信号与系统 连续时间信号卷积运算

合集下载

连续时间系统卷积的计算

连续时间系统卷积的计算

实验报告实验名称:连续时间系统卷积的数值计算班级:120241姓名:彭壮学号:12021327一、实验目的:1、加深对卷积概念及原理的理解;2、掌握借助计算机计算任意信号卷积的方法。

二、实验原理:卷积积分不仅可以通过直接积分或查表的方法来求解,还可以用积分的数值计算方法来求解。

在线性系统的分析过程中,有时会遇到复杂的激励信号,或者有时只是一组测试数据或曲线,冲激响应也可能出现同样的情况。

显然,此时直接计算积分或查表都有困难,而采用近似的数值计算方法可以解决这个问题,求得卷积积分。

1、卷积的定义卷积积分可以表示为2卷积计算的几何算法卷积积分的计算从几何上可以分为四个步骤:翻转→平移→相乘→叠加。

3卷积积分的应用卷积积分是信号与系统时域分析的基本手段,主要用于求系统零状态响应,它避开了经典分析方法中求解微分方程时需要求系统初始值的问题。

设一个线性零状态系统,已知系统的单位冲激响应为h(t),当系统的激励信号为e(t)时,系统的零状态响应为由于计算机技术的发展,通过编程的方法来计算卷积积分已经不再是冗繁的工作,并可以获得足够的精度。

因此,信号的时域卷积分析法在系统分析中得到了广泛的应用。

卷积积分的数值运算实际上可以用信号的分段求和来实现,即:如果我们只求当t = nΔt (n为正整数,nΔt 记为t )时r(t)的值,则由上式可以得到:当Δt 足够小时,r(t )就是e(t)和h(t)卷积积分的数值近似,由上面的公式可以得到卷积数值计算的方法如下:1 将信号取值离散化,即以 Ts 为周期,对信号取值,得到一系列宽度间隔 为 Ts 的矩形脉冲原信号的离散取值点,用所得离散取值点矩形脉冲来表示原来的连续时间信号;2 将进行卷积的两个信号序列之一反转,与另一信号相乘,并求积分,所得为 t=0 时的卷积积分的值。

以 Ts 为单位左右移动反转的信号,与另一信号相乘求积分,求的t<0和t>0时卷积积分的值;3 将所得卷积积分值与对应的t 标在图上,连成一条光滑的曲线,即为所求卷积积分的曲线。

信号与系统第二章第一讲

信号与系统第二章第一讲
i
则相应于1的k阶重根,有k项:
( A1t k 1 A2t k 2 Ak 1t Ak )e1t ( Ai t k i )e1t
i 1
k
例2-3
信 号 与 系 统
求如下所示的微分方程的齐次解。
Hale Waihona Puke d3 d2 d r (t ) 7 2 r (t ) 16 r (t ) 12r (t ) e(t ) 3 dt dt dt
等式两端各对应幂次的系数应相等,于是有:
信 号 与 系 统
特解为: 联立解得:
3B1 1 4 B1 3B2 2 2 B 2 B 3 B 0 2 3 1

线性时不变系统
线性的常系数微分方程
按照元件的约束特性及 系统结构的约束特性
也即:
具体系统物理模型
常系数微分方程建立
(1)元件端口的电压与电流约束关系
iR (t ) R
信 号 与 系 统

vR (t )
C


vR (t ) iR (t ) R
dvC (t ) iC (t ) C dt
vR (t ) Ri R (t )

时域经典法就是直接求解系统微分方程的方法。这种方 系 法的优点是直观,物理概念清楚,缺点是求解过程冗繁,应 用上也有局限性。所以在20世纪50年代以前,人们普遍喜欢 统 采用变换域分析方法(例如拉普拉斯变换法),而较少采用时 域经典法。20世纪50年代以后,由于δ(t)函数及计算机的普 遍应用,时域卷积法得到了迅速发展,且不断成熟和完善, 已成为系统分析的重要方法之一。时域分析法是各种变换域 分析法的基础。
信 号 与 系 统
is (t )

信号与系统王明泉版本~第二章习题解答

信号与系统王明泉版本~第二章习题解答

第2章 线性时不变连续系统的时域分析2.1 学习要求(1)会建立描述系统激励与响应关系的微分方程;(2)深刻理解系统的完全响应可分解为:零输入响应与零状态响应,自由响应与强迫响应,瞬态响应与稳态响应;(3)深刻理解系统的零输入线性与零状态线性,并根据关系求解相关的响应; (4)会根据系统微分方程和初始条件求解上述几种响应; (5)深刻理解单位冲激响应的意义,并会求解;(6)深刻理解系统起始状态与初始状态的区别,会根据系统微分方程和输入判断0时刻的跳变情况; (7)理解卷积运算在信号与系统中的物理意义和运算规律,会计算信号的卷积。

; 2.2 本章重点(1)系统(电子、机械)数学模型(微分方程)的建立; (2)用时域经典法求系统的响应; (3)系统的单位冲激响应及其求解;(4)卷积的定义、性质及运算,特别是()t δ函数形式与其它信号的卷积; (5)利用零输入线性与零状态线性,求解系统的响应。

2.3 本章的知识结构2.4 本章的内容摘要2.4.1系统微分方程的建立电阻:)(1)(t v Rt i R R =电感:dtt di L t v L L )()(= )(d )(1)(0t i v Lt i L tL L +=⎰∞-ττ 电容:dtt dv C t i C C )()(= ⎰+=tt L C C t i i Ct v 0)(d )(1)(0ττ 2.4.2 系统微分方程的求解 齐次解和特解。

齐次解为满足齐次方程t n t t h e c e c e c t y 32121)(λλλ+⋅⋅⋅++=当特征根有重根时,如1λ有k 重根,则响应于1λ的重根部分将有k 项,形如t k t k t k t k h e c te c e t c e t c t y 111112211)(λλλλ++⋅⋅⋅++=--- 当特征根有一对单复根,即bi a +=2,1λ,则微分方程的齐次解bt e c bt e c t y at at h sin cos )(21+= 当特征根有一对m 重复根,即共有m 重ib a ±=2,1λ的复根,则微分方程的齐次解bt e t c bt te c bt c t y at m m at h cos cos cos )(121-+⋅⋅⋅++= bt e t d bt te d bt e d at m m at at sin sin sin 121-+⋅⋅⋅+++ 特解的函数形式与激励函数的形式有关。

《信号与系统》课程实验报告

《信号与系统》课程实验报告

《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。

上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。

t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。

三、实验步骤该仿真提供了7种典型连续时间信号。

用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。

图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。

界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。

控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。

图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。

在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。

在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。

矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。

图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。

《信号与系统》课程讲义1-2

《信号与系统》课程讲义1-2

ii)抽样特性: (t ) f (t )dt f (0)
证明: (t ) f (t )dt ( ) f ( )d ( ) ( ) f 0 d f 0


iv)延时抽样: v)关系:
t t f t dt f (t )
1 t
-1 0 f(-t-2) 1 -3 -2 0 t 2 t
0 1
1 -1
2 3
f(-3t-2)
0
t
§1.3信号的运算
②已知f(t)定义域为[-1,4],求f(-2t+5)的定义域 解:
i)方法一:f(t)→f(-t) [-4,1];f(-t)→f(-t+5) [1,6];
ii)方法二: 1 2t 5 4 6 2t 1
f (t ) f 1 ( t ) f 2 ( t )
§1.3信号的运算
7.信号相乘 ① f (t ) f1 (t ) f 2 (t )
②常用在调制解调中 8.卷积
f (t ) f1 (t ) f 2 (t )


f1 ( ) f 2 (t )d
9.相关
a
Ke at (a 0)
③特性:微积分后仍为指数信号
§1.2 信号描述分类和典型示例
2.正弦信号 ①表达式:
f (t ) K sin(t )
②参数:K振幅, 角频率, 初相位 f(t) ③特性 i)周期信号, 0 2 1 T f ii)微积分后仍为正弦信号
3 8
t
t
f(t)
t
0 ln 2 2 ln 2 3 ln 2
3
练习

信号与系统信号的时域分解与卷积积分

信号与系统信号的时域分解与卷积积分

28
三、卷积的性质及卷积计算
(2) (t-t0 ) 是卷积的延迟器
y(t) f (t) (t t0 )=f (t t0 )
物理意义
f (t)
有用推论
(t t0 )
f (t t0 )
f (t t1) (t t2 ) f (t t1 t2 )
若:f1(t) f2 (t) y(t) 则: f1(t t1) f2(t t2) y(t t1 t2)
s 平面和z平面的对应关系
×
衰减振荡信号
j
×虚指数信号 ×
增长振荡信号
指数×衰减信号
×
直流信号
×
指数增长信号
jIm[z]
z esT rej r eT , T
× 虚指数信号
衰减振荡信号
×
×
× 指×数增长
指数衰减信号 直流 Re[z]
增长振荡信号
× 2
温故知新,上讲回顾
信号波形的翻转、展缩与平移
)
f3 (t
)]d
f1( )
f2 (t
)d
f1 (
)
f3 (t
)d
f1(t) f2 (t) f1(t) f3 (t)
物理意义:两个LTI系统并联,其总的单位冲激响应等
于各个子系统的单位冲激响应之和。也可通过交换律/
线性系统性质证明
f1 (t )
f2 (t) f3 (t)
f1(t) [ f2 (t) f3 (t)]
f1(t) f2 (t ) f3 (t) yzs (t) f1 (t) [ f2 (t) f3 (t)]
表明:两个LTI系统级联时,系统总的单位冲激响 应等于各个子系统单位冲激响应的卷积。

信号与系统实验教程只有答案

信号与系统实验教程只有答案

信号与系统实验教程(只有答案))(实验报告目录实验一信号与系统的时域分析 (2)三、实验内容及步骤 (2)实验二连续时间信号的频域分析 (14)三、实验内容及步骤 (14)实验三连续时间LTI系统的频域分析 (35)三、实验内容及步骤 (35)实验四通信系统仿真 (42)三、实验内容及步骤 (42)实验五连续时间LTI系统的复频域分析 (51)三、实验内容及步骤 (51)实验一信号与系统的时域分析三、实验内容及步骤实验前,必须首先阅读本实验原理,读懂所给出的全部范例程序。

实验开始时,先在计算机上运行这些范例程序,观察所得到的信号的波形图。

并结合范例程序应该完成的工作,进一步分析程序中各个语句的作用,从而真正理解这些程序。

实验前,一定要针对下面的实验项目做好相应的实验准备工作,包括事先编写好相应的实验程序等事项。

Q1-1:修改程序Program1_1,将dt改为0.2,再执行该程序,保存图形,看看所得图形的效果如何?dt = 0.01时的信号波形dt = 0.2时的信号波形这两幅图形有什么区别,哪一幅图形看起来与实际信号波形更像?答:Q1-2:修改程序Program1_1,并以Q1_2为文件名存盘,产生实指数信号x(t)=e-0.5t。

要求在图形中加上网格线,并使用函数axis()控制图形的时间范围在0~2秒之间。

然后执行该程序,保存所的图形。

修改Program1_1后得到的程序Q1_2如下:信号x(t)=e-0.5t的波形图clear, % Clear all variablesclose all, % Close all figure windowsdt = 0.2; % Specify the step of time variablet = -2:dt:2; % Specify the interval of timex = exp(-0.5*t); % Generate the signalplot(t,x)grid on;axis ([0 2 0 1 ])title('Sinusoidal signal x(t)')xlabel('Time t (sec)')Q1-3:修改程序Program1_1,并以Q1_3为文件名存盘,使之能够仿真从键盘上任意输入的一个连续时间信号,并利用该程序仿真信号x(t)=e-2t。

信号的卷积

信号的卷积

计算机与信息工程学院实验报告专业:通信工程年级/班级:2012级通信工程2013—2014学年第二学期课程名称计算机网络实验指导教师本组成员学号姓名实验地点实验时间项目名称信号的卷积实验类型一、实验目的1. 理解卷积的物理意义;2. 掌握运用计算机进行卷积运算的原理和方法;3. 熟悉卷积运算函数conv 的应用;二、实验仪器或设备一台安装MATLAB的计算机一台三、实验原理1.卷积的定义连续时间和离散时间卷积的定义分别如下所示:=[n-k]2.卷积的计算由于计算机技术的发展,通过编程的方法来计算卷积积分和卷积和已经不再是冗繁的工作,并可以获得足够的精度,因此信号的时域卷积分析法在系统分析中得到了广泛的应用。

卷积积分的数值运算可以应用信号的分段求和来实现,即:数值运算只求当t = nΔ时的信号值 f (nΔ),则由上式可以得到:上式中实际上就是连续信号f1(t ) f 2(t )等间隔均匀抽样的离散序列f1(nΔ) f 2(nΔ)的卷积和当Δ足够小的时候 f (nΔ)就是信号卷积积分的数值近似。

因此,在利用计算机计算两信号卷积积分时,实质上是先将其转化为离散序列,再利用离散卷积和计算原理来计算。

3.卷积的应用3. 1 求解系统响应卷积是信号与系统时域分析的基本手段,主要应用于求解系统响应,已知一 LTI系统的单位冲激响应和系统激励信号则系统响应为激励与单位冲激响应的卷积。

四、实验步骤给定如下因果线性时不变系统:y[n]+0.71y[n-1]-0.46y[n-2]-0.62y[n-3=0.9x[n]-0.45x[n-1]+0.35x[n-2]+0.002x[n-3] (1)不用impz 函数,使用filter 命令,求出以上系统的单位冲激响应h[n]的前20个样本;clear all;N=20;num=[2.24 2.49];den=[1 -0.4];y=impz(num,den,N);stem(y);xlabel(‘时间序号’);ylabel(‘振幅’);title(‘冲激响应’);grid;(2)得到h[n]后,给定x[n],计算卷积输出y[n];并用滤波器h[n]对输入x[n]滤波,求得y1[n];x=[1 -2 3 -4 3 2 1];%输入序列y=conv(h,x);%h 由(1)中filter 命令求出n=0:25;subplot(2,1,1);stem(n,y);xlabel(‘时间序号n’);ylabel(‘振幅’);title(‘用卷积得到的输出’);grid;x1=[x zeros(1,19)];y1=filter(h,1,x1);subplot(2,1,2);stem(n,y1);xlabel(‘时间序号n’);ylabel(‘振幅’);title(‘用滤波得到的输出’);grid;年月日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

连续时间信号的卷积运算的MATILAB实现
薛皓20091453
例1:已知两连续时间信号如图9-3所示,试用matlab求f(t)=f1(t)*f2(t),并绘出f(t)的时域波形图。

图1-1 连续时间信号波形图示例
实现上述过程的matlab命令如下:
p=0.5;
k1=0:p:2;
f1=0.5*k1;
k2=k1;
f2=f1;
[f,k]=sconv(f1,f2,k1,k2,p)
上述命令绘制的波形图也在图9-3中示出。

图9-3中给出了抽样时间间隔p=0.5时的处理效果。

而图9-4给出了抽样时间间隔p=0.01时的处理效果。

图1-2 例1的连续时间信号波形图
习题1:已知f1(t)=1(2t 1≤≤),f2(t)=1(3t 2≤≤),用matlab 实现其卷积并绘制出卷积曲线。

解:程序代码如下:
>> p=0.01;
k1=1:p:2;
f1=ones(size(k1)).*(k1>1);
k2=2:p:3;
f2=ones(size(k2)).*(k2>2);
f=conv(f1,f2);
f=f*p;
k0=k1(1)+k2(1);
k3=k1(length(k1))+k2(length(k2));
subplot(2,2,1)
plot(k1,f1)
title('f1(t)')
xlabel('t')
ylabel('f1(t)')
subplot(2,2,2)
plot(k2,f2)
title('f2(t)')
xlabel('t')
ylabel('f2(t)')
subplot(2,2,3)
plot(k,f);
h=get(gca,'position');
h(3)=2.5*h(3); 0
set(gca,'position',h)
title('f(t)=f1(t)*f2(t)')
xlabel('t')
ylabel('f(t)')
绘制图形如图2-1所示。

图2-1
习题2:)1()2/1t ()t (2f ),1t ()t ()t (1f δ-+δ=-ε-ε=,求其卷积。

程序代码:
p=0.01;
t1=0:p:1;
f1=ones(size(t1)).*(t1>0);
t2=-0.5:p:1;
f2=(t2==-0.5)-(t2==1);
f=conv(f1,f2);
f=f*p;
t=-0.5:p:2;
k1=t1;k2=t2;k=t;
subplot(2,2,1)
plot(k1,f1)
title('f1(t)')
xlabel('t')
ylabel('f1(t)')
subplot(2,2,2)
plot(k2,f2)
title('f2(t)')
xlabel('t')
ylabel('f2(t)')
subplot(2,2,3)
plot(k,f);
h=get(gca,'position');
h(3)=2.5*h(3);
set(gca,'position',h)
title('f(t)=f1(t)*f2(t)')
xlabel('t')
ylabel('f(t)')
绘制波形如图2-2示:
图2-3
实验心得:感觉知识太贫乏了,知识尚且不够,何谈智慧呢,知耻后勇吧!。

相关文档
最新文档