烟气的热容-ts

合集下载

烟气的物性参数

烟气的物性参数
900
0.100
152
0.59
1.532
0。366
1000
0。109
174
0.58
1.545
0.369
1100
0。118
197
0.57
1.556
0.372
1200
0.126
221
0。56
1.578
0。377
1300
0.135
245
0.55
1.591
0.380
1400
0。144
272
0.54
1.604
/kJ•m—3
t/℃
比热容
烟气焓(c0yty)/kJ•m-3
kJ/m3•℃
kCal/m3•℃
kJ/m3•℃
kCal/m3•℃
100
1.3811
0。3299
138。11
1200
1。5884
0.3794
1906。08
200
1。4003
0.3345
280。06
1300
1。6032
0。3829
2084。15
通用烟气焓
当缺乏燃料元素分析成分时,可通过燃料收到基的低位发热量按经验公式计算出理论空气量L0和理论烟气量V0后,按下式计算烟气焓:
Hy=ε0c0yty[V0+1。0161(α—1)L0]
式中 ε0-通用烟气焓的校正系数;
c0yty-通用烟气焓(kJ/m3),查下表。
通用烟气焓
t/℃
比热容
烟气焓(c0yty)
0。69
200
0。748
1。097
14.444
17。60
2。497

烟气量计算公式(两篇)

烟气量计算公式(两篇)

引言:烟气量计算是在工业生产过程中重要的环境监测指标之一,通过准确计算烟气量,可以评估工艺装置的运行状况和对环境的影响程度。

本文将介绍烟气量计算公式的相关内容,通过详细阐述5个大点,包括烟气密度计算、流速计算、截面面积计算、烟气体积流量计算和烟气计量装置选择等,以帮助读者深入了解烟气量计算方法的理论基础和实际应用。

概述:烟气量计算是确定烟气中污染物排放总量的关键步骤。

通过合理计算烟气量,可以为环境保护和工业生产提供有效的数据支持。

本文将详细说明烟气量计算公式的相关内容,以帮助读者掌握计算方法并正确应用于实际工作中。

正文:1.烟气密度计算1.1烟气密度的定义和意义1.2烟气密度的计算公式1.2.1理想气体状态方程1.2.2实际气体状态方程1.3烟气密度计算的注意事项1.4烟气密度计算的实例分析1.5烟气密度计算的应用建议2.流速计算2.1流速的定义和测量原理2.2烟气流速计算的基本方法2.2.1流量测量法2.2.2速度压差法2.3流速计算中的常见误差及修正方法2.4流速计算的实际案例分析2.5流速计算的应用指导3.截面面积计算3.1截面面积的概念和意义3.2截面面积计算的常用方法3.2.1圆形截面面积计算3.2.2矩形截面面积计算3.2.3不规则截面面积计算3.3截面面积计算的实例分析3.4截面面积计算的应用建议4.烟气体积流量计算4.1烟气体积流量的概念和计算方法4.2烟气体积流量计算的关键参数及其测量原理4.3烟气体积流量计算公式的推导和应用4.4烟气体积流量计算的实际案例分析4.5烟气体积流量计算的注意事项和应用指导5.烟气计量装置选择5.1烟气计量装置的分类和特点5.2烟气计量装置选择的基本原则5.3烟气计量装置选择的关键考虑因素5.4常见烟气计量装置的比较分析5.5烟气计量装置选择的实际应用举例总结:通过本文对烟气量计算公式的详细阐述,我们可以了解烟气密度计算、流速计算、截面面积计算、烟气体积流量计算和烟气计量装置选择等相关内容。

沼气发电计算表

沼气发电计算表

发电机热效率
板换效率
可利用余热
缸套水系统热量计算表(按热效率计算)
η4
39%
η3
95%
q缸套水
4654260 1293
kJ/h kW
q缸套水=(V·a甲烷·q甲烷·η4-q烟气)·η3
1.759118
沼气量 沼气甲烷含量 纯甲烷热值
发电效率 理论发电量
年发电量
基本参数表
V
1250
Nm3/h
a甲烷
60.00%
q甲烷
34
MJ/Nm3
η1
41.40%
2933
kW
2346
万kWh
发电量=V·a甲烷·q甲烷·η1
烟气余热利用热量计算表
过量空气系数
λ
Байду номын сангаас
1.2
烟气初始温度
t1
500

烟气排放温度
t2
150

烟气密度
ρ1
1.33
kg/Nm3
烟气比热容(500℃) Cp1
1.326 kJ/(kg.℃)
烟气量
Q
8571
Nm3/h
蒸汽发生器效率
η2
92%
0.8Mpa饱和蒸汽焓值
q蒸汽
2767
kJ/kg
烟气余热总量
q烟气
5290740 1470
kJ/h kW
蒸汽产量
t蒸汽
1.8
t/h
Q=λ·V·a甲烷·2/0.21
q烟气=Q·Cp1·ρ1·(t1-t2) t蒸汽=q烟气·η2/q蒸汽
缸套水流量 供水温度 回水温度
防冻液比热容 防冻液密度
可利用余热

烟气的相关计算资料

烟气的相关计算资料

干空气、烟气、水、水蒸气热物理性质,参数和单位在第四讲中,介绍了与翅片管相关的计算式,其中,多次应用流体的物性参数,如流体的密度,粘度,导热系数,等等。

每一种流体都有它自己的独特的物理参数,就像生物科学中的“基因”一样,这些物性参数构成了流体本身区别于其它流体的特性。

例如,大家所熟知的空气和水,物理性质是截然不同的,拿密度而言,在常温下水的密度为1000 kg/m3; 而空气的密度仅为1.2 kg/m3 .左右。

与热有关的物性叫热物性,由于流体的热物性对传热和阻力都有极大的影响,而且是计算和设计中不可缺少的数据,因而本讲将要介绍几种常用流体的热物性参数。

应当指出,几乎所有的物性参数都是通过大量的细致的实验得出来的,并有相关的专著可供选用1 空气,烟气,水,水蒸气的热物理性质表。

考虑到翅片管换热器的应用特点,管外翅片侧主要与空气或烟气打交道,而管内流动的主要是水和水蒸气,偶尔也有其他流体,如制冷剂等。

所以下面给出的热物性表基本上能满足翅片管换热器的计算要求。

附录13 几种饱和液体的热物理性质上表适用于1个大气压(100000 Pa )下的空气,对于在管道中流动的空气,在鼓风机或引凤机的作用下,其压力可能在大气压上下波动,但一般波动幅度不超过1个大气压的1%,故上表仍是适用的。

2 几个常用单位的说明(1)力的单位。

从中学物理知道,力= 质量×加速度,对于1 kg 质量的物体,当其加速度为1 m / s2 时,就构成了力的单位:牛顿(N ),所以,1 N = 1 kg ×1 m/s2 = 1 kg.m /s2 .( 2 ) 压力或压强单位为Pa:因为压力=力/ 面积,即单位面积上承受的力,所以1 Pa = 1 N / 1 m2 = 1 kg / ( m s2 .).;应该记住,1 个大气压= 100000 Pa = 105 Pa.= 0.1 MPa (兆帕)(3) 功,能量,热量的单位。

烟气的相关计算资料

烟气的相关计算资料

其中,多次应用流体的物性参数,如流体的密
基因”一样,这些物性参数构成了流体本身区别于其它流体的特性。例如,大家所熟知的空
1000 kg/m3; 而空气
1.2 kg/m3 .左右。与热有关的物性叫热物性,由于流体的热物性对传热和阻力
而且是计算和设计中不可缺少的数据,因而本讲将要介绍几种常用流体的
应当指出,几乎所有的物性参数都是通过大量的细致的实验得出来的,并有相
= 40000 m3/h×0.746 kg/m3 = 29840 kg/h = 8.29 kg / s ..
进一步将上述质量流量换算成0℃下的体积流量,即标准立方米每小时(Nm3/h)。
由上表查得,在0℃下的空气密度为ρ=1.293 kg/m3,则在标准状况下的体积流量为:
V = 29840 kg/h ÷ 1.293 kg/m3 = 23078 Nm3/h.
KJ = 0.2388 Kcal 或 1 Kcal = 4.1868 KJ
KW. = 1 KJ /s = 0.2388 Kcal /s = 860 Kcal /h
1200000 Kcal / h , 其对应的KW数为:
/ 860 = 1395 KW ≈2×700 KW = 1.4 MW ( 1 MW = 106 W).
1 N / 1 m2 = 1 kg / ( m s2 .).;
1 个大气压= 100000 Pa = 105 Pa.= 0.1 MPa (兆帕)
功 ,能量,热量的单位。由中学物理可知,功 = 力 ×距离,单位是焦耳(J),
J = 1 N ×1 m = 1 kg.m2 / s2 .
J),或千焦耳(KJ) 物性表 Nhomakorabea应用举例:

常用气体热容、粘度、导热系数计算公式

常用气体热容、粘度、导热系数计算公式

一、常用气体热容、粘度、导热系数计算公式1、温度:0-1000℃2、常压下比热容Cp(《手册》附图1-5-1至1-5-10,误差率小于3%)1) H2:6.88+0.000066T+0.279*10-6T22) N2: 6.30+0.001819T-0.345*10-6T23) CO: 6.25+0.002091T-0.459*10-6T24) CO2: 7.70+0.0053T-0.83*10-6T25) CH4: 3.38+0.017905T-4.188*10-6T26) H2O: 6.89+0.003283T-0.343*10-6T27)NH3:-0.0015t+8.8+ABS((t-20)*0.05/20),范围t=0-40℃NH3:0.00685t+8.456+ABS((t-170)*0.06/130),范围t=40-300℃8)Ar: -0.000025t+4.975+ABS((t-200)*0.005/200),范围t=0-400℃Ar: 4.97,范围t=400-800℃9)O2: 0.0.00185t+7.025-ABS((t-300)*0.075/300)。

范围t=0-600℃10)空气:0.00053t+6.9+ABS((t-300)*0.04/300),范围t=0-600℃3、常压下动力粘度μ(《手册》附图1-6-1至1-6-10,误差率小于3%)1)H2:μ0*107=0.1725t+86.7-ABS((t-200)*2.5/200),Pa.s。

范围t=0-400℃H2:μ0*107=0.142t+97.8-ABS((t-600)*1.4/200),Pa.s。

范围t=400-800℃2)N2:μ0*107=0.3625t+173.5-ABS((t-200)*7.5/200),Pa.s。

范围t=0-400℃ N2:μ0*107=0.2625t+209.5-ABS((t-600)*3.5/200),Pa.s。

烟气余热回收量计算公式

烟气余热回收量计算公式

烟气余热回收量计算公式烟气余热回收是指利用工业生产中产生的烟气中的热能,通过热交换设备将其转化为可利用的热能的过程。

烟气余热回收不仅可以节约能源,减少能源消耗,还可以降低环境污染,提高能源利用效率。

因此,烟气余热回收在工业生产中具有重要的意义。

在进行烟气余热回收时,需要对烟气余热回收量进行准确的计算。

烟气余热回收量的计算公式可以帮助工程师们准确地评估烟气中的热能含量,从而选择合适的热交换设备,实现烟气余热的高效回收。

烟气余热回收量的计算公式如下:Q = m Cp ΔT。

其中,Q为烟气余热回收量(单位,千焦尔/小时),m为烟气的质量流量(单位,kg/h),Cp为烟气的比热容(单位,J/kg℃),ΔT为烟气的温度差(单位,℃)。

在实际应用中,需要根据具体的工艺参数和烟气特性来确定烟气余热回收量的计算公式。

下面将详细介绍烟气余热回收量计算公式中的各个参数。

1. 烟气的质量流量(m)。

烟气的质量流量是指单位时间内通过烟气管道的烟气质量。

在工程实践中,可以通过流量计等仪器来测量烟气的质量流量。

烟气的质量流量是烟气余热回收量计算中的重要参数,它直接影响着烟气中的热能含量。

2. 烟气的比热容(Cp)。

烟气的比热容是指单位质量的烟气在温度变化时所吸收或释放的热量。

不同的烟气成分和温度下,其比热容是不同的。

通常情况下,可以根据烟气的成分和温度来确定烟气的比热容。

在工程设计中,需要根据具体的烟气成分和温度来选择合适的烟气的比热容值。

3. 烟气的温度差(ΔT)。

烟气的温度差是指烟气进入热交换设备前后的温度差。

烟气的温度差直接影响着烟气中的热能含量,是烟气余热回收量计算中的关键参数。

通常情况下,可以通过温度传感器等仪器来测量烟气的温度差,从而确定烟气的温度差值。

通过以上三个参数的测量和计算,可以得到烟气余热回收量的具体数值。

在工程设计中,需要根据实际情况来确定烟气余热回收量的计算公式,从而选择合适的热交换设备,实现烟气余热的高效回收。

烟气降温释放热量计算公式

烟气降温释放热量计算公式

烟气降温释放热量计算公式
烟气降温释放热量计算公式为:Q=cpm×ΔT,其中Q为释放的热量,cpm为烟气容积每度温差所释放热量,ΔT为烟气从高温到低温的温差。

烟气的热量释放是以它的容积每度温差,也就是所谓的“比热容”(cpm)的乘积数来计算的,cpm的单位为J/m3℃。

即Q=cpm×ΔT,其中
Q为释放热量,cpm为烟气容积每度温差所释放热量,ΔT为烟气从高温
到低温的温差。

就是说,烟气的释放热量和它的容积比热容以及温差变化
有关。

烟气的释放热量是一种有效利用热能的方法,可以使用它来节省能源,从而减少污染。

它也可以用于加热和冷却,具有节能、节水、抗腐蚀等优势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档