务包括分类、聚类、关联规则挖掘和异常检测等。

分类是指将数据集中的样本划分到不同的类别中;聚类是将数据集划分为若干个相似的组;关联规则挖掘是找出数据中项之间的关联关系;异常检测是识别与正常模式不符的数据。

试题三:数据挖掘中常用的算法有哪些?答案:数据挖掘中常用的算法包括决策树、聚类算法、关联规则算法和神经网络等。

决策树算法通过对数据集进行划分,构建一棵树形结构用于分类;聚类算法根据相似度将数据集分为不同的簇;关联规则算法用于发现数据集中项之间的关联关系;神经网络模拟人脑的神经元网络结构,用于数据分类和预测。

试题四:数据挖掘的应用场景有哪些?答案:数据挖掘的应用场景非常广泛。

在商业领域,它可以帮助企业进行市场分析、客户关系管理和产品推荐等;在科学研究中,它能够帮助科学家从大量的实验数据中发现新的知识和规律;在医疗领域,它可以辅助医生进行疾病诊断和治疗方案选择等。

试题五:数据挖掘存在的挑战有哪些?答案:数据挖掘存在一些挑战,包括数据质量不高、维度灾难、算法性能和可解释性等方面。

数据质量不高可能导致挖掘结果不准确;维度灾难是指当数据特征数量很多时,算法的计算复杂度急剧增加;算法性能要求高,对大规模数据集的挖掘需要高效的算法;可解释性是指挖掘结果是否易于被理解和解释。

以上是一些常见的数据挖掘试题及其答案。

通过理解和掌握数据挖掘的基本概念、任务、算法和应用场景,可以帮助我们更好地运用数据挖掘技术,从海量数据中提取有价值的信息和知识,为决策和创新提供支持。

数据挖掘试题参考答案

数据挖掘试题参考答案

大学课程《数据挖掘》试题参考答案范围:∙ 1.什么是数据挖掘?它与传统数据分析有什么区别?定义:数据挖掘(Data Mining,DM)又称数据库中的知识发现(Knowledge Discover in Database,KDD),是目前人工智能和数据库领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程。

数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析企业的数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。

区别:(1)数据挖掘的数据源与以前相比有了显著的改变;数据是海量的;数据有噪声;数据可能是非结构化的;(2)传统的数据分析方法一般都是先给出一个假设然后通过数据验证,在一定意义上是假设驱动的;与之相反,数据挖掘在一定意义上是发现驱动的,模式都是通过大量的搜索工作从数据中自动提取出来。

即数据挖掘是要发现那些不能靠直觉发现的信息或知识,甚至是违背直觉的信息或知识,挖掘出的信息越是出乎意料,就可能越有价值。

在缺乏强有力的数据分析工具而不能分析这些资源的情况下,历史数据库也就变成了“数据坟墓”-里面的数据几乎不再被访问。

也就是说,极有价值的信息被“淹没”在海量数据堆中,领导者决策时还只能凭自己的经验和直觉。

因此改进原有的数据分析方法,使之能够智能地处理海量数据,即演化为数据挖掘。

∙ 2.请根据CRISP-DM(Cross Industry Standard Process for Data Mining)模型,描述数据挖掘包含哪些步骤?CRISP-DM 模型为一个KDD工程提供了一个完整的过程描述.该模型将一个KDD工程分为6个不同的,但顺序并非完全不变的阶段.1: business understanding: 即商业理解. 在第一个阶段我们必须从商业的角度上面了解项目的要求和最终目的是什么. 并将这些目的与数据挖掘的定义以及结果结合起来.2.data understanding: 数据的理解以及收集,对可用的数据进行评估.3: data preparation: 数据的准备,对可用的原始数据进行一系列的组织以及清洗,使之达到建模需求.4:modeling: 即应用数据挖掘工具建立模型.5:evaluation: 对建立的模型进行评估,重点具体考虑得出的结果是否符合第一步的商业目的.6: deployment: 部署,即将其发现的结果以及过程组织成为可读文本形式.(数据挖掘报告)∙ 3.请描述未来多媒体挖掘的趋势随着多媒体技术的发展,人们接触的数据形式不断地丰富,多媒体数据库的日益增多,原有的数据库技术已满足不了应用的需要,人们希望从这些媒体数据中得到一些高层的概念和模式,找出蕴涵于其中的有价值的知识。

数据挖掘习题答案

数据挖掘习题答案

数据挖掘习题答案数据挖掘习题答案数据挖掘作为一门重要的技术和方法,广泛应用于各个领域。

在学习数据挖掘的过程中,习题是不可或缺的一部分。

通过解答习题,我们可以更好地理解和掌握数据挖掘的原理和应用。

以下是一些常见的数据挖掘习题及其答案,供大家参考。

一、选择题1. 数据挖掘的目标是什么?A. 发现隐藏在大数据中的模式和关联B. 提供数据存储和管理的解决方案C. 分析数据的趋势和变化D. 优化数据的存储和传输速度答案:A. 发现隐藏在大数据中的模式和关联2. 下列哪个不是数据挖掘的主要任务?A. 分类B. 聚类C. 回归D. 排序答案:D. 排序3. 数据挖掘的过程包括以下几个步骤,哪个是第一步?A. 数据清洗B. 数据集成C. 数据转换D. 数据选择答案:B. 数据集成4. 下列哪个不是数据挖掘中常用的算法?A. 决策树B. 支持向量机C. 朴素贝叶斯D. 深度学习答案:D. 深度学习5. 下列哪个不是数据挖掘的应用领域?A. 金融B. 医疗C. 娱乐D. 政治答案:D. 政治二、填空题1. 数据挖掘是从大量数据中发现________和________。

答案:模式,关联2. 数据挖掘的主要任务包括分类、聚类、回归和________。

答案:预测3. 数据挖掘的过程包括数据集成、数据清洗、数据转换和________。

答案:模式识别4. 决策树是一种常用的________算法。

答案:分类5. 数据挖掘可以应用于金融、医疗、娱乐等多个________。

答案:领域三、简答题1. 请简要介绍数据挖掘的主要任务和应用领域。

答:数据挖掘的主要任务包括分类、聚类、回归和预测。

分类是将数据集划分为不同的类别,聚类是将数据集中相似的样本归为一类,回归是根据已有的数据预测未知数据的值,预测是根据已有的数据预测未来的趋势和变化。

数据挖掘的应用领域非常广泛,包括金融、医疗、娱乐等。

在金融领域,数据挖掘可以用于信用评估、风险管理等方面;在医疗领域,数据挖掘可以用于疾病诊断、药物研发等方面;在娱乐领域,数据挖掘可以用于推荐系统、用户行为分析等方面。

数据挖掘考试题库及答案

数据挖掘考试题库及答案

数据挖掘考试题库及答案一、选择题1. 数据挖掘是从大量数据中提取有价值信息的过程,以下哪项不是数据挖掘的主要任务?A. 预测B. 分类C. 聚类D. 数据可视化答案:D2. 以下哪种技术不属于数据挖掘的常用方法?A. 决策树B. 支持向量机C. 关联规则D. 数据仓库答案:D3. 数据挖掘中,以下哪项技术常用于分类和预测?A. 神经网络B. K-均值聚类C. 主成分分析D. 决策树答案:D4. 在数据挖掘中,以下哪个概念表示数据集中的属性?A. 数据项B. 数据记录C. 数据属性D. 数据集答案:C5. 数据挖掘中,以下哪个算法用于求解关联规则?A. Apriori算法B. ID3算法C. K-Means算法D. C4.5算法答案:A二、填空题6. 数据挖掘的目的是从大量数据中提取______信息。

答案:有价值7. 在数据挖掘中,分类任务分为有监督学习和______学习。

答案:无监督8. 决策树是一种用于分类和预测的树形结构,其核心思想是______。

答案:递归划分9. 关联规则挖掘中,支持度表示某个项集在数据集中的出现频率,置信度表示______。

答案:包含项集的记录中同时包含结论的记录的比例10. 数据挖掘中,聚类分析是将数据集划分为若干个______的子集。

答案:相似三、判断题11. 数据挖掘只关注大量数据中的异常值。

()答案:错误12. 数据挖掘是数据仓库的一部分。

()答案:正确13. 决策树算法适用于处理连续属性的分类问题。

()答案:错误14. 数据挖掘中的聚类分析是无监督学习任务。

()答案:正确15. 关联规则挖掘中,支持度越高,关联规则越可靠。

()答案:错误四、简答题16. 简述数据挖掘的主要任务。

答案:数据挖掘的主要任务包括预测、分类、聚类、关联规则挖掘、异常检测等。

17. 简述决策树算法的基本原理。

答案:决策树算法是一种自顶向下的递归划分方法。

它通过选择具有最高信息增益的属性进行划分,将数据集划分为若干个子集,直到满足停止条件。

商务智能与数据挖掘课程考试开放考核试题及规范

商务智能与数据挖掘课程考试开放考核试题及规范

商务智能与数据挖掘课程考试开放考核试题一、简答题(每题30分,9选根据学号以9为周期依次选题)1、结合实例描述数据挖掘的流程及各个部分需要处理的内容?2、什么是数据探索?结合实例描述数据探索的方法?3、什么是数据清洗,结合实例介绍数据清洗的方法?4、为什么要进行数据集成?结合实例描述数据规范化的过程(注意分析数据规范化前后的效果)5、逻辑回归的原理是什么,结合实例描述逻辑回归的实现过程?(注意需给出逻辑回归的最后输出结果)6、什么是聚类分析?聚类算法有哪几种?请选择一种详细描述其计算原理和步骤7、什么是决策树?决策树的主要算法有哪些,通过实例详细描述其中一种算法的实现过程。

8、介绍关联规则模型及相关算法有哪些,通过实例详细描述其中一个算法的实现过程。

9、简单介绍人工神经网络的发展史,并通过实例说明BP神经网络的实现过程。

二、综合分析建模题(70分,五选一完成,学号尾数为1和6选第一题,尾号为2和7选择第二题,尾号为3和8选第三题,尾号为4和9选第四题,尾号为5和0选第五题)试题一商品零售购物篮分析n匕曰冃艮:现代商品种类繁多,顾客往往会由于需要购买的商品众多而变得疲于选择,且顾客并不会因为商品选择丰富而选择购买更多的商品。

繁杂的选购过程往往会给顾客疲惫的购物体验。

对于某些商品,顾客会选择同时购买,如面包与牛奶、薯片与可乐等,当面包与牛奶或者薯片与可乐分布在商场的两侧,且距离十分遥远时.,顾客购买的欲望就会减少,在时间紧迫的情况下顾客甚至会放弃购买某些计划购买的商品。

相反,把牛奶与面包摆放在相邻的位置,既给顾客提供便利,提升购物体验,乂提高顾客购买的概率,达到了促箱的目的。

许多商场以打折方式作为主要促销手段,以更少的利润为代价获得更高的箱量。

打折往往会使顾客增加原计划购买商品的数量,对于原计划不打算购买且不必要的商品,打折的吸引力远远不足。

而正确的商品摆放却能提醒顾客购买某些必需品,其至吸引他们购买感兴趣的商品。

(完整word版)数据挖掘题目及答案

(完整word版)数据挖掘题目及答案

(完整word版)数据挖掘题⽬及答案⼀、何为数据仓库?其主要特点是什么?数据仓库与KDD的联系是什么?数据仓库是⼀个⾯向主题的(Subject Oriented)、集成的(Integrate)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,⽤于⽀持管理决策。

特点:1、⾯向主题操作型数据库的数据组织⾯向事务处理任务,各个业务系统之间各⾃分离,⽽数据仓库中的数据是按照⼀定的主题域进⾏组织的。

2、集成的数据仓库中的数据是在对原有分散的数据库数据抽取、清理的基础上经过系统加⼯、汇总和整理得到的,必须消除源数据中的不⼀致性,以保证数据仓库内的信息是关于整个企业的⼀致的全局信息。

3、相对稳定的数据仓库的数据主要供企业决策分析之⽤,⼀旦某个数据进⼊数据仓库以后,⼀般情况下将被长期保留,也就是数据仓库中⼀般有⼤量的查询操作,但修改和删除操作很少,通常只需要定期的加载、刷新。

4、反映历史变化数据仓库中的数据通常包含历史信息,系统记录了企业从过去某⼀时点(如开始应⽤数据仓库的时点)到⽬前的各个阶段的信息,通过这些信息,可以对企业的发展历程和未来趋势做出定量分析和预测。

所谓基于数据库的知识发现(KDD)是指从⼤量数据中提取有效的、新颖的、潜在有⽤的、最终可被理解的模式的⾮平凡过程。

数据仓库为KDD提供了数据环境,KDD从数据仓库中提取有效的,可⽤的信息⼆、数据库有4笔交易。

设minsup=60%,minconf=80%。

TID DATE ITEMS_BOUGHTT100 3/5/2009 {A, C, S, L}T200 3/5/2009 {D, A, C, E, B}T300 4/5/2010 {A, B, C}T400 4/5/2010 {C, A, B, E}使⽤Apriori算法找出频繁项集,列出所有关联规则。

解:已知最⼩⽀持度为60%,最⼩置信度为80%1)第⼀步,对事务数据库进⾏⼀次扫描,计算出D中所包含的每个项⽬出现的次数,⽣成候选1-项集的集合C1。

《商务智能》复习题及答案

《商务智能》复习题及答案

《商务智能》复习题及答案1、把数据报表从一年展开成四个季度的操作是(C )A、上卷B、旋转C、下钻D、切片2、在多维数据集中,对某一个维度上的数据进行选择一维成员,其他维度没有变化的操作是( D)A、切块B、旋转C、下钻D、切片3、一个多维数组表示为:(维1,维2,维3,维4,变量),这是一个(B )维结构。

A、3B、4C、5D、64、一次购买行为的发起需要有:购买者、商家、商品、购买时间、供应商和订单金额。

如果设计星型模型,请问有几个维度(C )A、3B、4C、5D、65、在进行ETL时,应该在(C )里进行。

A、ODSB、数据仓库C、数据准备区D、源数据6、(多选题)此大数据带来的变革有(ABD ).A、思维变革B、商业变革C、购物变革D、管理变革7、自然演化式体系结构的问题有(ACD )。

(多选)A、数据可信性B、无法进行数据处理C、生产率问题D、无法将数据转化为信息8、数据立方体是指(C ).A、三维数据集B、三维以上的数据集C、三维和三维以上的数据集D、四维数据集'9、戈登·未尔提出在今后的十几年里,半导体处理器的性能,比如容量、计算速度和复杂程度,每(D )左右可以翻一番。

A、1个月B、6个月C、12个月D、18个月10、大数据时代的核心价值是(B)A.数据收集B.数据分析C.数据挖掘D.数据可视化11、大数据的来源包括( ABCD).A.互联网数据B.传感器数据C.实时数据D.探测数据11、好友的QQ突然发来一个网站链接要求投票,最合理的做法是( C)A.因为是其好反信总,直接打开使接投票B.不参与任何投票C.可能是好友aq被盗,可能是恶意筑接。

先通过予机跟朋友确认链技按无异常,考虑是否投票D.把好友加入黑名单12、关于大数据特点,错误的是(C )A、数据量大B、数据类型多C.数据价值密度高D.数据处理速度快13、Hadop是基于(B )语言的数据分析框架。

A. C++B. JavaC. RD. C#14.Maphedue的主导思想是(C )A.集成化B.一体化C.分而治之D.综合化15.下列与大数据密切相关的技术是(B)A.蓝牙B.云计算C.博穿论D.WiFi16.大数据的数据类型包括结构化数据、非结构化数据和(A ).A.半结构化数据B.无结构化数据C.关系数据库数D.文本数据和WEe数报17.数据仓库中的数据(ABCD )A.集成的B.可以变化的C.面向主题的D.不易丢失的18.数据仓库是随着时间变化的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、分析一下基于软件即服务使用模使得商务智能系统不必过多的依赖于企业的IT部门和IT资源,减轻了企业的人力、财力的压力,降低了管理维护基础设施和软件的人力成本,也降低了企业部署商务智能的风险,有利于商务智能在企业的各个部门的推广使用,促进企业商业模式的变革,提高企业核心竞争力。
5.信息性指的是系统处理大量数据、提供用户所需信息的能力。
P121
1、简述可视化技术与商务智能的关系。
答:
可视化技术是将抽象的数据表示为视觉图像的技术,作为商务智能的基础技术和表现之一,辅助商务智能的发现,使数据或知识的表示更加清晰、明了;而商务智能的其他技术为它提供数据存储、数据预处理、数据分析等的能力。二者相互交融、互相促进。
P138
2、借助商务智能进行关系营销的主要目的和方法有哪些?
答:
1.主要目的:培养客户忠诚性,提高客户满意度,维护良好的沟通渠道,有效开发客户生命周期内的价值,在客户所处的各个阶段,借助商务智能技术,可以进行有效的关系营销活动,以达到顾客满意,企业获利的双赢状态。
2.方法:使用操作型系统及外部系统、数据仓库、数据集市存储客户数据;使用OLAP、分类、聚类、数值预测、关联分析、时间序列分析对数据进行处理。
2.缺点:①安全问题,涉及数据的丢失以及敏感数据的泄露等;②网络延迟或中断,由于计算资源是通过互联网等网络提供的,比起局域网肯定存在网络的延迟,如果网络中断,则无法访问服务;③对服务提供商的依赖,如果服务提供商停止服务,则用户无法得到服务;④集成问题,服务提供商提供的软件、业其他系统进行集成等。
2、商务智能可视化有什么作用?
答:
1.通过将数据可视化,便于发现隐藏在数据之间的关系、可以使信息的交流更加清楚、有效;
2.可视化也是一种知识发现的手段,通过将数据以合适的形式展现给用户,通过人的视觉处理能力有时可以发现计算机发现不了的模式。
P138
1、商务智能的典型应用领域有哪些?
答:
商务智能的应用也深入各行各业,在零售、金融、电信、保险,制造等领域的市场管理,风险管理及生产管理等方面均有成功的应用。
P165
1、常用的开源数据挖掘软件有哪些?
答:
1.RapidMiner(该工具是用Java语言编写的,通过基于模板的框架提供先进的分析技术。该款工具最大的好处就是,用户无需写任何代码。它是作为一个服务提供,而不是一款本地软件。)
2.WEKA(WEKA支持多种标准数据挖掘任务,包括数据预处理、收集、分类、回归分析、可视化和特征选取。)
3.R-Programming(它主要是由C语言和FORTRAN语言编写的,并且很多模块都是由R编写的,这是一款针对编程语言和软件环境进行统计计算和制图的免费软件。R语言被广泛应用于数据挖掘,以及开发统计软件和数据分析中。)
4.Orange(它是一个基于Python语言,功能强大的开源工具,并且对初学者和专家级的大神均适用。)
答:
1.通过收集客户的行为数据,可以发现用户的兴趣偏好,为其提供个性化服务,提高客户满意度,增加企业利润。但这些数据被善意利用的同时也可能泄露用户隐私;
2.用户在网上查询、浏览、购物、交友、分享信息,用户的一举一动几乎都被记录下来,其中包含了用户的很多隐私信息;
3.GPS技术的使用,用户的位置、移动信息也被记录下来。
5.KNIME(数据处理主要有三个部分:提取、转换和加载。 而这三者KNIME都可以做到。 KNIME为您提供了一个图形化的用户界面,以便对数据节点进行处理。)
6.NLTK(NLTK提供了一个语言处理工具,包括数据挖掘、机器学习、数据抓取、情感分析等各种语言处理任务。)
P188
1、列举商务智能应用中可能涉及的隐私保护问题。
《商务智能与数据挖掘》简答题部分答案
--《商务智能与方法应用》(刘红岩编著)
P9
1、什么是商务智能?
答:
商务智能指用现代数据仓库技术、联机分析处理技术、数据挖掘和数据展现技术进行数据分析以实现商业价值。
4、商务智能系统的主要组成要素有哪些?
答:
一个商务智能系统通常包含6个主要组成部分:数据源、数据仓库、在线分析处理、数据探查、数据挖掘以及业务绩效管理。
3.优化上,数据仓库侧重于处理和探索海量数据,数据集市则侧重于快速的访问和分析。
(2)联系:数据集市是数据仓库的一种特殊形式,一般情况下数据集市从属于某个数据仓库,但二者又均以资料导向型设计、不属于任何一个OLTP系统
P110
1、OLAP有哪些特点?
答:OLAP的特点有:快速(Fast)、分析性能(Analysis)、共享性(Shared)、多维性(Multidimensional)、信息性(Information),简称FASMI。即:
在线分析处理(OLAP)是数据库系统的主要应用,提供数据的多维分析以支持决策过程。
OLTP和OLAP二者的不同之处有:面向的用户;功能的作用;数据库中存储的数据;数据库设计(包括数据库的数据处理方式、使用方式、执行单元、性能指标、事务特性)。
P103
3、构建数据仓库系统的主要阶段?
答:
数据库项目的开发可以分为6个阶段:项目规划、需求分析、概念设计、ETL设计、逻辑和物理设计、实现与培训。
1.项目规划阶段主要目的是了解总体需求,界定项目实施的范围,评估项目的必要行和可行性,撰写数据仓库项目的规划文档。
2.需求分析阶段,可进一步详细了解需求,确定分析主题以及相关的维度和度量, 了解已有信息系统的功能、结构和模型,确定数据仓库中应该包含的数据,以及相关的数据来源,撰写需求分析说明书。
3.概念设计阶段,可利用概念模型描述数据仓库包含的主要及其关系。
1.快速性指的是系统能够在大约5s内响应用户的请求,最长不超过20s。
2.分析性能指的是系统能够以直观的形式提供灵活的统计分析功能,便于用户操作,允许用户自己定义运算方式。
3.共享性指的是支持多用户并发访问系统,具有可靠的安全性。
4.多维性是OLAP最关键的一个特性,它指的是系统必须提供数据的多维视图以及维度内的层次聚集功能。
P15
2、商务智能系统成功的关键因素有哪些?
答:
商务智能系统成功的关键因素主要有5个:业务驱动、高层支持、业务人员和IT人员的合作、循序渐进、培训。
4、OLTP和OLAP分别代表什么?比较二者之间的不同之处。
答:
在线事务处理(OLTP),是数据库管理系统的主要功能,用于完成企业内部各个部门的日常业务操作。
4.ETL设计阶段,包括数据抽取、转换和加载设计三部分。
5.逻辑和物理设计阶段,用于设计数据仓库的逻辑模型和物理模型。
6.实现与培训阶段,包括数据仓库系统的实现和用户使用的培训。
4、简要说明数据仓库和数据集市的区别和联系。
答:
(1)区别:
1.应用范围上,数据仓库一般为企业级;数据集市一般为部门级。
2.存储内容上,数据仓库包含企业经营过程中所有详细数据;数据集市一般只包含特定范围的详细数据和适度聚合的数据。
相关文档
最新文档