完整版函数图像练习题
专题:函数图像精选训练题(有答案)

专题:函数图像训练题精选一、选择题1.下列函数图象中,函数y a a a x =>≠()01且,与函数y a x =-()1的图象只能是( )y y y yO x O x O x O xA B C D11112.若函数()()22m xf x x m-=+的图象如图所示,则m 的取值范围是( )A.(),1-∞-B. ()1,2C. ()1,2-D. ()0,23.已知函数()y f x =的图象与ln y x =的图象关于直线y x =对称,则()2f =( )A .1B .eC .2eD .()ln 1e -4.函数()2cos ln f x x x =-⋅的部分图象大致是( )5.将()y f x =的图象的横坐标伸长为原来的3倍,纵坐标缩短为原来的13,则所得函数的解析式为( ) A .3(3)y f x = B .11()33y f x =C .1(3)3y f x =D .13()3y f x = 6.如图所示的四个容器高度都相同,将水从容器顶部一个小孔以相同的速度注入其中,注满为止.用下面对应的图像显示该容器中水面的高度h 和时间t 之间的关系,其中不正确的....是A .1个B .2个C .3个D .4个7.在同一坐标系中,函数1()x y a=与)(log x y a -=(其中0a >且1a ≠)的图象只可能是( )8.如图,函数()y f x =的图象为折线ABC ,设()()g x f f x =⎡⎤⎣⎦, 则函数()y g x =的图象为( )9.如图,函数y =f (x )的图像为折线ABC ,设f 1(x )=f (x ),f n+1(x )=f [f n+1(x )], n ∈N *,则函数y =f 4(x )的图像为yxo 1 1 yx o 1 1 yx o 1-1 yx o 1-1ABCD10.已知1a >,函数x y a =与log ()a y x =-的图像可能是( )11.若函数)1,0()1()(≠>--=-a a a a k x f x x 在R 上既是奇函数,又是减函数,则)(log )(k x x g a +=的图像是( )12.函数|1|||ln --=x e y x 的图象大致是 ( )13.),10(log )(,)(2≠>==-a a x x g a x f a x 且,0)4()4(<-⋅g f 若则)(),(x g y x f y ==在同一坐标系内的大致图象是第5题14.已知函数2()4f x x =-,()y g x =是定义在R 上的奇函数,当0x >时,2()log g x x =,则函数()()f x g x ⋅的大致图象为 ( )15.已知f (x )=a x ,g (x )=log a x (a >0且a ≠1),若f (3)g (3)<0,则f (x )与g (x )在同一坐标系里的图像是( )16.当0<a <1时,在同一坐标系中,函数x y a -=与log a y x =的图象是( )17.函数1||2)(+-=x x f 的图像大致为 ( ▲ )y xy yy xxxoo o-1 1-1 1 2-112 1 o-1 112 121 B A C D18.函数||2x y =的定义域为],[b a ,值域为]16,1[,则点),(b a 表示的图形可以是( ▲ )19.设A={|02x x ≤≤}, B={|02y y ≤≤}, 下列各图中能表示集合A 到集合B 的映射是20.二次函数bx ax y +=2与指数函数xab y )32(=的图象,只有可能是下列中的哪个选项21.已知函数bx ax y +=2和xbay =|)| || ,0(b a ab ≠≠在同一直角坐标系中的图象不可能... 是( )BC DAxy123123 B.xy123123 C.xy0123123 A.A .B .C .D .22.已知函数9()4,(0,4)1f x x x x =-+∈+,当x a =时,()f x 取得最小值b ,则函数b x )a ()x (g +=1的图象为( )23.已知0,1a a >≠,函数log ,,x a y x y a y x a ===+在同一坐标系中的图象可能是24.函数()112xf x =-的图像是1xy11xy11xy 1-01xy1-25.函数()()112122x x f x ⎡⎤=+--⎣⎦的图象大致为26.若直角坐标平面内的两个不同点M 、N 满足条件:① M 、N 都在函数()y f x =的图像上; ② M 、N 关于原点对称. 则称点对[,]M N 为函数()y f x =的一对“友好点对”. (注:点对[,]M N 与[,]N M 为同一“友好点对”)已知函数32log (0)()4(0)x x f x x x x >⎧=⎨-- ⎩≤,此函数的“友好点对”有A. 0对B. 1对C. 2对D. 3对27.已知定义在区间[0,2]上的函数=()y f x 的图象如图所示,则=(2-)y f x 的图象为28.已知函数x x x f sin 21)(2+=,则)('x f 的大致图象是( )29.下列函数图象中,正确的是30.已知函数32()(,0)f x ax bx x a b R ab =++∈≠且的图像如图,且12||||x x >,则有( )A .0,0a b >>B .0,0a b <<C .0,0a b <>D .0,0a b ><31.如下图,设点A 是单位圆上的一定点,动点P 从点A 出发在圆上按逆时针方向旋转一周,点P 所旋转过的弧AP 的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致是( )32.已知二次函数()x f 的图象如图1所示 , 则其导函数()x f '的图象大致形状是( )33.已知对数函数()log a f x x =是增函数,则函数(||1)f x +的图象大致是( )34.已知0lg lg =+b a ,则函数x a x f =)(与函数x x g b log )(-=的图象可能( )35.已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =+的图象可能是( )A .B . C. D.36.已知函数log (1)3,a y x =-+(01)a a >≠且的图像恒过点P ,若角α的终边经过点P ,则2sin sin2αα- 的值等于( )A.133 B.135 C. 133- D. 135- 37.已知函数的图象如图所示则函数的图象是( )38.如右图,一个直径为l 的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M 和N 是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M ,N 在大圆内所绘出的图形大致是( )39.已知在函数||y x =([1,1]x ∈-)的图象上有一点(,||)P t t ,该函数的图象与 x 轴、直线x =-1及 x =t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系图可表示为( )40.函数|)1lg(|-=x y 的图象是( )41.函数2()log 2f x x =与1()2x g x -=在同一直角坐标系下的图象大致是( )42.已知,()()()a b f x x a x b >=--函数的图象如右图,则函数()log ()a g x x b =+的图象可能为43.函数lg ||x y x=的图象大致是二、填空题44.已知函数211x y x -=-的图像与函数2y kx =-的图像恰有两个交点,则实数k 的取值范围是 .45.当直线y kx =与曲线|ln ||2|x y e x =--有3个公共点时,实数k 的取值范围是 .46.已知函数8log (3)9a y x =+-(0,1a a >≠)的图像恒过定点A ,若点A 也在函数()3x f x b =+的图像上,则b = 。
函数图像变换练习题

函数图像变换练习题函数图像变换练习题函数图像变换是数学中的重要概念,它帮助我们理解函数的性质和变化规律。
通过对函数图像进行变换,我们可以观察到函数在平移、伸缩和翻转等操作后的形态变化。
在这篇文章中,我们将通过一些练习题来加深对函数图像变换的理解。
1. 平移变换平移变换是指将函数图像沿着坐标轴的方向进行平移。
具体而言,平移变换可以分为水平平移和垂直平移两种情况。
练习题1:考虑函数f(x) = x^2,将其沿x轴方向平移3个单位,请画出平移后的函数图像。
解答:对于函数f(x) = x^2,进行水平平移3个单位后的函数可以表示为f(x-3) = (x-3)^2。
通过计算可知,平移后的函数图像与原函数相比,在x轴上整体向右平移了3个单位。
2. 伸缩变换伸缩变换是指将函数图像沿着坐标轴的方向进行拉伸或压缩。
具体而言,伸缩变换可以分为水平伸缩和垂直伸缩两种情况。
练习题2:考虑函数f(x) = x^2,将其在x轴方向进行压缩,使得函数图像变为原来的一半宽度,请画出压缩后的函数图像。
解答:对于函数f(x) = x^2,进行在x轴方向的压缩后的函数可以表示为f(2x) = (2x)^2。
通过计算可知,压缩后的函数图像与原函数相比,在x轴上整体变窄了一半。
3. 翻转变换翻转变换是指将函数图像沿着坐标轴进行翻转。
具体而言,翻转变换可以分为水平翻转和垂直翻转两种情况。
练习题3:考虑函数f(x) = x^2,将其进行水平翻转,请画出翻转后的函数图像。
解答:对于函数f(x) = x^2,进行水平翻转后的函数可以表示为f(-x) = (-x)^2。
通过计算可知,翻转后的函数图像与原函数相比,在y轴上对称翻转。
通过以上练习题,我们可以看到函数图像在不同的变换下发生了形态上的变化。
这些变换可以帮助我们更好地理解函数的性质和变化规律。
在实际应用中,函数图像变换也被广泛应用于物理、工程和经济等领域。
除了上述的平移、伸缩和翻转变换,函数图像还可以进行其他的变换,如旋转和剪切等。
(完整版)正弦函数的图像及性质练习题

(完整版)正弦函数的图像及性质练习题正弦函数是数学中重要的三角函数之一。
它的图像呈现周期性变化的波形,具有一些特殊的性质。
以下是一些关于正弦函数图像及性质的练题,帮助加深对该函数的理解。
练题1画出正弦函数$f(x) = \sin(x)$在$x$轴上的一个完整周期的图像。
标明原点$(0,0)$和与$x$轴交点$(2\pi,0)$。
练题2正弦函数的图像在何种情况下与$x$轴相切?给出一个具体的例子。
练题3在一个完整周期内,正弦函数的最大值是多少?最小值是多少?它们出现在图像的什么位置?练题4对于正弦函数$f(x) = \sin(ax)$,$a$的取值会如何影响函数图像的周期和振幅?给出两个具体的例子。
练题5将正弦函数$f(x) = \sin(x)$的图像上所有点的横坐标的值增加$\pi/2$,得到新的函数图像$g(x)$。
$g(x)$与$f(x)$有什么关系?画出$g(x)$的图像。
练题6正弦函数的图像具有的对称性是什么?说明是关于哪个点对称,并给出一个具体的例子。
练题7对于一般的正弦函数$f(x) = a\sin(bx+c)+d$,$a$、$b$、$c$和$d$的取值会如何影响函数图像的振幅、周期、平移和垂直方向的偏移?给出一个具体的例子。
练题8正弦函数有无界范围吗?是否可以取到任意实数值?解释你的答案。
练题9正弦函数在实际问题中的应用有哪些?举出一个具体的例子,并分析为什么正弦函数适用于该问题。
以上是一些关于正弦函数图像及性质的练题,希望能够帮助你巩固对该函数的理解。
通过解答这些题目,你可以更好地掌握正弦函数的特点和应用。
请注意,这些题目只涉及正弦函数的基本性质和应用,更深入的研究还需要进一步的研究和探索。
高中数学函数图象专题例题+练习

高中数学函数图象例1.作图:(1)y =a |x -1|,(2)y =log |(x -1)|a ,(3)y =|log a (x -1)|(a >1).例2.函数y =ln 1|2x -3|的图象为( )例3.函数f (x )=11+|x |的图象是( )例4.若函数y =(12)|1-x |+m 的图像与x 轴有公共点,则m 的取值范围是________.例5.已知函数f (x )=|x 2-4x +3|(1)求函数f (x )的单调区间,并指出其增减性;(2)若关于x 的方程f (x )-a =x 至少有三个不相等的实数根,求实数a 的取值范围.1、设10<<a ,在同一直角坐标系中,函数xa y -=与)(log x y a -=的图象是( )2、函数||log 2x y =的图象大致是 ( )3、当1>a 时,在同一坐标系中函数xa y -=与xy a log =的图像( )4、 .函数y =1-11-x 的图象是( )5、已知下图①的图象对应的函数为y =f(x),则图②的图象对应的函数在下列给出的四式中,只可能是( )A .y =f(|x|)B .y =|f(x)|C .y =f(-|x|)D .y =-f(|x|)6、二次函数b ax y +=2与一次函数)(b a b ax y >+=在同一个直角坐标系的图像为( )7、下列函数图象中,函数y a a a x =>≠()01且,与函数y a x =-()1的图象只能是( )y y y yO x O x O x O xA B C D11118、当a ≠0时,函数y a x b=+和y b a x=的图象只可能是 ( )9.函数y=2x+1的图象是( )10、函数lg ||x y x=的图象大致是 ( )。
(846)函数图像专项练习40题(有答案)39页 ok

函数图像专项练习40题(有答案)1.某药物研究单位试制成功一种新药,经测试,如果患者按规定剂量服用,那么服药后每毫升血液中含药量y(微克)随时间x(小时)之间的关系如图所示,如果每毫升血液中的含药量不小于20微克,那么这种药物才能发挥作用,请根据题意回答下列问题:(1)服药后,大约分钟后,药物发挥作用.(2)服药后,大约小时,每毫升血液中含药量最大,最大值是微克;(3)服药后,药物发挥作用的时间大约有小时.2.如图是小李骑自行车离家的距离s(km)与时间t(h)之间的关系.(1)在这个变化过程中自变量是,因变量是;(2)小李何时到达离家最远的地方?此时离家多远?(3)请直接写出小李何时与家相距20km?(4)求出小李这次出行的平均速度.3.某农民带了若干千克玉米进城出卖,为了方便,他带了一些零用钱备用,他先按市场价出卖一些后,又降价卖,卖出玉米千克数x与他手中持有钱数y(含备用零钱)的关系如图所示,结合图象回答下列问题.(1)该农民自带的零用钱是多少?(2)降价前玉米的单价是多少?(3)降价后他按每千克0.3元将余下玉米卖完,这时他手中的钱(含零用钱)是36元,问他一共带多少千克玉米?4.某中学的小明和朱老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动朱老师先跑,当小明出发时,朱老师已经距起点200米了,他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).根据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是,因变量是;(2)朱老师的速度为米/秒;小明的速度为米/秒;(3)小明与朱老师相遇次,相遇时距起点的距离分别为米.5.为一位旅行者在早晨8时从城市出发到郊外所走的路程s(km)与时间t(时)的变量关系的图象.根据图象回答问题:(1)在这个变化过程中,自变量是,因变量是;(2)9时走的路程是km,12时走的路程是km;(3)他在途中休息了h;(4)他从休息中直至到达目的地这段时间的平均速度是多少?6.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分钟)之间的部分关系如图象所示.求从关闭进水管起需要多少分钟该容器内的水恰好放完.7.李大爷按每千克2.1元批发了一批黄瓜到镇上出售,为了方便,他带了一些零钱备用.他先按市场售出一些后,又降低出售.售出黄瓜千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)李大爷自带的零钱是多少?(2)降价前他每千克黄瓜出售的价格是多少?(3)卖了几天,黄瓜卖相不好了,随后他按每千克下降1.6元将剩余的黄瓜售完,这时他手中的钱(含备用的钱)是530元,问他一共批发了多少千克的黄瓜?(4)请问李大爷亏了还是赚了?若亏(赚)了,亏(赚)多少钱?8.杨师傅开车从A地出发去300千米远的B地游玩,其行驶路程s与时间t之间的关系如图所示,出发一段时间后,汽车发生故障,需停车检修,修好后又继续行驶.根据题意回答下列问题:(1)上述问题中反映的是哪两个变量之间的关系?并指出自变量和因变量;(2)汽车停车检修了多长时间?修车的地方离B地还有多远?(3)车修好后每小时走多少千米?9.如图,某校学习小组在做实验中发现弹簧挂上物体后会伸长,在弹簧限度内测得这个弹簧的长度y(cm)与悬挂的物体的质量x(kg)间有下面的关系:物体的质量x/kg012345…弹簧的长度y/cm101214161820…(1)上表变量之间的关系中自变量是,因变量是;(2)弹簧不悬挂重物时的长度为cm;物体质量每增加1kg,弹簧长度y增加cm;(3)当所挂物体质量是8kg时,弹簧的长度是cm;(4)直接写出y与x的关系式:.10.甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间的函数关系的图象如图.根据图象解决下列问题:(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间?(2)分别求出甲、乙两人的行驶速度;(3)在什么时间段内,两人均行驶在途中(不包括起点和终点)在这一时间段内:①什么时间甲在乙的前面;②什么时间甲与乙相遇;③什么时间甲在乙后面.11.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?(2)在整个上学的途中哪个时间段小明骑车速度最快,最快的速度是多少米/分?(3)小明在书店停留了多少分钟?(4)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?12.如图是某汽车行驶的路程s(km)与时间t(分钟)的函数关系图.观察图中所提供的信息,解答下列问题:(1)求汽车在前9分钟内的平均速度.(2)汽车在中途停留的时间.(3)求该汽车行驶30千米的时间.13.小明家有一大一小两个圆柱形的杯子,大杯子的杯口半径刚好是小杯子杯口半径的2倍,他将小杯子杯口朝上放入大杯子中,组成如图①所示的一个容器,并匀速向小杯子中注水,当小杯子注满后,水溢到大杯子中,直至整个容器注满水,注水过程中容器中水位高度h(cm)与时间t(s)之间的关系如图②所示,(小杯子的厚度忽略不计)根据图中提供的信息,回答下列问题:(1)小杯子的高度为cm,将小杯子注满水所用的时间为s,大杯子的高是小杯子高的倍;(2)请求出图象中a的值,并说明它表示的实际意义;(3)将整个容器注满水所需要的时间为s.14.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑”时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC表示赛跑过程中的路程与时间的关系,线段OD表示赛跑过程中的路程与时间的关系.赛跑的全程是米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来,以48千米/时的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟?15.某地区一天的气温变化较大,如图表示该地区一天24小时的气温变化情况.①上图描述的两个变量中自变量是什么?因变量是什么?②一天中哪个时间气温最高或最低,分别是多少?③在什么时间范围内气温上升,什么时间范围内气温下降?④该地区一天的温差是多少?若该地区是一旅游景点,你应向该地旅游的游客提出怎样的合理化建议?16.某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同,他们将一头骆驼前两昼夜的体温变化情况绘制成右图,请根据图象回答:(1)在这个问题中,自变量是什么?因变量是什么?(2)第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多少时间?(3)第三天12时这头骆驼的体温是多少?17.如图,已知自行车与摩托车从甲地开往乙地,OA与BC分别表示它们与甲地距离s(千米)与时间t(小时)的关系,则:(1)摩托车每小时走千米,自行车每小时走千米;(2)自行车出发后多少小时,它们相遇?(3)摩托车出发后多少小时,他们相距10千米?18.某车间甲、乙两名工人分别生产同种零件,他们生产的零件数量y(个)与生产时间t(小时)之间的关系如图所示(其中实线表示甲,虚线表示乙,且甲因机器故障停产了一段时间).(1)甲、乙中,先完成40个零件的生产任务.(2)甲在因机器故障停产之前,每小时生产个零件.(3)甲故障排除之后以原来速度的两倍重新开始生产,则甲停产了小时.(4)在第一次甲乙生产零件总数在同一时刻相同到甲完工这段时间,什么时候甲乙生产的零件总数相差3个?19.一水果贩子在批发市场按每千克1.8元批发了若干千克的西瓜进城出售,为了方便,他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克西瓜出售的价格是多少?(3)随后他按每千克下降0.5元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是390元,问他一共批发了多少千克的西瓜?(4)请问这个水果贩子一共赚了多少钱?20.已知某函数图象如图所示,请回答下列问题:(1)自变量x的取值范围是(2)函数值y的取值范围是;(3)当x=0时,y的对应值是;(4)当x为时,函数值最大;(5)当y随x增大而增大时,x的取值范围是;(6)当y随x的增大而减少时,x的取值范围是.21.如图所示的是甲、乙两人在争夺冠军中的比赛图,其中t表示赛跑时所用时间,s表示赛跑的距离,根据图象回答下列问题:(1)图象反映了哪两个变量之间的关系?(2)他们进行的是多远的比赛?(3)谁是冠军?(4)乙在这次比赛中的速度是多少?22.图中反映了某地某一天24h气温的变化情况,请仔细观察分析图象,回答下列问题:(1)上午9时的温度是多少?(2)这一天的最高温度是多少?几时达到最高温度?(3)这一天的温差是多少?在什么时间范围内温度在下降?(4)A点表示什么?几时的温度与A点表示的温度相同?23.如图,分别表示甲步行与乙骑自行车(在同一条路上)行走的路程S甲、S乙与时间t的关系,观察图象并回答下列问题:(1)乙出发时,与甲相距千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为时;(3)乙从出发起,经过小时与甲相遇;(4)甲行走的平均速度是=千米/小时;(5)乙骑自行车出故障前的速度与修车后的速度,一样吗?24.容积为200L的水箱上装有两根进水管A,B和一根排水管C.如图,先由A,B两根进水管同时向水箱内注水,再由B管单独向水箱内注水,最后由C管将水箱内的水排完.(1)水箱内原有水L,B进水管每分钟向水箱内注水L,A,B两根进水管中工作效率较高的是(填“A”或“B”)进水管;(2)若一开始只由B管单独注水,则注满水箱要分钟?25.如图,梯形的下底是10cm,高是6cm,设梯形的上底为xcm,面积为ycm2,面积y随上底x的变化而变化.(1)在这个变化过程中,是自变量,是因变量.(2)y与x的关系式为:y=;(3)请根据关系式填写表:x12 2.58y3345(4)小亮用下面的图象来表示面积y与上底x的变化规律,请观察图象回答:梯形的面积y 随上底x的增大而;若要使面积y大于39cm2,则上底x的范围是.26.温度的变化,是人们经常讨论的话题.如图是某地某天温度变化的情况.(1)这一天的最高温度是多少?从最低温度到最高温度经过了多长时间?(2)这一天的温差是多少?在什么时间范围内温度在下降?(3)图中的A点表示的是什么?B点呢?27.德国心理学家艾宾浩斯(H.Ebbinghaus)研究发现,遗忘在学习之后立即开始,而且遗忘的进程并不是均匀的.最初遗忘速度很快,以后逐渐缓慢.他认为“记忆保持量是时间的函数”,他用无意义音节(由若干音节字母组成、能够读出、但无内容意义即不是词的音节)作记忆材料,用节省法计算保持和遗忘的数量.他通过测试,得到了一些数据如下表,然后又根据这些数据绘出了一条曲线,即著名的艾宾浩斯记忆遗忘曲线,如下图.该曲线对人类记忆认知研究产生了重大影响.时间间隔记忆保持量刚记完100%20分钟后58.2%1小时后44.2%8~9小时后35.8%1天后33.7%2天后27.8%6天后25.4%观察图象及表格,回答下列问题:(1)2小时后,记忆保持量大约是多少?(2)说明图中点A的坐标表示的实际意义.(3)你从记忆遗忘曲线中还能获得什么信息?写出一条即可.28.如图,在一个半径为18cm的圆面上,从中心挖去一个小圆面,当挖去小圆的半径由小变大时,剩下的一个圆环面积也随之发生变化.(1)在这个变化过程中,自变量、因变量各是什么?(2)如挖去的圆半径为x(cm),圆环的面积y(cm2)与x的关系式.(3)当挖去圆的半径为9cm时,剩下圆环面积为多少cm2.29.为纪念爱国诗人屈原,我市在俯南河隆重举行了一次龙舟比赛,如图是甲、乙两支龙舟队在比赛时的路程s(米)与时间t(分钟)之间的图象,请你根据图象回答下列问题:(1)在1.8分钟时,哪支龙舟队处在领先地位?(2)在这次龙舟比赛中哪支龙舟队先到达终点,先到多长时间?(3)甲队在这次比赛中的平均速度是多少?30.如图,AB两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B地,乙也在同日下午骑摩托车从A地开往B地,如图所示折线PQR和线段MN分别表示甲乙所行驶的路程S 和时间t的关系根据图象,回答下列问题:(1)甲和乙谁出发的更早?做多长时间?(2)甲和乙谁先到达B城?早多长时间?(3)乙出发大约多长时间追上甲?(4)请根据图象求出甲和乙在整个过程中的平均速度?31.弹簧的长度与所挂物体的质量的关系如图所示,观察图象回答:(1)弹簧未挂物体的长度是多少?(2)弹簧所挂物体的最大质量是多少?这时弹簧的长度是多少?32.如图是一辆汽车油箱里剩油量y(L)与行驶时间x(h)的图象,根据图象回答下列问题:(1)汽车行使前油箱里有L汽油;(2)当汽车行使2h,油箱里还有L油;(3)汽车最多能行使h,它每小时耗油L;(4)求油箱中剩油y(L)与行使时间x(h)之间的函数关系式.33.甲、乙两个工程队完成某项工程,假设甲、乙两个工程队的工作效率是一定的,工程总量为单位1.甲队单独做了10天后,乙队加入合作完成剩下的全部工程,工程进度如图所示.(1)甲队单独完成这项工程,需天.(2)求乙队单独完成这项工程所需的天数.(3)求出图中x的值.34.如图,直线m反映了北京2008年奥运专卖店某种商品的销售收入与销售量之间的关系,直线n反映了该专卖店的销售成本与销售量之间的关系.根据图象回答:(1)当销售量为3件时,销售收入为,销售成本是;(2)当销售量为6件时,销售收入为;(3)当销售量为件时,销售收入等于销售成本;(4)当销售量为时,该店赢利;(5)当销售量为时,该店亏本.35.某气象研究中心观察一场沙尘暴从发生到结束的全过程,开始时风速按一定的速度匀速增长,经过荒漠地时,风速增长就加快可.一段时间后,风速保持不变,当沙尘暴遇到绿色植被区时,风速保持不变,当沙尘暴遇到绿色植被区时,其风速开始逐渐减小,最终停止,如图是风速与时间的变化关系的图象,结合图象回答下列问题[其中水平数轴表示时间x(h),竖直数字表示风速y(km/h)](1)沙尘暴从开始发生到结束共经历了多长时间?(2)从图象上看,风速在哪一个时间段增大的比较快?增加的速度是多少?(3)风速从开始减小到最终停止,每小时减小多少?(4)风速在那一时间段保持不变?经历可多少?(5)为了防止沙尘暴,可以采取哪些措施?36.三峡工程在2003年6月1日至6月10日下闸蓄水期间,水库水位由106米升至135米,高峡出平湖初现人间.如图是三峡水库水位变化图象,其中x表示下闸蓄水时间(天),y表示水库的平均水位(米).根据图象回答下列问题:(1)上述图象反映了哪两个变量之间的关系?(2)水库的平均水位y可以看成下闸蓄水时间x的函数吗?为什么?(3)求当x=7时的函数值,并说明它的实际意义.37.如图是襄樊地区一天的气温随时间变化的图象,根据图象回答:在这一天中:(1)气温T(℃)(填“是”或“不是”)时间t(时)的函数.(2)时气温最高,时气温最低,最高气温是℃,最低气温是℃.(3)10时的气温是℃.(4)时气温是4℃.(5)时间内,气温不断上升.(6)时间内,气温持续不变.38.请根据下图描述某装配线的生产效率与生产线上工人数量间的关系.39.如图是周涛同学推出的铅球行进的曲线,其中y表示铅球行进的高度,x是铅球行进的水平距离.(1)这个图象反映了哪两个变量之间的关系?(2)铅球行进的高度y是水平距离x的函数吗?请说明理由,并指出自变量的取值范围;(3)根据图象回答:铅球行进的最高点距地面是多少千米?周涛投掷铅球的距离是多少?40.如图可以用来反映这样一个实际情况,一艘船从甲地航行到乙地,达到乙地后即返回,这里横坐标表示航行的时间,纵坐标表示船只与甲地的距离,你认为,船只从甲地到乙地航行的速度与返航的速度是否相同?说说理由.函数图像专项练习40题答案:1.【分析】(1)先观察图象得:1小时对应y=60,可知20分时含药为20微克,根据如果每毫升血液中的含药量不小于20微克,那么这种药物才能发挥作用,可得结论;(2)根据图象得出;(3)利用y=20时,对应的x的差可得结论.【解答】解:(1)由图象可知:服药一个小时时,每毫升血液中含药60微克,所以大约20分钟后,每毫升血液中含药20微克,所以服药后,大约20分钟后,药物发挥作用.故答案为:20;(2)由图象得:服药后,大约2小时,每毫升血液中含药量最大,最大值是80微克;故答案为:2;80;(3)由图象可知:x=7时,y=20,7﹣=≈6.7(小时)则服药后,药物发挥作用的时间大约有6.7小时.故答案为:6.7.2.【分析】(1)在坐标系中横坐标是自变量,纵坐标是因变量,据此求解;(2)根据图象可以得到离家最远时的时间,此时离家的距离,据此即可确定;(3)根据图象可以得到有两个时间点,据此即可确定;(4)往返所用的总路程除以总时间可得.【解答】解:(1)在这个变化过程中自变量是离家时间,因变量是离家距离,故答案为:离家时间、离家距离;(2)根据图象可知小李2h后到达离家最远的地方,此时离家30km;(3)当1≤t≤2时,设s=kt+b,将(1,10)、(2,30)代入,得:,解得:,∴s=20t﹣10,当s=20时,有20t﹣10=20,解得t=1.5,由图象知,当t=4时,s=20,故当t=1.5或t=4时,小李与家相距20km;(4)小李这次出行的平均速度为=12(km/h).3.【分析】(1)由图象可知,当x=0时,y=5,因此农民自带的零钱是5元.(2)根据图象中的信息即可得到结论;(3)可设降价后农民手中钱y与所售土豆千克数x之间的函数关系式,因为当x=a时,y=26,当x=30时,y=20,依此列出方程求解.【解答】解:(1)由图象可知,当x=0时,y=10.答:农民自带的零钱是10元.(2)设降价前土豆的单价是(25﹣10)÷30=0.5(元/千克);答:降价前玉米的单价是0.5元/千克;(3)设降价后农民手中钱y与所售玉米千克数x之间的函数关系式为y=0.3x+b.∵当x=30时,y=25,∴b=16,当x=a时,y=36,即0.3a+16=36,解得:a≈66.6.答:农民一共带了66.6千克玉米.4.【分析】(1)观察函数图象即可找出谁是自变量谁是因变量;(2)根据速度=路程÷时间,即可分别算出朱老师以及小明的速度;(3)根据函数图象即可得到结论.【解答】解:(1)观察函数图象可得出:自变量为小明出发的时间t,因变量为距起点的距离s.故答案为:小明出发的时间t;距起点的距离s.(2)朱老师的速度为:(300﹣200)÷50=2(米/秒);小明的速度为:300÷50=6(米/秒).故答案为:2;6.(3)小明与朱老师相遇2次,相遇时距起点的距离分别为300米或420米,故答案为:300米或420米.5.【分析】(1)根据自变量是横轴表示的量,因变量是纵轴表示的量,解答即可.(2)由图象看相对应的y值即可.(3)由图象可知,休息时,时间在增多,路程没有变化,表现在函数图象上是与x轴平行的线段.(4)根据这段时间的平均速度=这段时间的总路程÷这段时间,算出即可.【解答】解:(1)由图象可得,时间是自变量,路程是因变量;故答案为:时间;路程;(2)由图可知:9时,12时所走的路程分别是4千米,15千米;故答案是:4;12;(3)根据图象可得,该旅行者休息的时间为:10.5﹣10=0.5(小时);故答案是:0.5;(4)根据图象得:(15﹣9)÷(12﹣10.5)=4(千米/时).答:他从休息后直至到达目的地这段时间的平均速度是4千米/时.6.【分析】先根据函数图象求出进水管的进水量和出水管的出水量,由工程问题的数量关系就可以求出结论.【解答】解:由函数图象得:进水管每分钟的进水量为:20÷4=5升设出水管每分钟的出水量为a升,由函数图象,得20+8(5﹣a)=30,解得:a=,故关闭进水管后出水管放完水的时间为:30÷=8分钟.7.【分析】(1)图象与y轴的交点就是李大爷自带的零钱.(2)0到100时线段的斜率就是他每千克黄瓜出售的价格.(3)计算出降价后卖出的量+未降价卖出的量=总共的黄瓜.(4)赚的钱=总收入﹣批发黄瓜用的钱.【解答】解:(1)由图可得农民自带的零钱为50元.(2)(410﹣50)÷100=360÷100=3.6(元).答:降价前他每千克黄瓜出售的价格是3.6元;(3)(530﹣410)÷(3.6﹣1.6)=120÷2=60(千克),100+60=160(千克).答:他一共批发了160千克的黄瓜;(4)530﹣160×2.1﹣50=144(元).答:李大爷一共赚了144元钱.8.【分析】(1)根据函数的图象可以知道横轴表示时间,纵轴表示路程,据此可以得到答案;(2)观察图象可以得到汽车在3﹣4小时之间路程没有增加,说明此时在检修,由B地或C 地的纵坐标即可得出答案;(3)检修后两小时走了150千米据此可以求得速度.【解答】解:(1)路程与时间之间的关系.自变量是时间,因变量是路程;(2)4﹣3=1(小时),300﹣150=150(千米),汽车停车检修了1小时,修车的地方离B地还有150千米;(3)(300﹣150)÷(6﹣4)=75(千米/小时),车修好后的速度为75千米/小时.9.【分析】(1)根据变量的含义可得;(2)由x=0时y的值可得不挂物体的长度,由表格中数据的变化可得;(3)根据(2)中结论可得;(4)利用(3)中计算所用相等关系可得.【解答】解:(1)上表变量之间的关系中自变量是悬挂的物体的质量,因变量是弹簧的长度,故答案为:悬挂的物体的质量、弹簧的长度;(2)弹簧不悬挂重物时的长度为10cm;物体质量每增加1kg,弹簧长度y增加2cm,故答案为:10、2;(3)当所挂物体质量是8kg时,弹簧的长度是10+2×8=26cm,故答案为:26;故答案为:y=10+2x .10.【分析】(1)因为当y=0时,x 甲=0,x 乙=10,所以甲先出发了10分钟,又因当y=6时,x甲=30,x 乙=25,所以乙先到达了5分钟;(2)都走了6公里,甲用了30分钟,乙用了25﹣10=15分钟,由此即可求出各自的速度;(3)根据图象,即可解决问题;【解答】解:(1)甲先出发,先出发10分钟.乙先到达终点,先到达5分钟.(2)甲的速度为:V 甲==12(千米/小时);乙的速度为:V 乙==24(千米/时);(3)观察图象可知:当10<x <20时,甲在乙的前面.②当x=20时,甲与乙相遇.③当20<x <25时,乙在甲的前面.11.【分析】(1)根据图象,观察学校与小明家的纵坐标,可得答案;(2)分析图象,找函数变化最快的一段,可得小明骑车速度最快的时间段,进而可得其速度;(3)读图,对应题意找到其在书店停留的时间段,进而可得其在书店停留的时间;(4)读图,计算可得答案,注意要计算路程.【解答】解:(1)根据图象,学校的纵坐标为1500,小明家的纵坐标为0,故小明家到学校的路程是1500米;(2)根据图象,12≤x ≤14时,直线最陡,故小明在12﹣14分钟最快,速度为=450米/分.(3)根据题意,小明在书店停留的时间为从8分到12分,故小明在书店停留了4分钟.(4)读图可得:小明共行驶了1200+600+900=2700米,共用了14分钟.12.【分析】(1)直接利用总路程÷总时间=平均速度,进而得出答案;(2)利用路程不发生变化时,即可得出停留的时间;(3)利用待定系数法求出S 与t 的函数关系式,将S=30代入解析式求得t 即可.【解答】解:(1)汽车在前9分钟内的平均速度是:=(km/min );(2)汽车在中途停了:16﹣9=7(分钟);(3)当16≤t ≤30时,。
(完整版)函数图像练习题

函数图像练习题 1、小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文章,录入一段时间后因事暂停,过了一会儿,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x ,录入字数为y ,下面能反映y 与x 的函数关系的大致图象是( )2、某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离与时间的关系的大致图象是( )3、如图,扇形OAB 动点P 从点A 出发,沿线段B0、0A 匀速运动到点A ,则0P 的长度y 与运动时间t 之间的函数图象大致是( )4、某人进行登山活动,从山脚到山顶,休息一会儿又沿原路返回。
若用横轴表示时间t ,纵轴表示与山脚距离h ,那么反映全程h 与t 的关系的图是( )5.甲、乙两人在一次赛跑中,路程s (米)与所用时间t (秒)的关系如图所示,则下列说法正确的是( )A .甲比乙先出发 B .乙比甲跑的路程多C .甲先到达终点D .甲、乙两人的速度相同6.“龟兔赛跑”讲述了这样一个故事:“领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当醒来时,发现乌龟快到达终点了,于是,急忙追赶,但为时已晚,乌龟还是先到达了终点.……”用s 1,s 2分别表示乌龟和兔子的行程,t 为时间,则下列图象中与故事情节相吻合的图象是( )7. 如图是古代计时器----“漏壶”的示意图在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间。
用x 表示时间,y 表示壶底到水面的高度,下面的哪个图象适合表示一小段时间内y 与x 的函数关系?8、如图所示的曲线,哪个表示y是x 的函数( )y x y x y xy x9.如图所示,一枝蜡烛上细下粗,设这枝蜡烛点燃后剩下的长度为h,点燃时间为t,则能大致刻画出h与t之间函数关系的图象是()10.柿子熟了,从树上落下来,可以大致刻画出柿子下落过程中的速度变化情况的图象是()11.小明家距学校m千米,一天他从家上学,先以a千米/时的速度跑步,后以b千米/时的速度步行,到达学校共用n小时。
函数图像绘制练习题

函数图像绘制练习题函数图像的绘制是数学学习中的重要内容之一,通过练习绘制各类函数的图像,我们可以更好地理解函数的性质和行为。
下面是几个函数图像绘制的练习题,希望能够帮助大家提高对函数图像的掌握和理解。
练习一:线性函数绘制函数 y = 2x - 1 的图像。
解答:首先,我们需要确定函数图像的定义域和值域。
由于这是一个一次函数,所以其定义域为整个实数集,值域也是整个实数集。
接下来,我们选择一些特殊的点来描绘图像。
由于这是一个线性函数,我们只需要找到两个点即可确定直线。
选择 x = 0 和 x = 1 这两个值进行计算,得到对应的 y 坐标。
当 x = 0 时,y = -1,当 x = 1 时,y = 1。
现在,我们可以在坐标系中标出这两个点,并用直线连接它们。
注意,由于定义域和值域为整个实数集,函数图像是一条无限延伸的直线。
练习二:二次函数绘制函数 y = x^2 的图像。
解答:同样地,首先确定函数图像的定义域和值域。
由于这是一个二次函数,其定义域为整个实数集,值域为非负实数集[0, +∞)。
为了绘制这个图像,我们选择一些特殊的点。
取 x = -1,0 和 1 这三个值进行计算,得到对应的 y 坐标。
当 x = -1 时,y = 1;当 x = 0 时,y = 0;当 x = 1 时,y = 1。
标出这三个点,并通过它们画出一个 U 形曲线。
注意到函数图像关于 y 轴对称,所以我们只需要画出右半部分即可。
练习三:指数函数绘制函数 y = 2^x 的图像。
解答:函数 y = 2^x 是一个指数函数,该函数的定义域为整个实数集,值域为正实数集(0, +∞)。
我们选择一些特殊的点来绘制图像。
取 x = -1,0 和 1 这三个值进行计算,得到对应的 y 坐标。
当 x = -1 时,y = 1/2;当 x = 0 时,y = 1;当 x = 1 时,y = 2。
在坐标系中标出这三个点,并通过它们画出一个逐渐增长的曲线。
初中数学一次函数的图像专项练习30题(有答案)ok

一次函数的图像专项练习30题(有答案)1.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()A.B.C.D.2.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x>2时,y2>y 1,其中正确的个数是()A.0B.1C.2D.33.一次函数y=kx+b,y随x的增大而减小,且kb>0,则在直角坐标系内它的大致图象是()A.B.C.D.4.下列函数图象不可能是一次函数y=ax﹣(a﹣2)图象的是()A.B.C.D.5.如图所示,如果k•b<0,且k<0,那么函数y=kx+b的图象大致是()A.B.C.D.6.如图,直线l1:y=x+1与直线l2:y=﹣x﹣把平面直角坐标系分成四个部分,则点(,)在()A . 第一部分B . 第二部分C . 第三部分D . 第四部分7.已知正比例函数y=﹣kx 和一次函数y=kx ﹣2(x 为自变量),它们在同一坐标系内的图象大致是( ) A . B . C . D .8.函数y=2x+3的图象是( ) A .过点(0,3),(0,﹣)的直线 B .过点(1,5),(0,﹣)的直线C .过点(﹣1,﹣1),(﹣,0)的直线D . 过点(0,3),(﹣,0)的直线9.下列图象中,与关系式y=﹣x ﹣1表示的是同一个一次函数的图象是( ) A . B . C . D .10.函数kx ﹣y=2中,y 随x 的增大而减小,则它的图象是下图中的( ) A .B .C .D .11.已知直线y 1=k 1x+b 1,y 2=k 2x+b 2,满足b 1<b 2,且k 1k 2<0,两直线的图象是( ) A .B .C .D .A.B.C.D.13.连降6天大雨,某水库的蓄水量随时间的增加而直线上升.若该水库的蓄水量V(万米3)与降雨的时间t(天)的关系如图所示,则下列说法正确的是()A.降雨后,蓄水量每天减少5万米3B.降雨后,蓄水量每天增加5万米3C.降雨开始时,蓄水量为20万米3D.降雨第6天,蓄水量增加40万米314.拖拉机开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油y(升)与它工作的时间t(时)之间的函数关系的图象是()A.B.C.D.15.已知正比例函数y=kx的图象经过第一、三象限,则y=kx﹣k的大致图象可能是下图的()A.B .C.D.16.一次函数y=kx+b的图象如图所示,当x_________时,y>2.17.一次函数的图象如图所示,根据图象可知,当x_________时,有y<0.18.如图,直线l是一次函数y=kx+b的图象,当x_________时,y>0.19.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③当x=3时,y1=y2;④当x>3时,y1<y2中,正确的判断是_________.20.如图,已知函数y1=ax+b和y2=kx的图象交于点P,则根据图象可得,当x_________时,y1>y2.21.已知一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是_________.22.在平面直角坐标系中画出函数的图象.(1)在图象上标出横坐标为﹣4的点A,并写出它的坐标;(2)在图象上标出和y轴的距离是2个单位长度的点,并写出它的坐标.23.作函数y=2x﹣4的图象,并根据图象回答下列问题.(1)当﹣2≤x≤4,求函数y的取值范围.(2)当x取何值时,y<0?y=0?y>0?24.如图是一次函数y=﹣x+5图象的一部分,利用图象回答下列问题:(1)求自变量的取值范围.(2)在(1)在条件下,y是否有最小值?如果有就求出最小值;如果没有,请说明理由.25.已知函数y1=﹣x+和y2=2x﹣1.(1)在同一个平面直角坐标系中画出这两个函数的图象;(2)根据图象,写出它们的交点坐标;(3)根据图象,试说明当x取什么值时,y1>y2?26.作出函数y=3﹣3x的图象,并根据图象回答下列问题:(1)y的值随x的增大而_________;(2)图象与x轴的交点坐标是_________;与y轴的交点坐标是_________;(3)当x_________时,y≥0;(4)函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是多少?27.已知函数y=2x﹣1.(1)在直角坐标系中画出这函数的图象;(2)判断点A(﹣2.5,﹣4),B(2.5,4)是否在函数y=2x﹣1的图象上;(3)当x取什么值时,y≤0.28.已知函数y=﹣2x﹣6.(1)求当x=﹣4时,y的值,当y=﹣2时,x的值.(2)画出函数图象.(3)如果y的取值范围﹣4≤y≤2,求x的取值范围.29.已知一次函数的图象经过点A(﹣3,0),B(﹣1,1)两点.(1)画出图象;(2)x为何值时,y>0,y=0,y<0?30.已知一次函数y=﹣2x+2,(1)在所给的平面直角坐标系中画出它的图象;(2)根据图象回答问题:①图象与x轴的交点坐标是_________,与y轴的交点坐标是_________;②当x_________时,y>0.参考答案:1.分四种情况:①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C选项符合;③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,无选项符合;④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选C2.由一次函数y1=kx+b与y2=x+a的图象可知k<0,a<0,当x>2时,y2>y1,①③正确.故选C3.∵一次函数y=kx+b,y随x的增大而减小,∴k<0,又∵kb>0,∴b<0,∴函数的图象经过第二、三、四象限.故选C4.根据图象知:A、a>0,﹣(a﹣2)>0.解得0<a<2,所以有可能;B、a<0,﹣(a﹣2)<0.解得两不等式没有公共部分,所以不可能;C、a<0,﹣(a﹣2)>0.解得a<0,所以有可能;D、a>0,﹣(a﹣2)<0.解得a>2,所以有可能.故选B5.∵k•b<0,且k<0,∴b>0,k<0,∴函数y=kx+b的图象经过第一、二、四象限,故选D6.由题意可得,解得,故点(,)应在交点的上方,即第二部分.故选B.7.分两种情况:(1)当k>0时,正比例函数y=﹣kx的图象过原点、第一、三象限,一次函数y=kx﹣2的图象经过第一、三、四象限,选项A符合;(2)当k<0时,正比例函数y=﹣kx的图象过原点、第二、四象限,一次函数y=kx﹣2的图象经过第二、三、四象限,无选项符合.故选A.8.A、把x=0代入函数关系式得2×0+3=3,故函数图象过点(0,3),不过(0,﹣),故错误;B、由A知函数图象不过点(0,﹣),故错误;C、把x=﹣1代入函数关系式得,2×(﹣1)+3=1,故(﹣1,﹣1)不在函数图象上,故错误;D、分别令x=0,y=0,此函数成立,故正确.故选D9.函数y=﹣x﹣1是一次函数,其图象是一条直线.当x=0时,y=﹣1,所以直线与y轴的交点坐标是(0,﹣1);当y=0时,x=﹣1,所以直线与x轴的交点坐标是(﹣1,0).由两点确定一条直线,连接这两点就可得到y=﹣x﹣1的图象.故选D10.整理为y=kx﹣2∵y随x的增大而减小∴k<0又因为图象过2,4,3象限故选D.11.k1k2<0,则k1与k2异号,因而两个函数一个y随x的增大而增大,另一个y随x的增大而减小,因而A是错误的;b1<b2,则y1与y轴的交点在y2与y轴的交点的下边,因而B、C都是错误的.12.①当ab>0,正比例函数y=abx过第一、三象限;a与b同号,同正时y=ax+b过第一、二、三象限,故D错误;同负时过第二、三、四象限,故B错误;②当ab<0时,正比例函数y=abx过第二、四象限;a与b异号,a>0,b<0时y=ax+b过第一、三、四象限,故C错误;a<0,b>0时过第一、二、四象限.故选A13.A、根据图象知,水库的蓄水量因该随着降雨的时间的增加而增多;故本选项错误;B、本图象的直线,所以每天的降雨量是相等的,所以,蓄水库每天的增加的水的量是(40﹣10)÷6=5;故本选项正确;C、根据图示知,降雨开始时,蓄水量为10万米3,故本选项错误;D、根据图示知,降雨第6天,蓄水量增加了40万米3﹣30万米3=10万米3,故本选项错误;故选B14.根据题意列出关系式为:y=40﹣5t,考虑实际情况:拖拉机开始工作时,油箱中有油4升,即开始时,函数图象与y轴交于点(0,40),如果每小时耗油0.5升,且8小时,耗完油,故函数图象为一条线段.故选D15.∵正比例函数y=kx的图象经过第一、三象限,∴k>0,∴﹣k<0,∴y=kx﹣k的大致图象经过一、三、四象限,故选:B.16.由图形可知,该函数过点(0,2),(3,0),故斜率k==,所以解析式为y=,令y>2,即>2,解之得:x<017.根据题意,要求y<0时,x的范围,即:x+3<0,解可得:x<﹣2,故答案为x<﹣218.根据题意,观察图象,可得直线l过点(2,0),且y随x的增大而增大,分析可得,当x>2时,有y>0 19.根据图示及数据可知:①一次函数y1=kx+b的图象经过第二、四象限,则k<0正确;②y2=x+a的图象经与y轴交与负半轴,则a>0错误;③一次函数y1=kx+b与y2=x+a的图象交点的横坐标是3,所以当x=3时,y1=y2正确;④当x>3时,y1<y2正确;故正确的判断是①,③,④20.根据图示可知点P的坐标是(﹣4,2),所以y1>y2即直线1在直线2的上方,则x<﹣4.21.根据图象和数据可知,当y<0即图象在x轴下侧,x<1.故答案为x<122.函数与坐标轴的交点的坐标为(0,3),(6,0).(1)点A的坐标(﹣4,5);(2)和y轴的距离是2个单位长度的点的坐标M(2,2),N(﹣2,4)23.当x=0时,y=﹣4;当y=0时,2x﹣4=0,解得x=2,∴函数图象与两坐标轴的交点为(0,﹣4)(2,0).图象如下:(1)x=﹣2时,y=2×(﹣2)﹣4=﹣8,x=4时,y=2×4﹣4=4,∵k=2>0,∴y随x的增大而增大,∴﹣8≤y≤4;24.(1)由图象可看出当y=2.5时,x=5,因此x的取值范围应该是0<x≤5(y轴上的点是空心圆,因此x≠0);(2)由图象可看出,当x=5时,函数的值最小,是y=2.525.(1)如图所示:(2)由(1)中两函数图象可知,其交点坐标为(1,1);(3)由(1)中两函数图象可知,当x>1时,y1>y2.26.如图.(1)因为一次项系数是﹣3<0,所以y的值随x的增大而减小;(2)当y=0时,x=1,所以图象与x轴的交点坐标是(1,0);当x=0时,y=3,所以图象与y轴的交点坐标是(0,3);(3)由图象知,在A点左边,图象在x轴上方,函数值大于0.所以x≤1时,y≥0.(4)∵OA=1,OB=3,∴函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是S△AOB=×1×3=.27.(1)函数y=2x﹣1与坐标轴的坐标为(0,﹣1)(,0),描点即可,如图所示;(2)将A、B的坐标代入函数式中,可得出A点不在直线y=2x﹣1的图象上,B点在直线y=2x﹣1的图象上,A代入函数后发现﹣2.5×2﹣1=﹣6≠﹣4,因此A点不在函数y=2x﹣1的图象上,然后用同样的方法判定B是否在函数的图象上;(3)当y≤0时,2x﹣1≤0,因此x≤.28.(1)当x=﹣4时,y=2;当y=﹣2时,x=﹣2;(2)由(1)可知函数图象过(﹣4,2)、(﹣2,﹣2),由此可画出函数的图象,如下图所示:(3)∵y=﹣2x﹣6,﹣4≤y≤2∴﹣4≤﹣2x﹣6≤22≤﹣2x≤8﹣4≤x≤﹣129.(1)图象如图:(2)观察图象可得,当x>﹣3时,y>0;当x=﹣3时,y=0;当x<﹣3时,y<0.30.(1)列表:x 0 1y 2 0描点,连线(如图)…(也可以写成过点(0,2)和(1,0)画直线)(2)①(1,0);(0,2)②<1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数图像练习题、小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的1接到通知后,小华立即在电脑上打字录入这篇文章,录入一段时间后因事暂停,电子文稿..成过了一会儿,小华继续录入并加快了录入速度,直至录入完
录入字设从录入文稿开始所经过的时间为x,
的函数关系的大致x下面能反映y与数为y,图象是()、某人匀速跑步到公园,在公2
园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的
与时间距离)
( 的关系的大致图象是
的长、AP从点出发,沿线段B0A0A,则匀速运动到点0POAB3、如图,扇形动点)y度与运动时间t之间的函数图象大致是
(
若用横从山脚到山顶,休息一会儿又沿原路返回。
4、某人进行登山活动,thht与的关系的图是(,纵轴表示与山脚距离,那么反映全程轴表示时间)
ts(秒)的关系如图所示,则下列5.甲、乙两人在一次赛跑中,路程(米)与所用时间)A.甲比乙先出发 B.乙比甲跑的路程多说法正确的是(.甲、乙两人的速度相同C.甲先到达终点 D.“龟兔赛跑”讲述了这样一个故事:“领先的兔子看着缓慢爬行的乌龟,骄傲起来,6睡了一觉,当醒来时,发现乌龟快到达终点了,于是,急忙追赶,但为时已晚,乌龟还是tss为时间,则下列图象中与,先到达了终点.……”用分别表示乌龟和兔子的行程,21
故事情节相吻合的图象是()“漏壶”的示意图---- 7.如图是古代计时器在壶内盛一定量的水,水从壶下的小孔漏出,人们根据壶中水面的位置计壶壁内画出刻度,表示壶底到水面的高度,下面的哪个图象适合表示一小段时间表示时间,yx算时间。
用
的函数关系?与内yxy8、如图所示的曲线,哪个表示 x是的函数()
y
y y
y
x
x x
x
1
9.如图所示,一枝蜡烛上细下粗,设这
,点燃时h枝蜡烛点燃后剩下的长度为之间函数th与间为t,则能大致刻画出)关系的图象是(.柿子熟了,从树上落下来,可以大致刻10
画出柿子下落过程中的速度变化情况的图)象是(
一天他从家上学,千米,11.小明家距学校m千米/b先以a千米/时的速度跑步,后以,上学的时间(千米)时的速度步行,到达学校共用n小时。
设小明同学距学校的距离为s)),则s与t之间的大致图象是(为t(小时
分钟,到一.张大伯出去散步,从家走了2012分钟分钟报纸后,用了15个阅报亭,看了10返回到家,下面表示张大伯离家距离与时间之)间的关系的图象是
(
)与放置的时间t的函数图像是(T13.在夏天,一杯开水放在院里,其水温
AP由xB→C→D运动,表示点A214、已知动点P在边长为的正方形ABCD的边上沿着→()
的函数关系图象大致为APD表示△的面积,则y与x点出发所经过路程,y
元;每月拔打市、某电信部门为了鼓励固定电话消费,推出新的优惠套餐:月租费1015 分钟的每分钟收费分钟内时,每分钟收费1200.2元,超过1200.1元;不足内电话在 ty11分钟时按分钟计费.则某用户一个月的市内电话费用(元)与拔打时间(分钟) 的函数关系用图象表示正确的是
2
、甲、乙两车在同一直线公路上匀速行驶,开始甲车16在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返的函数关关于y米,yx 回.设x秒后两车间的距离为______米/秒.系如图所示,则甲车的速度是
、一辆慢车与一辆快车分别从甲、乙两地同时出发,17然匀速相向而行,两车在途中相遇后都停留一段时间,设慢车行驶的时间后分别按原速一同驶往甲地后停车.y小时,两车之间的距离为y千米,图中折线表示为x 与x之间的函数图象,请根据图象解决下列问题:)甲乙两地之间的距离为______千米;(1 2)求快车和慢车的速度;(的取值范围.x所表示的y与x之间的函数关系式,并写出自变量3()求线段DE
市,两车同时出发相向而行,在市,乙车在360千米,甲车在AB、18A市与B市相距市,乙车继续按原方向前进,设每车在行某地相遇,两车换货后,甲车立即按原路返回A小时的函数关系如图所示,根据所驶过程中速度保持不变,两车间的距离y与行驶时间x)求甲乙两车行驶速)小时(2 提供的信息回答下列问题(1)辆车换货的时间是(
50千米度(3)求两车在何时相距
22千克以上的种子,超过元“黄金19、1号”玉米种子的价格为5/千克,如果一次购买的函x 与元,则千克,付款金额为折,设购买种子数量为千克部分的种子价格打6xyy
数关系的图象大致是3
分别l,l20 、甲、乙两辆摩托车同时从相距B20kmA的,两地出发,相向而行.图中 2 1)的函数关系.则下列说法(h)与行驶时间地的距离表示甲、乙两辆摩托车到As(kmt
)错误的是(
.乙摩托车的速度较快A B.经过0.3B两地的中点小时甲摩托车行驶到A,0.25C.经过小时两摩托车相遇
km
地.当乙摩托车到达DA地时,甲摩托车距离A长方xm3的、21长方形周长是0 c,变量表示长形的宽表y示,变量(是).正图化y表其如长形方的,下图,中示随x变的象确的
前往终点A/120BA、已知,、两地相距千米,甲骑自行车以20千米时的速度由起点22两人同时出发,各自到达终点后前往终点A.B/40B,乙骑摩托车以千米时的速度由起点s停止.t(小时),则下图中正确反映(千米),甲行驶的时间为s设两人之间的距离为t之间函数关系的是()与
D.
B.
A.
C.
、王芳同学为参加学校组织的科技知识竞赛,她周末到新华书店购买资料.如图,是王23芳离家的距离与时间的函数图象.若黑点表示王芳家的位置,则王芳走的路线可能是
(
4。