2020-2021学年江西省九江市一中高一上学期期末数学试卷

合集下载

江西师大附中2020-2021学年上学期高一数学月考试卷 答案和解析

江西师大附中2020-2021学年上学期高一数学月考试卷 答案和解析

江西师大附中【最新】上学期高一数学月考试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.设{}|3,A x x a =≤=则下列结论中正确的是( )A .{}a A ⊆B .a A ⊆C .{}a A ∈D .a A ∉ 2.已知集合{}{}22|22,|22A x y x x B y y x x ==-+==-+,则A B =( ) A .(,1]-∞ B .[1,)+∞ C .[2,+∞) D .∅ 3.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( )A .7个B .5个C .3个D .8个4.下列四个函数:(1)1y x =+,(2)||y x =,(3)21y x =-,(4)1y x=,其中定义域与值域相同的是( )A .(1)(2)B .(1)(2)(3)C .(1)(4)D .(1)(3)(4) 5.若32,222x x >-=-( ) A .45x -B .54x -C .3D .-3 6.已知A,B 是非空集合,定义{}|,,|A B x x A B x A B A x y ⎧⎫⎪⨯=∈∉==⎨⎪⎩且若,{}|||,=B x x x A B =>-⨯则( )A .(,0)(0,3]-∞⋃B .(-∞,3]C .( -∞,0)∪(0,3)D .( -∞,3) 7.已知函数2()23,()[2,)f x x mx f x =-+-+∞且在上为增函数,则(1)f 的取值范围是( )A .[3,)-+∞B .(,3]-∞-C .[13,)+∞D .(,13]-∞ 8.设函数()()()()()1,(0){ ,1,(0)2x a b a b f a b f x a b x ->++-⋅-=≠<则的值为( ) A .a B .b C .a ,b 中较小的数 D .a,b 中较大的数9.下列四个函数中,在(0,+∞)上为增函数的是( )A .()32f x x =-B .2()2f x x x =-C .()|1|f x x =+D .221()x f x x+= 10.设集合{}{}|10,|P x x Q m R y R =-<<=∈=,则下列关系中成立的是( )A .P Q ⊆B .Q P ⊆C .P Q =D .P Q Q =∩ 11.定义在[-1,1]上的函数1()2f x x =-+,则不等式(21)(32)f x f x +<+的解集为( )A .(1,)-+∞B .[1,0]-C .1[1,]3--D .1(1,]3 12.设()f x 与()g x 是定义在同一区间[],a b 上的两个函数,若对任意[],x a b ∈,都有|()()|1f x g x -≤成立,则称()f x 和()g x 在[],a b 上是“密切函数”,区间[],a b 称为“密切区间”.若2()34f x x x =-+与()23g x x =-在[],a b 上是“密切函数”,则其“密切区间”可以是( )A .[]1,4B .[]2,4C .[]3,4D .[]2,3二、填空题13.设集合A ={x |-1≤x <2},B ={x |x ≤a },若A ∩B ≠,则实数a 的取值范围为________. 14.函数y =________.15.已知集合,A B 均为全集{1,2,3,4}U =的子集,且U C (){4},{1,2}A B B ==,则U (C )A B =_____. 16.已知函数()621,()21f x x x f x m x R =+--<+∈若对恒成立,则实数m 的取值范围为_______三、解答题17.设全集U =R ,集合{}|12A x x =-<,集合{}|1,B y y x x A ==+∈.求,()()U U A B C A C B ⋂⋂18.已知全集{}{}21,2,3,4,5,|540,U A x U x qx q R ==∈-+=∈(1)若U C A U =,求实数q 的取值范围;(2)若U C A 中有四个元素,求U C A 和q 的值.19.已知函数9()||,[1,6],.f x x a a x a R x=--+∈∈ (1)若1a =,试判断并用定义证明()f x 的单调性;(2)若8a =,求()f x 的值域.20.已知函数()2,() 4.f x x x g x x =-=+(1)解不等式()()f x g x >;(2)求()f x 在[0,](0)x a a ∈>上的最大值.21.已知集合{}221|0,|320.2x A x B x x ax a x -⎧⎫=<=-+<⎨⎬-⎩⎭ (1)若A B A =时,求实数a 的取值范围;(2)若A B ⋂≠∅时,求实数a 的取值范围.22.设二次函数2()(,,,0)f x ax bx c a b c R a =++∈≠满足下列条件:①(1)(1)f x f x -=--对x ∈R 恒成立; ②21()(1)2x f x x ≤≤+对x ∈R 恒成立.(1)求(1)f 的值; (2)求()f x 的解析式;(3)求最大的实数(1)m m >,使得存在实数t ,当[1,]x m ∈时,()f x t x +≤恒成立.参考答案1.D【解析】3≥,∴a A ∉故选:D2.B【解析】∵()A ,∞∞=-+,)1B ,∞⎡=+⎣ ∴A B ⋂=[)1,+∞故选:B3.A【分析】根据集合的补集判断集合的个数,进而求得集合的真子集个数.【详解】由题可知,集合A 有三个元素.所以A 的真子集个数为:32-1=7个.选A【点睛】集合中子集的个数为2n ,真子集的个数为2n -1,非空真子集的个数为2n -24.C【解析】(1)y=x+1的定义域与值域都是实数集R ,故定义域与值域相同;(2)y x =的定义域是实数集R ,值域为[0,+∞),故定义域与值域不相同;(3)函数y=x 2﹣1的定义域是实数集R ,值域为[﹣1,+∞),故定义域与值域不相同; (4)函数1y x=的定义域与值域都是(﹣∞,0)∪(0,+∞). 综上可知:其中定义域与值域相同的是(1)(4).故选C .5.C【解析】由322x >-,得2702x x -<-,∴72x 2<<,()()22212221243x x x x x -=---=---=,故选:C6.A【分析】根据条件分别求出集合,A B ,然后按照定义求出A B ⨯即可.【详解】由题意得{}{}2|30|03A x y x x x x x x ⎧⎫⎪===-=⎨⎪⎩或, {}{}0B x x x x x =-=,∴()()(),00,,3,A B A B ⋃=-∞⋃+∞⋂=+∞,∴()(],00,3A B ⨯=-∞⋃.故选A .【点睛】本题属于集合中的新定义问题,旨在考查接受和处理新信息的能力,解题时要充分理解题目的含义,进行全面分析、灵活处理.7.C【解析】∵函数()()[)223,2,f x x mx f x =-+-+∞且在上为增函数, ∴24m ≤-,即m 8≤-. ∴()15m 13f =-≥,故选:C点睛:二次函数的单调性问题注意两点:第一点开口方向,第二点对称轴》8.C【解析】∵函数()1,(0){ ,1,(0)x f x x ->=<∴当a b >时, ()()()()()b 22a b a b f a b a b a b ++-⋅-+--==; 当a b <时, ()()()()()a 22a b a b f a b a b a b ++-⋅-++-==; ∴()()()()2a b a b f a b a b ++-⋅-≠的值为a ,b 中较小的数故选:C9.C【解析】对于A ,()32f x x =-在(0,+∞)上为减函数,不符合;对于B ,()22f x x x =-在(0,1)上为减函数,在在(1,+∞)上为增函数,不符合; 对于C ,()1f x x =+在(0,+∞)上为增函数,符合;对于D ,()22112x x f x x x+==+在(0,+∞)上不单调,不符合; 故选:C10.A【解析】∵y R =∴2440mx mx --+≥在R 上恒成立,∴当0m =时,显然适合;当0m ≠时,2016160m m m ->⎧⎨+≤⎩,解得:1m 0-≤<, 综上,1m 0-≤≤,即[]1,0Q =-,又()1,0P =-∴P Q ⊆故选:A点睛:二次型不等式恒成立问题,注意对二次项系数的分类讨论,体会“三个二次”的关系. 11.D【解析】∵函数()12f x x =-+在定义域[-1,1]上单调递增, ∴121113212132x x x x -≤+≤⎧⎪-≤+≤⎨⎪+<+⎩,解得:11x 3-<≤-, ∴不等式()()2132f x f x +<+的解集为11,3⎛⎤-- ⎥⎝⎦故选D12.D【分析】 根据题意得到2571x x -+≤,计算2157x x -≤-+和2571x x -+≤得到答案.【详解】()f x 和()g x 在[],a b 上是“密切函数” 则|()()|1f x g x -≤即234231x x x -+-+≤,即2571x x -+≤故21571x x -≤-+≤恒成立. 22157580x x x x -≤-+∴-+≥,恒成立;2257156023x x x x x -+≤∴-+≤∴≤≤ 综上所述:[]2,3x ∈故选:D【点睛】本题考查了函数的新定义问题,意在考查学生的应用能力.13.a≥-1【解析】由A∩B≠,借助于数轴可知a≥-1.考点:交集14.1[,)2+∞【解析】设2μ65x x =---,()μ0>则原函数可化为y =又∵()2μ344x =-++≤∴0μ4<≤,02<,12≥, ∴函数y =的值域为1,2⎡⎫+∞⎪⎢⎣⎭故答案为1,2⎡⎫+∞⎪⎢⎣⎭15.{3}【解析】分析:求出集合B 的补集,然后由∁U (A ∪B )={4}可知3∈A ,进而由交集的定义得出结果.详解:∵全集U={1,2,3,4},B={1,2},∴∁U B={3,4}∵∁U (A ∪B )={4},∴3∈A∴A∩(∁U B )={3}故答案为{3}.点睛:求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解,在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.16.(3,)+∞【解析】 ()8162134,618,6x x f x x x x x x x -≥⎧⎪=+--=+-<<⎨⎪-+≤-⎩,,当x 1≥时,()7f x ≤;当61x -<<时,()7f x <;当6x ≤-时,()14f x ≤-;∴函数()f x 的最大值为7,又()21x m x R <+∈对恒成立,∴217m +>,m 3>故答案为:()3,+∞点睛:不等式的恒成立常规处理方法转化为函数的最值问题.绝对值函数的最值转化为分段函数的最值问题.17.(0,3),()()(,1][4,)U U A B C A C B ⋂=⋂=-∞-⋃+∞【解析】 1221213x x x -<⇒-<-<⇒-<<,()()1,3,0,4A B ∴=-=()()()()()][()0,3,14,,14,U U U A B A B C A C B C A B ⋂=⋃=-⋂=⋃=-∞-⋃+∞点睛:在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.18.(1)41329|,,1,,51525q q R q q q q 且⎧⎫∈≠≠≠≠⎨⎬⎩⎭; (2)45q =,U C A ={1,3,4,5} 【解析】 试题分析:(1)若U C A =U ,则A=∅,根据一元二次方程根的关系即可求q 的取值范围;(2)若U C A 中有四个元素,则等价为A 为单元素集合,然后进行求解即可. 试题解析:(1)∵U C A=U ,∴A=∅,即方程x 2﹣5qx+4=0无解,或方程x 2﹣5qx+4=0的解不在U 中. ∴△=25q 2﹣16<0,∴<q <,若方程x 2﹣5qx+4=0的解不在U 中,此时满足判别式△=25q 2﹣16≥0,即p≥或p≤﹣, 由12﹣5q•1+4≠0得q≠1; 由22﹣5q•2+4≠0得q≠;同理,由3、4、5不是方程的根,依次可得q≠,q≠1,q≠;综上可得所求范围是{q|q ∈R ,且q≠,q≠1,q≠}.(2)∵U C A 中有四个元素,∴A 为单元素集合,则△=25q 2﹣16=0, 即q=±,当A={1}时,q=1,不满足条件.; 当A={2}时,q=,满足条件.; 当A={3}时,q=,不满足条件.;当A={4}时,q=1,不满足条件.; 当A={5}时,q=,不满足条件.,∴q=,此时A={2}, 对应的∁U A={1,3,4,5}.19.(1)单调递增;(2) [6,10] 【解析】试题分析:(1)当a=1时,由x ∈[1,6],化简f (x ),用单调性定义讨论f (x )的增减性;(2)当()981?6a f x x x ⎛⎫==-+ ⎪⎝⎭时,,利用对勾函数的图象与性质可得()f x 的值域. 试题解析:(1)当1a =时,()[]9111,6f x x x x =--+∈ 9911x x x x=--+=-递增证:任取[]12,1,6x x ∈且12x x < 则()()()()122121212112999x x f x f x x x x x x x x x --=--+=--=()2112910x x x x ⎡⎤-+>⎢⎥⎣⎦()()()21f x f x f x ∴>∴在[]1,6上单调递增. (2)当8a =时,()999888816f x x x x x x x ⎛⎫=--+=--+=-+ ⎪⎝⎭ 令9t x x=+[]1,6x ∈ []6,10t ∴∈ ()[]166,10f x y t ∴==-∈所以()f x 的值域为[]6,10.点睛:证明函数单调性的一般步骤:(1)取值:在定义域上任取12,x x ,并且12x x >(或12x x <);(2)作差:12()()f x f x -,并将此式变形(要注意变形到能判断整个式子符号为止);(3)定号:判断12()()f x f x -的正负(要注意说理的充分性),必要时要讨论;(4)下结论:根据定义得出其单调性.20.(1) 4x > (2) ①当01a <<时,2()()2f x f a a a 大==-+②当11a ≤≤+()(1)1f x f 大==③当1a >+2()()2f x f a a a ==-大【解析】试题分析:(1) 不等式()()f x g x >可转化为()224x x x x ≥⎧⎨->+⎩或()4224x x x x -≤<⎧⎨->+⎩或()424x x x x <-⎧⎨---⎩,解后求并集即可;(2)()()22222(2)x x x f x x x x ⎧-≥=⎨-+<⎩,对a 分类讨论,求函数的最大值. 试题解析:(1)()()()22424x f x g x x x x x x x ≥⎧>⇒->+⇔⎨->+⎩ 或()4224x x x x -≤<⎧⎨->+⎩或()424x x x x <-⎧⎨---⎩ 22340x x x ≥⎧⇒⎨-->⎩或24240x x x -≤<⎧⎨-+<⎩或24340x x x <-⎧⎨--<⎩214x x x 或≥⎧⇒⎨-⎩或42x x φ-≤<⎧⎨∈⎩或414x x <-⎧⎨-<<⎩ 4x ⇒>(2)()()222222(2)x x x f x x x x x x ⎧-≥=-=⎨-+<⎩①当01a <<时,()()22f x f a a a ==-+大②当11a ≤≤+()()11f x f 大==③当1a >+()()22f x f a a a 大==-21.(1) 1a = (2) 122a << 【解析】试题分析:(1)对a 分类讨论,明确集合B ,由A B A ⋂=,可知:A B ⊆,从而得到实数a 的取值范围;(2)当A B ⋂=∅时,讨论a ,利用数轴确定实数a 的取值范围. 试题解析:()()(){}()()0,21,2,|2002,0a B a a A B x x a x a a B a a a B φ⎧>=⎪==--<⇒<=⎨⎪==⎩当时当时当时(1)01122a A B a a a >⎧⎪⊆⇒≤⇒=⎨⎪≥⎩由已知得(2)当A B ⋂=∅时若0a A B ≤⋂=∅时, 1022122a A B a a a a >⋂=∅≥≤⇒≥≤时,使,则或或 1202a a 或∴≥<≤综上:122a a ≥≤或122A B a ∴⋂≠∅<<当时22.(1) (1)1f = (2) 21()(1)4f x x =+ (3) 9m =大 【解析】试题分析:(1)由当x ∈(0,5)时,都有x≤f (x )≤2|x ﹣1|+1恒成立可得f (1)=1; (2)由f (﹣1+x )=f (﹣1﹣x )可得二次函数f (x )=ax 2+bx+c (a ,b ,c ∈R )的对称轴为x=﹣1,于是b=2a ,再由f (x )min =f (﹣1)=0,可得c=a ,从而可求得函数f (x )的解析式;(3)可由f (1+t )≤1,求得:﹣4≤t≤0,再利用平移的知识求得最大的实数m . 试题解析:(1)当x=1时,()()11111f f ≤≤⇒= (2)由已知可得()1,122bf x x b a a=-∴-=-⇒=的轴……① 由()111f a b c =⇒++=……②()211213213c a b a a a f x ax ax a ∴=--=--=-∴=++-,由()f x x ≥恒成立()221130ax a x a ⇒+-+-≥对R 恒成立则()20(4130a a a >⎧⎨∆=--≤⎩ 14a ⇒= 由()222111)2131)22f x x ax ax a x ≤+⇒++-≤+(恒成立(对x R ∈恒成立 ()2214160a x ax a ⇒-++-≤恒成立则()()221016421160a a a a -<⎧⎨∆=---≤⇒⎩ 4121(04a a ⎧<⎪⎪⎨⎪≤⇒=⎪⎩131,1244b c ∴==-=,()()22111114244f x x x x ∴=++=+(3)()()()[]211,1,4f x t x t f x t x m ∴+=+++≤使在恒成立,则使()y f x t =+的图像在y x =的下方,且m 最大,则1,m 为()f x t x +=的两个根 由()()211121044f t t t t +=⇒+=⇒==-或 ()0t f x x =≤当时,恒成立矛盾()()()22144431090194t f x x f m m m m m m m 当时,恒成立=--≤⇒-≤⇒-≤⇒-+≤⇒≤≤∴9m 大=.。

江西省九江市2022-2023学年高一上学期期末考试数学试卷及答案

江西省九江市2022-2023学年高一上学期期末考试数学试卷及答案

高一数学试卷本卷满分150分考试时间120分钟注意事项:1.答卷前,考生务必将自己的姓名˴准考证号填写在答题卡上。

2.答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮2.擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合U ={x ∈N |0<x <8},A ={1,2,3,4},B ={3,4,5,6},则下列结论错误的是A.∁U B ={1,2,7}B.集合U 有7个元素C.A ⋂B ={3}D.A ⋃B ={1,2,3,4,5,6}2.已知a ,b ∈R ,那么“3a ≤3b ”是“13a log >13b log ”的A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件3.若正实数a ,b 满足2ab=a 32b 12-1,则ab 的最小值为A.2B.22C.2D.44.在6个函数:①f (x )=2022x ;②f (x )=x 2022;③f (x )=2022x ;④f (x )=2022;⑤f (x )=2022x;⑥f (x )=2022x log 4.中,有a 个函数满足性质T 1:f (x +y )=f (x )+f (y );有b 个函数满足性质T 2:f (xy )=f (x )f (y ).则a +b 的值为A.3B.4C.5D.65.已知函数(其中a ,b 为常量,且a >0,a ≠1,b ≠0)的图像经过点A (1,6),B (3,24).若不等式b x +a x -a x b x m ≥05.在区间(-∞,0]上恒成立,则实数m 的取值范围是A.[2,+∞)B.[-2,+∞)C.(-∞,2]D.(-∞,-2]6.已知一组数据x 1,x 2,⋯,x n (n ≥2)的平均数为x ,标准差为s ,M =1n ni =1(x i -a )2 ,若a ≠x ,则s 与M 的大小关6.系为A.s <MB.s >MC.s =MD.不确定7.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世7.代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I (t )=e rt 描述累计感7.染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据7.估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为 (ln 2≈0.69)A.1.2天B.1.8天C.2.5天D.3.5天8.已知函数f (x )=x 2-52x +3,x ≤1x +12x ,x >1,设a ∈R .若关于x 的不等式f (x )≥x2+a恒成立,则a 的取值范围是A.[-2,1]B.-24,324C.-324,1D.[-1,2]二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.下列函数中,既是偶函数也是在(1,+∞)上单调递增的函数有A.f (x )=3x +1B.f (x )=0C.f (x )=x 2D.f (x )=x -1x10.已知f (x ),g (x )都是定义在R 上的函数,∀x ,y ∈R ,都有f (x -y )=f (x )g (y )-g (x )f (y ),且f (-2)=f (1)≠0,10.则下列说法正确的有A.g (0)=1B.函数f (2x -1)的图像关于12,0对称C.g (1)+g (-1)=1D.若f (1)=32,则2023n =1f (n )=32 11.已知910>109,912>1011,1112>1211,设a =1211log ,b =1112,c =109log ,d =910,则下列结论中正确的是A.a <b B.c >bC.a >dD.c >d12.已知函数f (x )的定义域为R ,∀x ,y ∈R ,都有f (x +y )=f (x )f (y ),且当x >0时,0<f (x )<1.则下列结12.论中正确的是A.f (0)=1B.∀x ∈R ,有f (x )>0C.函数f (x )在R 上单调递增D.若f (3)=127,则不等式f (2x )f (x -2x 2)≤13的解集为12,1三、填空题(本题共4小题,每小题5分,共20分.)13.已知幂函数f (x )=x m 2-2m -3(m ∈N +)的图像关于直线x =0对称,且在(0,+∞)上单调递减,则关于a 的不等13.式(a +1)-m3<(3-2a )-m3的解集为____________.14.命题p :“若x 2≤4,则x <2022”是____________命题.(填“真”或“假”)15.设函数f (x )的定义域为R ,当x ∈[1,2]时,f (x )=a ⋅2x +b ,若f (0)+f (1)=-4,f (x )为偶函数,f (x +1)为奇15.函数,则f 72的值为____________.16.定义在R 上的函数f :R →R 满足:f (x 3)=[f (x )]3(∀x ∈R ),f (x 1)≠f (x 2)(∀x 1≠x 2),则f (0)+f (-1)+16.f (1)的值为____________.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)17.已知集合A ={x |2(x -1)<2log },B ={x |x 2-2ax +a 2-1<0}.17.从①A ⊆∁R B ;②B ⊆∁R A ;③(∁R A )∩B =∅中选择一个填入横线处并解答.17.(1)若a =1,求A ⋃B ;17.(2)若______,求实数a 的取值范围.17.注:如果选择多个条件分别解答,按第一个解答计分.18.(12分)18.已知p:x-1≤2,q:x2-2x+1-a2≥0(a>0).18.(1)证明:当a=1,q是p的必要不充分条件;18.(2)若p是¬q的必要不充分条件,求实数a的取值范围.19.(12分)19.设a,b∈R,已知定义在R上的函数f(x)=a-b5x+1为奇函数,且其图像过点1,23.19.(1)求f(x)的解析式;19.(2)判断f(x)的单调性,并证明你的结论.20.(12分)20.随着城市居民汽车使用率的增加,交通拥堵问题日益严重,而建设高架道路、地下隧道以及城市轨道公共运20.输系统等是解决交通拥堵问题的有效措施.某市城市规划部门为提高早晚高峰期间某条件地下隧道的车辆20.通行能力,研究了该隧道内的车流速度v(单位:千米/小时)和车流密度x(单位:辆/千米)所满足的关系式20.为v=60,0<x≤3080-k150-x,30<x≤120(k∈R),进行的研究表明:当隧道内的车流密度达到120辆/千米时造成堵20.塞,此时车流速度时0千米/小时.20.(1)若车流速度不小于40千米/小时,求车流密度x的取值范围;20.(2)隧道内的车流量y(单位时间内通过隧道的车辆数,单位:辆/小时)满足y=xv,求隧道内车流量的最大值20.2(精确到1辆/小时),并指出车流量最大时的车流密度(精确到1辆/千米).(参考数据:5≈2.236)21.(12分)21.已知增函数f (x )是定义在(-1,1)的奇函数,函数g (x )=4x +m ∙2x +1+1-m .21.(1)解不等式f (2x -1)+f (3x -2)<0;21.(2)若存在两个不等的实数a ,b 使得f (a )+f (b )=0,且g (a )+g (b )≥0,求实数m 的范围.22.(12分)22.设函数f (x )=a x -2x +2log (0<a <1).22.(1)若a =12,解不等式f (x )>-1;22.(2)是否存在常数α,β∈(2,+∞),使函数f (x )在区间[α,β]上的值域为[a [a (β-1)],log a [a (α-1)]log ]?若22.(2)存在,求a 的取值范围;若不存在,说明理由.高一数学试卷参考答案及评分准则题号12345678答案C B B A C A B A 题号910111213141516答案ACABDBCDABD (-∞,-1)∪23,32真4-428.【解析】f (x )图像如图,最低点为1,32 ,平移y =x 2 得到g (x )=x 2+a ,当g (1)=32时为临界状态,解得a =-2或1.10.【解析】A.由题意有f (0)=f (0)g (0)-g (0)f (0)=0,则f (1)=f (1)g (0)-g (1)f (0)=f (1)g (0),因为f (1)≠0,故g (0)=1;B.函数f (2x -1)的图像关于12,0 对称⇔函数f (x )的图像关于(0,0)对称⇔函数f (x )是奇函数,由f (-x )=f (0)g (x )-f (x )g (0)=-f (x )知f (x )是奇函数;C.由f [1-(-1)]=f (2)=f (1)g (-1)-f (-1)g (1),因为f (x )是奇函数,则上式⇔-f (-2)=f (1)g (-1)+f (1)g (1),又因为f (-2)=f (1)≠0,所以g (1)+g (-1)=-1;D.f (x -1)=f (x )g (-1)-g (x )f (1),f (x +1)=f (x )g (-1)-g (x )f (-1)=f (x )g (-1)+g (x )f (1),将两式相加,有f (x -1)+f (x +1)+f (x )=0,则f (x )+f (x +2)+f (x +1)=0,所以f (x -1)=f (x +2),即f (x )的周期为3,易得f (2)=-32,f (3)=0,由2023=3×674+1,得2023n =1f (n )=6743n =1f (n )+f (1)=32 .16.【解析】由题意得f (-1)=[f (-1)]3,f (0)=[f (0)]3,f (1)=[f (1)]3,所以f (-1)、f (0)、f (1)是方程x =x 3的三个不等的实数根,由三根关系得f (-1)+f (0)+f (1)=0.(或解出方程的三个根为-1,0,1,相加得0)17.(1){x |0<x <5};…⋯⋯⋯⋯⋯5分17.(2)选①②:(-∞,0]⋃[6,+∞);选③:[2,4].⋯⋯⋯⋯⋯⋯5分18.(1)略,提示:q :x ∈R ;⋯⋯⋯⋯⋯⋯5分18.(2)(0,2].⋯⋯⋯⋯⋯⋯7分19.(1)f (x )=1-25x +1;⋯⋯⋯⋯⋯⋯6分19.(2)单调递增(用定义法证明,其他方法酌情给2~3分).⋯⋯⋯⋯⋯⋯6分19.【1】在(1)中,只求对a (或b )不给分20.(1)(0,90];⋯⋯⋯⋯⋯⋯6分20.(2)车流量的最大值约为3667辆/小时,此时车流密度为83辆/千米.⋯⋯⋯⋯⋯⋯6分20.【1】在(1)中,求出k =2400得3分20.【2】在(1)中,解出(0,90]得3分20.【3】在(2)中,车流量最大值算对得3分20.【4】在(2)中,车流密度算对得3分21.(1)13,35;⋯⋯⋯⋯⋯⋯5分21.(2)因为f (a )+f (b )=0,f (x )为定义在(-1,1)上的奇函数,21.2所以a +b =0,即b =-a ,不妨令a >b ,则a ∈(0,1),⋯⋯⋯⋯⋯⋯7分21.2g (x )=(2x )2+2m ⋅2x +1-m ,则g (a )+g (b )=g (a )+g (-a )=2a +12a2+2m 2a +12a-2m ,21.2令t =2a +12a ∈2,52 ,则t 2+2m (t -1)≥0,显然t -1>0,则m ≥-t 22t -2⋯⋯⋯⋯⋯8分21.2φ(t )=-t 22t -2=121t-122-12单调递减,⋯⋯⋯⋯⋯⋯9分21.2所以由题意得m >φ52=-2512,⋯⋯⋯⋯⋯⋯11分21.2即m 的取值范围为-2512,+∞ .⋯⋯⋯⋯⋯⋯12分22.(1)当a =12时,f (x )=12x -2x +2 log ,22.1f (x )>-1,即0<x -2x +2<2,⋯⋯⋯⋯⋯⋯2分22.1解得x ∈(-∞,-6)∪(2,+∞);⋯⋯⋯⋯⋯⋯4分22.(2)存在,a 的取值范围为0,19:22.2内层函数u =x -2x +2=1-4x +2在(2,+∞)上单调递增,外层函数y =a x log 在(2,+∞)上单调递减,22.2则由复合函数单调性可知f (x )在[α,β]上单调递减,⋯⋯⋯⋯⋯⋯5分22.2由题意得f (α)=a a (α-1)log f (β)=a a (β-1)log ,即α-2α+2=a (α-1)β-2β+2=a (β-1),⋯⋯⋯⋯⋯⋯7分22.2则α,β为关于t 的方程t -2t +2=a (t -1)(*)的两个不等的实数根,⋯⋯⋯⋯⋯⋯9分22.2方程(*)化简后为at 2+(a -1)t +2-2a =0,记φ(t )=at 2+(a -1)t +2-2a ,22.2那么(a-1)2-4a(2-2a)>01-aa>2φ(2)>00<a<1,解得0<a<19,⋯⋯⋯⋯⋯⋯11分22.2即a的取值范围为0,19.⋯⋯⋯⋯⋯⋯12分。

2020-2021学年南通一中高一上学期期末数学试卷(含解析)

2020-2021学年南通一中高一上学期期末数学试卷(含解析)

2020-2021学年南通一中高一上学期期末数学试卷一、单选题(本大题共12小题,共60.0分) 1.函数f(x)=8x 的值域是( )A. (−∞,+∞)B. (−∞,0)C. (0,+∞)D. (−∞,0)∪(0,+∞)2.已知sin(π+α)=−12,那么cosα的值为( )A. ±12B. 12C. √32D. ±√323.对于正弦函数y =sinx 的图象,下列说法错误的是( )A. 向左右无限伸展B. 与y =cosx 的图象形状相同,只是位置不同C. 与x 轴有无数个交点D. 关于y 轴对称4.设e 1⃗⃗⃗ 与e 2⃗⃗⃗ 是两个不共线的向量,AB ⃗⃗⃗⃗⃗ =e 1⃗⃗⃗ +2e 2⃗⃗⃗ ,CB ⃗⃗⃗⃗⃗ =k e 1⃗⃗⃗ +e 2⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ =3e 1⃗⃗⃗ −2k e 2⃗⃗⃗ ,若A ,B ,D 共线,则k 的值为( )A. −94B. −49C. −38D. 不存在5.如图,以Ox 为始边作角α与β(0<β<α<π),它们终边分别与单位圆相交于点P ,Q ,已知点P 的坐标为(−35,45),β=30°,则sin(α−β)=( )A. 4+3√310B. 4√3+310C. 4−3√310D. 4√3−3106.将最小正周期为3π的函数f(x)=cos(ωx +φ)−sin(ωx +φ)(ω>0,|φ|<π2)的图象向左平移π4个单位,得到偶函数图象,则满足题意的φ的一个可能值为( )A. 7π12B. −5π12C. −π4D. π47.的最大值为( )A.B.C. D.8.已知扇形的面积为4,弧长为4,求这个扇形的圆心角是( )A. 4B. 2°C. 2D. 4°9.设A,B,C ∈(0,π2),且cosA +cosB =cosC ,sinA −sinB =sinC ,则C −A =( ).A. −π6B. −π3C. π3D. π3或−π310. 如图,在△ABC 中,∠A =π2,AB =3,AC =5,AF ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ ,CE ⃗⃗⃗⃗⃗ =25CA ⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗⃗ =14BC ⃗⃗⃗⃗⃗ ,则DE ⃗⃗⃗⃗⃗⃗ ⋅DF ⃗⃗⃗⃗⃗ 的值为( ) A. 34 B. 12 C. −2 D. −1211. 定义域为R 的函数y =f(x),若对任意两个不相等的实数x 1,x 2,都有x 1f(x 1)+x 2f(x 2)>x 1f(x 2)+x 2f(x 1),则称函数为“H 函数”,现给出如下函数:①y =−x 3+x +1②y =3x −2(sinx −cosx)③y =e x +1④f(x)={ln|x|,x ≠00,x =0其中为“H 函数”的有( )A. ①②B. ③④C. ②③D. ①②③12. 设向量a ⃗ =(−1,2),b ⃗ =(λ,−1),且|a ⃗ −b ⃗ |=√a ⃗ 2+b⃗ 2,则λ等于( ) A. 2 B. ±2 C. −2 D. 0二、单空题(本大题共4小题,共20.0分)13. 设0<θ<π2,向量a ⃗ =(sin2θ,cosθ),b ⃗ =(cosθ,1),若a ⃗ //b ⃗ ,则cos2θ=______. 14. 已知(a +1)−23<(3−2a)−23,则a 的取值范围 . 15. 抛物线的准线与轴交于点,点在抛物线对称轴上,过可作直线交抛物线于点、,使得,则的取值范围是 .16. 在下列四个命题中,正确的命题有______.①若实数x ,y 满足x 2+y 2−2x −2y +1=0,则y−4x−2的取值范围为[43,+∞);②点M 是圆(x −3)2+(y −2)2=2上一动点,点N(0,−2)为定点,则|MN|的最大值是7;③若圆(x −3)2+(y +5)2=r 2(r >0)上有且只有两个点到直线4x −3y =2的距离为1,则4<r <6;④已知直线ax +by +c −1=0(bc >0)经过圆x 2+y 2−2y −5=0的圆心,则4b +1c 的最小值是10. 三、解答题(本大题共6小题,共70.0分)17. 已知向量a ⃗ 与b ⃗ 的夹角为2π3,|a ⃗ |=2,|b ⃗ |=3,记m ⃗⃗⃗ =3a ⃗ −2b ⃗ ,n ⃗ =2a ⃗ +k b ⃗(I) 若m ⃗⃗⃗ ⊥n ⃗ ,求实数k 的值;(II) 当k =−43时,求向量m ⃗⃗⃗ 与n ⃗ 的夹角θ.18. 已知函数f(x)=cosωx(sinωx +√3cosωx)(ω>0). (1)求函数f(x)的值域;(2)若方程f(x)=√32在区间[0,π]上恰有两个实数解,求ω的取值范围.19. 设函数f(x)=log 3(9x)⋅log 3(3x),19≤x ≤9,若t =log 3x. (1)求t 的取值范围. (2)求f(x)的值域.20. 如图,在菱形ABCD 中,若|AB ⃗⃗⃗⃗⃗ |=2√3,∠BAD =60°,BE ⃗⃗⃗⃗⃗ =12BC ⃗⃗⃗⃗⃗ ,CF ⃗⃗⃗⃗⃗ =2FD ⃗⃗⃗⃗⃗ .(1)若AE ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +y AD ⃗⃗⃗⃗⃗⃗ ,求λ,μ,x ,y 的值; (2)求AE ⃗⃗⃗⃗⃗ ⋅EF ⃗⃗⃗⃗⃗ .21. 已知函数f(x)=3xx+2,x ∈[0,4). (1)判别f(x)的单调性,并证明; (2)求函数f(x)的最值.22. 设函数y =f(x)的定义域为A ,区间I ⊆A.如果∃x 1,x 2∈I ,使得f(x 1)f(x 2)<0,那么称函数y =f(x)为区间I 上的“变号函数”.(1)判断下列函数是否为区间I上的“变号函数”,并说明理由.,+∞);①p(x)=1−3x,I=[13);②q(x)=sinx−cosx,I=(0,π2,1]上的“变号函数”.求实数a的取值范围.(2)若函数r(x)=ax2+(1−2a)x+1−a为区间[−12参考答案及解析1.答案:D解析:解:令y =8x ,则解析式中y 的取值范围即为函数的值域 则原函数的解析式可变形为x =8y , 要使该表达式有意义,分母y ≠0. ∴y ∈(−∞,0)∪(0,+∞) 故选:D .根据已知中函数的解析式,我们可使用“反表示法”求函数的值域,即根据已知函数的解析式,写出用y 表示x 的形式,令表达式有意义,即可求出满足条件的y 的取值范围,即原函数的值域. 本题考查的知识点是函数的值域,函数的值域的求法是函数中的难点之一,其中根据函数的解析式形式,选择适当的方法是求值域的问题.2.答案:D解析:利用诱导公式求出sinα,再利用同角三角函数关系式求出cosα即可. 本题考查诱导公式,同角三角函数关系式的应用.属于基础题.解:sin(π+α)=−12,则sinα=12,cosα=±√32.故选D .3.答案:D解析:解:y =sinx 是周期函数,图象可以向左右无限伸展,故A 正确,y =sin(x +π2)=cosx ,则与y =cosx 的图象形状相同,只是位置不同,故B 正确, 与x 轴有无数个交点,故C 正确,y =sinx 是奇函数,图象关于原点对称,故D 错误, 故选:D .根据y =sinx 的图象和性质分别进行判断即可.本题主要考查三角函数图象和性质,结合三角函数的图象是解决本题的关键.比较基础.4.答案:D解析:解:e 1⃗⃗⃗ 与e 2⃗⃗⃗ 是两个不共线的向量,且AB ⃗⃗⃗⃗⃗ =e 1⃗⃗⃗ +2e 2⃗⃗⃗ ,CB ⃗⃗⃗⃗⃗ =k e 1⃗⃗⃗ +e 2⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ =3e 1⃗⃗⃗ −2k e 2⃗⃗⃗ , ∴BD ⃗⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ −CB ⃗⃗⃗⃗⃗ =(3−k)e 1⃗⃗⃗ −(2k +1)e 2⃗⃗⃗ ,若A ,B ,D 共线, 则BD ⃗⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ ,即(3−k)e 1⃗⃗⃗ −(2k +1)e 2⃗⃗⃗ =λe 1⃗⃗⃗ +2λe 2⃗⃗⃗ ,∴{3−k =λ−(2k +1)=2λ, 解得k 的值不存在. 故选:D .根据平面向量的线性运算法则,利用共线定理和向量相等列出方程组,即可求出k 的值不存在. 本题考查了平面向量的线性运算与共线定理和向量相等的应用问题,是基础题目.5.答案:B解析:解:以Ox 为始边作角α与β(0<β<α<π),它们终边分别与单位圆相交于点P ,Q ,已知点P 的坐标为(−35,45),β=30°, 可得sinα=45,cosα=−35,sin(α−β)=sinαcos30°−cosαsin30°=45×√32+35×12=3+4√310. 故选:B .利用任意角的三角函数的定义,求出α、β的三角函数值,然后利用两角差的正弦函数求解. 本题考查三角函数的定义的应用,两角差的正弦函数,考查计算能力.6.答案:B解析:本题主要考查由函数y =Acos(ωx +φ)的部分图象求解析式,函数y =Acos(ωx +φ)的图象变换规律,正弦函数、余弦函数的图象的奇偶性,属于基础题.由周期求得ω,可得函数f(x)的解析式,再根据函数y =Acos(ωx +φ)的图象变换规律,可得结论. 解:由于函数f(x)=cos(ωx +φ)−sin(ωx +φ)=√2cos(ωx +φ+π4)的最小正周期为3π=2πω,求得ω=23,∴函数f(x)=√2cos(23x +φ+π4).再把f(x)的图象向左平移π4个单位,得到偶函数y =√2cos[23(x +π4)+φ+π4] =√2cos(23x +5π12+φ),则满足题意的φ的一个可能值为−5π12, 故选B .7.答案:C解析:试题分析:因为函数,所以因此结合不等式的性质,得到,可知函数的最大值为4.选C.考点:本题主要考查三角函数的性质中值域的求解运用。

2020-2021学年江西省景德镇市高一(上)期末数学试卷 (解析版)

2020-2021学年江西省景德镇市高一(上)期末数学试卷 (解析版)

2020-2021学年江西省景德镇市高一(上)期末数学试卷一、选择题(共12小题).1.直线x+y﹣1=0的倾斜角为()A.30°B.60°C.120°D.150°2.m,n为空间中两条不重合直线,α为空间中一平面,则下列说法正确的是()A.若m∥n,n⊂α,则m∥αB.若m⊥α,m∥n,则n⊥αC.若m∥α,n⊂α,则m∥n D.若m⊥α,m⊥n,则n∥α3.已知集合A={x|0<log4x<2},B={x|e x﹣2≤1},则A∩(∁R B)=()A.(2,16)B.(3,8)C.(1,3]D.(1,+∞)4.已知三点A(m,1),B(4,2),C(﹣4,2m)在同一条直线上,则实数m的值为()A.0B.5C.0或5D.0或﹣55.在平面四边形ABCD中,AB=AD,CB=CD,将该四边形沿着对角线BD折叠,得到空间四边形ABCD,则异面直线AC,BD所成的角是()A.B.C.D.6.直线kx﹣y﹣1=0与直线x+2y﹣2=0的交点在第四象限,则实数k的取值范围为()A.B.C.D.7.已知函数,记,,,则a,b,c的大小关系为()A.a>b>c B.c>b>a C.b>a>c D.c>a>b8.如图,圆锥的母线长为4,点M为母线AB的中点,从点M处拉一条绳子,绕圆锥的侧面转一周达到B点,这条绳子的长度最短值为,则此圆锥的表面积为()A.4πB.5πC.6πD.8π9.如图,在各小正方形边长为1的网格上依次为某几何体的正视图.侧视图与俯视图,其中正视图为等边三角形,则此几何体的体积为()A.1+B.+C.+D.+10.如图,点P在正方体ABCD﹣A1B1C1D1的面对角线BC1上运动,则下列四个结论:①三棱锥A﹣D1PC的体积不变;②A1P∥平面ACD1;③DP⊥BC1;④平面PDB1⊥平面ACD1.其中正确的结论的个数是()A.1个B.2个C.3个D.4个11.攒尖是古代中国建筑中屋顶的一种结构形式.依其平面有圆形攒尖、三角攒尖、四角攒尖、八角攒尖.也有单檐和重檐之分.多见于亭阁式建筑,园林建筑.以八中校园腾龙阁为例,它属重檐四角攒尖,它的上层轮廓可近似看作一个正四棱锥,若此正四棱锥的侧面积是底面积的3倍,则此正四棱锥的内切球半径与底面边长比为()A.B.C.D.12.设函数,若函数y=f(x)﹣4t在区间(﹣1,1)内有且仅有一个零点,则实数t的取值范围是()A.B.C.D.(﹣∞,﹣]∪{0}二、填空题(共4小题).13.如图所示,Rt△A'B'C'为水平放置的△ABC的直观图,其中A'C'⊥B'C',B'O'=O'C'=2,则△ABC的面积是.14.已知正四棱锥的底面边长为2,现用一平行于正四棱锥底面的平面去截这个棱锥,截得棱台的上、下底面的面积之比为1:4,若截去的小棱锥的侧棱长为2,则此棱台的表面积为.15.经过点P(﹣2,),且在坐标轴上截距相等的直线方程为.16.函数在区间(1,2)上为单调递减函数,则实数t的取值范围为.三、简答题(第17题10分,第18-22题每小题10分,共70分)17.已知直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,分别就下列条件求出实数m的值.(1)直线l1与l2垂直;(2)直线l1与l2平行.18.如图,长方体ABCD﹣A'B'C'D'由,AB=12,BC=10,AA'=6,过A'D'作长方体的截面A'D'EF使它成为正方形.(1)求三棱柱AA'F﹣DD'E的外接球的表面积;(2)求V B﹣A'D'EF.19.已知直线l1:mx+y﹣m﹣2=0,l2:3x+4y﹣n=0.(1)求直线l1的定点P,并求出直线l2的方程,使得定点P到直线l2的距离为;(2)过点P引直线l分别交x,y轴正半轴于A、B两点,求使得△AOB面积最小时,直线l的方程.20.已知函数f(x)=[(a﹣1)x﹣2](a>0且a≠1).(1)求f(x)的定义域;(2)若f(x)>0在上恒成立,求实数a的取值范围.21.如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,△PCD为等边三角形,平面PAC⊥平面PCD,PA⊥CD.(1)设G,H分别为线段PB,AC的中点,求证:GH∥平面PAD;(2)求证:PA⊥平面PCD.22.一副标准的三角板(如图1),∠ABC为直角,∠A=60°,∠DEF为直角,DE=EF,BC=DF,把BC与DF重合,拼成一个三棱锥(如图2),设M是线段AC的中点,N 是线段BC的中点.(1)求证:平面ABC⊥平面EMN;(2)设平面ABE∩平面MNE=l,求证:l∥AB.参考答案一、选择题(共12小题).1.直线x+y﹣1=0的倾斜角为()A.30°B.60°C.120°D.150°解:∵直线x+y﹣1=0的斜率k=﹣.设其倾斜角为θ(θ∈[0°,180°)),则tanθ=﹣.∴θ=150°.故选:D.2.m,n为空间中两条不重合直线,α为空间中一平面,则下列说法正确的是()A.若m∥n,n⊂α,则m∥αB.若m⊥α,m∥n,则n⊥αC.若m∥α,n⊂α,则m∥n D.若m⊥α,m⊥n,则n∥α解:若m∥n,n⊂α,则m⊂α或m∥α,故A错误;若m⊥α,则m垂直α内的两条相交直线a与b,又m∥n,∴n⊥a,n⊥b,则n⊥α,故B正确;若m∥α,n⊂α,则m∥n或m与n异面,故C错误;若m⊥α,m⊥n,则n∥α或n⊂α,故D错误.故选:B.3.已知集合A={x|0<log4x<2},B={x|e x﹣2≤1},则A∩(∁R B)=()A.(2,16)B.(3,8)C.(1,3]D.(1,+∞)解:由已知可得:A=(1,16),B=(﹣∞,2],所以∁R B=(2,+∞),则A∩(∁R B)=(2,16),故选:A.4.已知三点A(m,1),B(4,2),C(﹣4,2m)在同一条直线上,则实数m的值为()A.0B.5C.0或5D.0或﹣5解:∵三点A(m,1),B(4,2),C(﹣4,2m)在同一条直线上,∴=(4﹣m,1),=(﹣8,2m﹣2 ),与共线,∴(4﹣m)(2m﹣2)﹣(﹣8)=0,求得m=0或m=5,故选:C.5.在平面四边形ABCD中,AB=AD,CB=CD,将该四边形沿着对角线BD折叠,得到空间四边形ABCD,则异面直线AC,BD所成的角是()A.B.C.D.解:取BD中点O,连结AO,CO,∵AB=AD,BC=CD,∴AO⊥BD,CO⊥BD,又AO∩CO=O,∴BD⊥平面AOC,∵AC⊂平面AOC,∴BD⊥AC,∴对角线BD与AC所成的角的大小为.故选:D.6.直线kx﹣y﹣1=0与直线x+2y﹣2=0的交点在第四象限,则实数k的取值范围为()A.B.C.D.解:由题意可得,解得x=,y=,∴且,∴,故选:A.7.已知函数,记,,,则a,b,c的大小关系为()A.a>b>c B.c>b>a C.b>a>c D.c>a>b解:∵函数=,0<()<()0=1,>log33=1,||=|﹣log35|=log35>log3,当x>0时,f(x)=()x是减函数,∵,,,∴a,b,c的大小关系为a>b>c.故选:A.8.如图,圆锥的母线长为4,点M为母线AB的中点,从点M处拉一条绳子,绕圆锥的侧面转一周达到B点,这条绳子的长度最短值为,则此圆锥的表面积为()A.4πB.5πC.6πD.8π解:设底面圆半径为r,由母线长为4,所以侧面展开扇形的圆心角为α==;将圆锥侧面展开成一个扇形,从点M拉一绳子围绕圆锥侧面转到点B,最短距离为BM,如图所示:在Rt△ABM中,斜边BM的长度为:BM===2,解得cos=0,所以r=1,所以圆锥的表面积为S=π×12+π×1×4=5π.故选:B.9.如图,在各小正方形边长为1的网格上依次为某几何体的正视图.侧视图与俯视图,其中正视图为等边三角形,则此几何体的体积为()A.1+B.+C.+D.+解:由题意,几何体是底面为等腰直角三角形(其直角边长为2)的三棱锥和一个半圆锥(圆锥底面半径为1)的组合体,体积V==,故选:C.10.如图,点P在正方体ABCD﹣A1B1C1D1的面对角线BC1上运动,则下列四个结论:①三棱锥A﹣D1PC的体积不变;②A1P∥平面ACD1;③DP⊥BC1;④平面PDB1⊥平面ACD1.其中正确的结论的个数是()A.1个B.2个C.3个D.4个解:对于①,由题意知AD1∥BC1,从而BC1∥平面AD1C,故BC1上任意一点到平面AD1C的距离均相等,所以以P为顶点,平面AD1C为底面,则三棱锥A﹣D1PC的体积不变,故①正确;对于②,连接A1B,A1C1,A1C1∥AD1且相等,由于①知:AD1∥BC1,所以BA1C1∥面ACD1,从而由线面平行的定义可得,故②正确;对于③,由于DC⊥平面BCB1C1,所以DC⊥BC1,若DP⊥BC1,则BC1⊥平面DCP,BC1⊥PC,则P为中点,与P为动点矛盾,故③错误;对于④,连接DB1,由DB1⊥AC且DB1⊥AD1,可得DB1⊥面ACD1,从而由面面垂直的判定知,故④正确.故选:C.11.攒尖是古代中国建筑中屋顶的一种结构形式.依其平面有圆形攒尖、三角攒尖、四角攒尖、八角攒尖.也有单檐和重檐之分.多见于亭阁式建筑,园林建筑.以八中校园腾龙阁为例,它属重檐四角攒尖,它的上层轮廓可近似看作一个正四棱锥,若此正四棱锥的侧面积是底面积的3倍,则此正四棱锥的内切球半径与底面边长比为()A.B.C.D.解:设底边边长为a,正四棱锥的高为h,则斜高为,所以侧面积为4××a,即4××a=3a2,解得.设正四棱锥的内切球半径为r,由等积法可得,所以,即.故选:B.12.设函数,若函数y=f(x)﹣4t在区间(﹣1,1)内有且仅有一个零点,则实数t的取值范围是()A.B.C.D.(﹣∞,﹣]∪{0}解:=,其图象如下:函数y=f(x)﹣4t在区间(﹣1,1)内有且仅有一个零点,等价于f(x)﹣4t=0在区间(﹣1,1)内有且仅有一个实数根,又等价于函数f(x)的图象与直线y=4t在区间(﹣1,1)内有且仅有一个公共点.于是4t=0,或4t≤﹣1,即t=0或t,故选:D.二、填空题(本题共4小题,每小题5分,共20分)13.如图所示,Rt△A'B'C'为水平放置的△ABC的直观图,其中A'C'⊥B'C',B'O'=O'C'=2,则△ABC的面积是8.解:把直观图还原为原图形,如图所示:由题意知,BC=B′C′=4,OA=2O′A′=2×2=4,所以△ABC的面积是S△ABC=BC•OA=×4×4=8.故答案为:8.14.已知正四棱锥的底面边长为2,现用一平行于正四棱锥底面的平面去截这个棱锥,截得棱台的上、下底面的面积之比为1:4,若截去的小棱锥的侧棱长为2,则此棱台的表面积为.解:如图,设截面四边形为A1B1C1D1,则两四边形相似,由截面面积与底面积的比值为1:4,由相似比等于面积比的平方,可得,∵PA1=2,∴PA=PB=4,又已知BC=2,∴B1C1=1,取D为BC的中点,连接PD交B1C1=D1,则DD1为正四棱台的斜高,可得.∴此棱台的表面积为=.故答案为:.15.经过点P(﹣2,),且在坐标轴上截距相等的直线方程为y=﹣x或2x+2y+3=0.解:①当直线经过原点时,直线方程为y=﹣x;②当直线不经过原点时,设所求的直线方程为x+y=a,则a=2+=﹣,因此所求的直线方程为x+y=﹣,即2x+2y+3=0,故答案为:y=﹣x或2x+2y+3=0.16.函数在区间(1,2)上为单调递减函数,则实数t的取值范围为[1,2].解:∵函数在区间(1,2)上为单调递减函数,∴y=﹣x2+tx+2在区间(1,2)上大于零且为单调递减函数.而y=﹣x2+tx+2的对称轴为x=,∴,求得1≤t≤2,故答案为:[1,2].三、简答题(第17题10分,第18-22题每小题10分,共70分)17.已知直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,分别就下列条件求出实数m的值.(1)直线l1与l2垂直;(2)直线l1与l2平行.解:(1)∵直线l1:x+my+6=0,l2:(m﹣2)x+3y+2m=0,由l1⊥l2,可得1×(m﹣2)+m×3=0,解得m=;(2)由l1∥l2,可得m(m﹣2)=3且8(m﹣2)≠2m,解得m=﹣1.18.如图,长方体ABCD﹣A'B'C'D'由,AB=12,BC=10,AA'=6,过A'D'作长方体的截面A'D'EF使它成为正方形.(1)求三棱柱AA'F﹣DD'E的外接球的表面积;(2)求V B﹣A'D'EF.解:(1)因为截面A'D'EF为正方形,所以A'F=A'D'=10,AA'=6,在△AFA'中,AF=,取A'F的中点M,D'E的中点N,因为OF=OA=OA'=OD'=OE=OD,则MN的中点O为三棱柱AA'F﹣DD'E外接球的球心,所以r=OA'=,所以三棱柱AA'F﹣DD'E外接球的表面积为S=4πr2=4π•50=200π;(2)作BH⊥A'F,垂足为H,因为A'A⊥底面ABCD,EF⊂底面ABCD,所以EF⊥A'A,又EF⊥A'F,且A'A∩A'F=A,A'A,A'F⊂平面A'B'BA,所以EF⊥A'B'BA,又BH⊂平面A'B'BA,所以BH⊥EF,BH⊥A'F,EF∩A'F=F,EF,A'F⊂平面A'D'EF,所以BH⊥平面A'D'EF,故BH为四棱锥B﹣A'D'EF的高,又BF=AB﹣AF=4,所以BH=BF•sin∠BFH=BF•sin∠A'FA=,所以V B﹣A'D'EF=•S A'D'EF•BH=.19.已知直线l1:mx+y﹣m﹣2=0,l2:3x+4y﹣n=0.(1)求直线l1的定点P,并求出直线l2的方程,使得定点P到直线l2的距离为;(2)过点P引直线l分别交x,y轴正半轴于A、B两点,求使得△AOB面积最小时,直线l的方程.解:(1)直线l1:mx+y﹣m﹣2=0,即m(x﹣1)+﹣2=0,令x﹣1=0,求得x=1,y =2,可得直线l1的定点P(1,2).∵定点P(1,2)到直线l2:3x+4y﹣n=0的距离为=,∴n=3,或n =19,故直线l2:3x+4y﹣3=0 或3x+4y﹣19=0.(2)设过点P引直线l分别交x,y轴正半轴于A、B两点,设A(a,0)、B(0,b),则P、A、B三点共线,=,∴ab=2a+b≥2,当且仅当2a=b时,取等号,∴ab≥1,∴△AOB面积为ab最小值为,此时,a=,b=,直线l的斜率为﹣2,直线l的方程为y﹣2=﹣2(x﹣1),即2x﹣y﹣4=0.20.已知函数f(x)=[(a﹣1)x﹣2](a>0且a≠1).(1)求f(x)的定义域;(2)若f(x)>0在上恒成立,求实数a的取值范围.解:(1)令(a﹣1)x﹣2>0,当0<a<1时,a﹣1<0,(a﹣1)x>2则x<,当a>1时,a﹣1>0,(a﹣1)x>2则x>,综上所述:当0<a<1时,定义域为(﹣∞,);当a>1时,定义域为(,+∞);(2)当0<a<1时,,要使f(x)>0在上恒成立,则(a﹣1)×﹣2>1,解得a>,又0<a<1,所以无解;当a>1时,0<<1,要使f(x)>0在上恒成立,则f()>0且f(x)在上有意义,则,解得3<a<,所以实数a的取值范围为(3,).21.如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,△PCD为等边三角形,平面PAC⊥平面PCD,PA⊥CD.(1)设G,H分别为线段PB,AC的中点,求证:GH∥平面PAD;(2)求证:PA⊥平面PCD.【解答】(1)证明:如图1,连接BD,∵四边形ABCD为平行四边形,点H是AC的中点,∴AC与BD的交点即为点H,∴BH=DH,又∵BG=PG,AC∩BD=H,∴GH∥PD,又∵GH⊄平面PAD,PD⊂平面PAD,∴GH∥平面PAD.(2)证明:如图2,取棱PC的中点N,连接DN,依题意,得DN⊥PC,又∵平面PAC⊥平面PCD,平面PAC∩平面PCD=PC,∴DN⊥平面PAC,又PA⊂平面PAC,故DN⊥PA,又已知PA⊥CD,CD∩DN=D,∴PA⊥平面PCD.22.一副标准的三角板(如图1),∠ABC为直角,∠A=60°,∠DEF为直角,DE=EF,BC=DF,把BC与DF重合,拼成一个三棱锥(如图2),设M是线段AC的中点,N 是线段BC的中点.(1)求证:平面ABC⊥平面EMN;(2)设平面ABE∩平面MNE=l,求证:l∥AB.【解答】(1)证明:∵M是AC的中点,N是BC的∴MN∥AB,∵AB⊥BC,∴MN⊥BC,∵BE⊥EC,BE=EC,N是BC的中点,∴EN⊥BC,∵MN∩EN=N,MN⊂平面EMN,EN⊂平面EMN,∴BC⊥平面EMN,又BC⊂平面ABC,∴平面ABC⊥平面EMN.(2)证明:∵M是AC的中点,N是BC的中点,∴MN∥AB,∵MN⊂平面EMN,AB⊄平面EMN,∴AB∥平面EMN,∵平面ABE∩平面MNE=l,∴l⊂平面EMN,且l⊂平面ABE,AB与l无交点,∴AB∥l.。

高一上学期期末数学考试卷及答案

高一上学期期末数学考试卷及答案

2020~2021学年度上学期高一年级期末考试卷数 学 试 卷注意事项:1.本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,请认真阅读答题卡上的注意事项,将答案写在答题卡上。

写在本试卷上无效。

一、单选题 本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1}, 则(C U A)∩B= ( )A.{-1}B.{0,1}C{-1,2,3} D.{-1,0,1,3}2.“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知函数,则( )A.B.C.6D.74.已知f(x)=(x-a)(x-b)+2(a<b),且α,β(α<β)是方程f(x)=0的两根,则α,β,a,b的大小关系是( )A.a<α<β<b B.a<α<b<βC.α<a<b<βD.α<a<β<b5.是定义在上的偶函数,在上是增函数,且,则使的的范围是( )A.B.C. D.6.已知,,且,则( )A.B.C.D.7.函数的定义域是( )A.B.C.D.8.函数的零点个数有( )A.0个B.1个C.2个D.3个二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9.下列命题是“,”的表述方法的是()A.有一个,使得成立B.对有些,使得成立C.任选一个,都有成立D.至少有一个,使得成立10.下列命题中是真命题的有( )A.幂函数的图象都经过点和B.幂函数的图象不可能过第四象限C.当时,幂函数是增函数D.当时,幂函数在第一象限内函数值随值的增大而减小11.如果函数在上是增函数,对于任意的,则下列结论中正确的是( )A.B.C.D.12.已知函数有两个零点,,以下结论正确的是( )A.B.若,则C.D.函数有四个零点三、填空题 (每题5分,满分20分,将答案填在答题纸上)13.已知,则的解析式为___________.14.用二分法研究函数f(x)=x3+3x-1的零点时,第一次计算得f(0)<0,f(0.5)>0,第二次应计算f(x1),则x1=________.15.已知函数,若,则____.16.已知函数 (a>0,且a≠1),若在区间[1,2]上恒成立,则实数a的取值范围是________.四 解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)(1);(2).18.(12分)已知函数,试画出的图象,并根据图象解决下列两个问题.(1)写出函数的单调区间;(2)求函数在区间上的最大值.19.(12分)已知函数f(x)=,g(x)=(a>0且a≠1).(1)求函数φ(x)=f(x)+g(x)的定义域;(2)试确定不等式f(x)≤g(x)中x的取值范围.20.(12分)已知函数(1)判断函数在上的单调性,并给予证明;(2)求函数在,的最大值和最小值.21.(12分)已知函数(1)若在恒成立,求的取值范围;(2)设函数,解不等式.22.(12分)设函数是定义域为R的奇函数.(1)求的值;(2)若,试判断的单调性(不需证明),并求使不等式恒成立的t的取值范围;(3),求在上的最小值.数 学 试 卷 参考答案1 A 2.B 3.A 4.A 5.B 6.C 7.A 8.C9.ABD 10.BD 11.AB 12.ABC13. 14.0.25 15.1或-2 16.17.(1)原式;(2)原式.18. 的图象如图所示.(1) 在和上是增函数,在上是减函数,∴单调递增区间为,;单调递减区间为;(2)∵,,∴在区间上的最大值为.19. 解:(1)φ(x)=f(x)+g(x)的定义域为:,解得:,所以定义域为.(2) f(x)≤g(x),即为,定义域为.当时,,解得:,所以x的取值范围为.当时,,解得:,所以x的取值范围为.综上可得:当时,x的取值范围为.当时,x的取值范围为.20(1),函数在上是增函数,证明:任取,,且,则,,,,,即,在上是增函数;(2)在上是增函数,在,上单调递增,它的最大值是,最小值是.21.(1)在恒成立,即在恒成立, 分离参数得:,∵,∴从而有:.(3)令,得,,因为函数的定义域为,所以等价于(1)当,即时,恒成立,原不等式的解集是(2)当,即时,原不等式的解集是(3)当,即时,原不等式的解集是(4)当,即时,原不等式的解集是综上所述:当时,原不等式的解集是当时,原不等式的解集是当时,原不等式的解集是当时,原不等式的解集是22.(1) ∵是定义域为R的奇函数,∴ f(0)=0,∴ 1-(k-1)=0,∴ k=2, (2)单减,单增,故f(x)在R上单减 ,故不等式化为∴,解得令∵在上为递增的 ∴∴设∴.即在上的最小值为.。

2020-2021学年上学期高一数学期末模拟卷03(人教A版新教材)(浙江专用)【解析版】

2020-2021学年上学期高一数学期末模拟卷03(人教A版新教材)(浙江专用)【解析版】

数学模拟试卷03第I 卷 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020·河北高二学业考试)已知集合{}012M =,,,{}1,2N =,则M N ⋃=( ).A .{}1,2B .{}0C .{}0,1,2D .{}0,1【答案】C 【解析】由并集定义可得:{}0,1,2M N =.故选:C.2.(2019·浙江高二学业考试)已知a ,b 是实数,则“a b >”是“22a b >”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】若a b >,则a b b >≥,即a b >,故22a b >. 取1,2a b ==-,此时22a b >,但a b <, 故22a b >推不出a b >, 故选:A.3.(2019·伊宁市第八中学高一期中)若偶函数()f x 在区间(]1-∞-,上是增函数,则( ) A .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭B .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭C .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭D .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭【答案】D 【解析】函数()f x 为偶函数,则()()22f f =-.又函数()f x 在区间(]1-∞-,上是增函数. 则()()3122f f f ⎛⎫<-<- ⎪⎝⎭-,即()()3212f f f ⎛⎫<-<- ⎪⎝⎭故选:D.4.(2020·黑龙江哈尔滨市第六中学校高三开学考试(理))设2313a ⎛⎫= ⎪⎝⎭,532b =,21log 3c =,则( )A .b a c <<B .a b c <<C .c a b <<D .b c a <<【答案】C 【解析】23110133⎛⎫⎛⎫<<= ⎪ ⎪⎝⎭⎝⎭,503221>=,221log log 103<=, ∴c a b <<. 故选:C5.(2020·江苏南通市·高三期中)已知角α的终边经过点()3,4P ,则πcos 24α⎛⎫+= ⎪⎝⎭( )A .50-B .50C .50-D .50【答案】A 【解析】角α的终边经过点()3,4P ,5OP ∴==,由三角函数的定义知:3cos 5α=,4sin 5α, 2237cos 22cos 121525αα⎛⎫∴=-=⨯-=- ⎪⎝⎭,4324sin 22sin cos 25525ααα==⨯⨯=,()()π724cos 2cos2cos sin 2sin 4442525ππααα∴+=-=-=.故选:A.6.(2020·甘肃兰州市·西北师大附中高三期中)函数()f x 在[)0,+∞单调递增,且()3f x +关于3x =-对称,若()21f -=,则()21f x -≤的x 的取值范围( )A .[]22-,B .(][),22,-∞-+∞C .()[),04,-∞+∞D .[]0,4【答案】D 【解析】因为()3f x +关于3x =-对称,所以()f x 关于y 轴对称,所以()()221f f -==, 又()f x 在[)0,+∞单调递增,由()21f x -≤可得222x -≤-≤,解得:04x ≤≤, 故选:D7.(2020·浙江高一期末)对于函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭,有以下四种说法: ①函数的最小值是32-②图象的对称轴是直线()312k x k Z ππ=-∈ ③图象的对称中心为,0()312k k Z ππ⎛⎫-∈⎪⎝⎭ ④函数在区间7,123ππ⎡⎤--⎢⎥⎣⎦上单调递增. 其中正确的说法的个数是( ) A .1 B .2C .3D .4【答案】A 【解析】函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭, 当3=42x ππ+时,即=12x π,函数()f x 取得最小值为132122-⨯+=-,故①正确;当342x k πππ+=+时,即=,123k x k Z ππ+∈,函数()f x 的图象的对称轴是直线=,123k x k Z ππ+∈,故②错误; 当34x k ππ+=时,即,123k x k Z ππ=-+∈,函数()f x 的图象的对称中心为1,,1232k k Z ππ⎛⎫-+∈ ⎪⎝⎭,故③错误; 当3232242k x k πππππ+≤+≤+,即2523,123123k k x k Z ππππ+≤≤+∈,函数()f x 的递增区间为252,,123123k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 当1k =-时,()f x 的递增区间为7,124ππ⎡⎤--⎢⎥⎣⎦,故④错误. 故选:A8.(2020·山西吕梁市·高三期中(文))函数1()11f x x=+-的图象与函数()2sin 1(24)g x x x π=+-的图象所有交点的横坐标之和等于( ) A .8 B .6C .4D .2【答案】A 【解析】由函数图象的平移可知, 函数1()11f x x=+-与函数()2sin 1g x x π=+的图象都关于(1,1)M 对称. 作出函数的图象如图,由图象可知交点个数一共8个(四组,两两关于点(1,1)对称), 所以所有交点的横坐标之和等于428⨯=.故选:A9.(2020·山西吕梁市·高三期中(文))已知函数2,0()()21,0x e a x f x a R x x ⎧+=∈⎨->⎩,若函数()f x 在R 上有两个零点,则a 的取值范围是( ) A .(,1)-∞- B .[2,0)-C .(1,0)-D .[1,0)-【答案】B 【解析】当0x >时,()21f x x =-有一个零点12x =,只需当0x ≤时,20x e a +=有一个根,利用“分离参数法”求解即可.解:因为函数()2,021,0x e a x f x x x ⎧+≤=⎨->⎩, 当0x >时,()21f x x =-有一个零点12x =, 所以只需当0x ≤时,202x xa e a e +==-即有一个根即可,因为2xy e =单调递增,当0x ≤时,(]0,1xe ∈,所以(]0,2a -∈,即[)2,0a ∈-,故选:B.10.(2020·河北高二学业考试)已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()()2log 1f x x =+,则不等式()2f x ≤的解集是( ). A .[]3,3- B .[]4,4-C .(][),33,-∞-+∞D .(][),44,-∞-⋃+∞【答案】A 【解析】0x ≥时,()()2log 1f x x =+,()f x ∴在[)0,+∞上单调递增,又()f x 是定义在R 上的奇函数,()f x ∴在R 上单调递增,易知()()223log 31log 42f =+==,()()332f f -=-=-, 由()2f x ≤, 解得:()22f x -≤≤, 由()f x 在R 上单调递增, 解得:33x -≤≤,()2f x ∴≤的解集是[]3,3-.故选:A.第II 卷 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(2020·上海青浦区·高三一模)圆锥底面半径为1cm ,母线长为2cm ,则其侧面展开图扇形的圆心角θ=___________.【答案】π; 【解析】因为圆锥底面半径为1cm ,所以圆锥的底面周长为2cm π, 则其侧面展开图扇形的圆心角22πθπ==, 故答案为:π.12.(2020·浙江宁波市·高三期中)设2log 3a =,则4a =______(用数值表示),lg 36lg 4=______.(用a 表示)【答案】9 1a + 【解析】2log 3a =,22394429log log a ∴===,4222236log 36log 6log (23)log 2log 314lg a lg ===⨯=+=+, 故答案为:9,1a +.13.(2020·深圳科学高中高一期中)某移动公司规定,使用甲种卡,须付“基本月租费”(每月需交的固定费用)30元,在国内通话时每分钟另收话费0.10元;使用乙种卡,不收“基本月租费”,但在国内通话时每分钟话费为0.2元.若某用户每月手机费预算为50元,则使用__________种卡才合算;若要使用甲种卡合算,则该用户每月手机费预算(元)的区间为__________. 【答案】乙 (60,)+∞ 【解析】由题意,设月通话时间为t 分钟,有甲费用为300.1t +,乙费用为0.2t , ∴每月手机费预算为50元,则:由300.150t +=知,甲的通话时间为200分钟, 由0.250t =知,乙的通话时间为250分钟, ∴用户每月手机费预算为50元,用乙种卡合算;要使用甲种卡合算,即月通话时间相同的情况下甲费用更低,即300.10.2t t +<, 解得300t >时,费用在(60,)+∞. 故答案为:乙,(60,)+∞14.(2020·商丘市第一高级中学高一期中)设函数()112,1,1x e x f x x x -⎧<⎪=⎨⎪≥⎩则()3f x ≤成立的x 的取值范围为______. 【答案】(],9-∞ 【解析】当1x <时,由13x e -≤得1ln3x ≤+,所以1x <; 当1≥x 时,由213x ≤得9x ≤,所以19x ≤≤. 综上,符合题意的x 的取值范围是(,9]-∞. 故答案为:(,9]-∞.15.(2020·辽宁本溪市·高二月考)摩天轮是一种大型转轮状的机械建筑设施,稳坐于永乐桥之上的“天津之眼”作为世界上唯一一座建在桥上的摩天轮,其巧夺天工和奇思妙想确是当之无愧的“世界第一”.如图,永乐桥摩天轮的直径为110m ,到达最高点时,距离地面的高度为120m ,能看到方圆40km 以内的景致,是名副其实的“天津之眼”.实际上,单从高度角度来看,天津之眼超越了曾大名鼎鼎的伦敦之眼而跃居世界第一.永乐桥摩天轮设置有48个座舱,开启后按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周大约需要30min .游客甲坐上摩天轮的座舱,开始转到min t 后距离地面的高度为m H ,则转到10min 后距离地面的高度为______m ,在转动一周的过程中,H 关于t 的函数解析式为______.【答案】1852 π55cos 6515H t =-+,030t ≤≤. 【解析】如图,设座舱距离地面最近的位置为点P ,以轴心O 为原点,与地面平行的直线为x 轴,建立直角坐标系.设0min t =时,游客甲位于点()0,55P -,以OP 为终边的角为π2-; 根据摩天轮转一周大约需要30min , 可知座舱转动的角速度约为πmin 15rad , 由题意可得πππ55sin 6555cos 6515215H t t ⎛⎫=-+=-+⎪⎝⎭,030t ≤≤.当10t =时,π18555cos 1065152H ⎛⎫=-⨯+= ⎪⎝⎭. 故答案为:1852;π55cos 6515H t =-+,030t ≤≤ 16.(2020·浙江建人专修学院高三三模)已知2,0()(),0x x f x f x x ⎧≥=⎨--<⎩,若4log 3a =,则()f a =___________;()1f a -=___________.3 233-因为4log 3a =,所以43a =,即2a =01a <<,所以()2a f a ==1(1)(1)2a f a f a --=--=-==3-17.(2020·上海虹口区·高三一模)已知(0,)απ∈,且有12sin2cos2αα-=,则cos α=___________.【解析】2212sin 2cos214sin cos 12sin sin 2sin cos αααααααα-=⇒-=-⇒=,因为(0,)απ∈,所以sin 0α≠,因此由2sin 2sin cos sin 2cos tan 2(0,)2πααααααα=⇒=⇒=⇒∈,而22sin cos 1(1)αα+=,把sin 2cos αα=代入(1)得:22214cos cos 1cos cos 5αααα+=⇒=⇒=(0,)2πα∈,因此cos α=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(2020·黑龙江工农�鹤岗一中高二期末(文))函数()22xxaf x =-是奇函数. ()1求()f x 的解析式;()2当()0,x ∈+∞时,()24x f x m ->⋅+恒成立,求m 的取值范围.【答案】(1)()122xxf x =-;(2)5m <-.() 1函数()22x x af x =-是奇函数, ()()1222222x x x x x x a af x a f x --∴-=-=-+=-+=-,故1a =, 故()122xx f x =-; ()2当()0,x ∈+∞时,()24x f x m ->⋅+恒成立,即21(2)42x xm +<-⋅在()0,x ∈+∞恒成立,令()2(2)42x xh x =-⋅,(0)x >,显然()h x 在()0,+∞的最小值是()24h =-, 故14m +<-,解得:5m <-.19.(2020·宁夏长庆高级中学高三月考(理))已知函数()22sin cos 22222x x x f x ππ⎛⎫⎛⎫=-++- ⎪ ⎪⎝⎭⎝⎭(1)求()f x 的最小正周期;(2)求()f x 在区间[]0,π上的最小值及单调减区间.【答案】(1)最小正周期为2π;(2)()min f x =()f x 的单调递减区间为,6ππ⎡⎤⎢⎥⎣⎦. 【解析】(1)1cos ()2sin cos 222x x xf x +=+sin x x =+12sin cos 2sin 223x x x π⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭.所以()f x 的最小正周期为2π. (2)因为[]0,x π∈,所以4,333x πππ⎡⎤+∈⎢⎥⎣⎦,所以当433x ππ+=,即x π=时,函数()f x 取得最小值由4233x πππ≤+≤,得6x ππ≤≤,所以函数()f x 的单调递减区间为,6ππ⎡⎤⎢⎥⎣⎦. 20.(2019·河北师范大学附属中学高一期中)已知二次函数()f x 的图象经过点()4,4-,方程()0f x =的解集为{}0,2.(1)求()f x 的解析式;(2)是否存在实数(),m n m n <,使得()f x 的定义域和值域分别为[],m n 和[]2,2m n ?若存在,求出m ,n 的值;若不存在,说明理由.【答案】(1)21()2f x x x =-+;(2)存在;2m =-,0n =. 【解析】(1)由已知,设()()2f x ax x =-.因为()f x 的图象经过点()4,4-,所以()4442a -=-,解得12a =-, 即()f x 的解析式为21()2f x x x =-+; (2)假设满足条件实数m ,n 的存在, 由于221111()(1)2222f x x x x =-+=--+≤,因此122n ≤,即14n ≤. 又()f x 的图象是开口向下的抛物线,且对称轴方程1x =,可知()f x 在区间[],m n 上递增,故有()2()2f m m f n n=⎧⎨=⎩,并注意到14m n <≤,解得2m =-,0n =. 综上可知,假设成立,即当2m =-,0n =时,()f x 的定义域和值域分别为[],m n 和[]2,2m n .21.(2020·山西吕梁市·高三期中(文))已知函数()sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫ ⎪⎝⎭上有最小值,无最大值,且满足63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭. (1)求()f x 的最小正周期;(2)将函数()f x 的图象向右平移06πϕϕ⎛⎫<< ⎪⎝⎭个单位后得到函数()g x 的图象,若对满足()()122f x g x -=的1x 、2x 有12min 7x x π-=,求ϕ的值. 【答案】(1)37π;(2)14π. 【解析】(1)由()sin ,(0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫ ⎪⎝⎭上有最小值,无最大值, 可知:236T πππω-≤=,故有012ω<≤. 又6x π=与3x π=在一个周期内,且63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭; 4x π∴=时,函数取到最小值.2,()432k k Z πππωπ∴+=-+∈ 故有1083k ω=-+, 又因为012ω<≤,所以143ω=. 所以函数()f x 的最小正周期为37π. (2)由()()122f x g x -=∣∣可知的()()12,f x g x 中一个对应最大值,一个对应最小值. 对于函数()f x 其最大值与最小值对应的x 的距离为半个周期314π. ∴有12min 314x x πϕ-+=. 即314714πππϕ=-=.22.(2020·安徽省蚌埠第三中学高一月考)设函数()()21x x a t f x a--=(0a >,且1a ≠)是定义域为R 的奇函数.(1)求t 的值;(2)若函数()f x 的图象过点31,2⎛⎫ ⎪⎝⎭,是否存在正数()1m m ≠,使函数()()22log x x m g x a a mf x -⎡⎤=+-⎣⎦在[]21,log 3上的最大值为0,若存在,求出m 的值;若不存在,请说明理由.【答案】(1)2t =;(2)不存在,理由见解析.【解析】(1)∵()f x 是定义域为R 的奇函数,∴()00f =,∴2t =;经检验知符合题意.(2)函数()f x 的图象过点31,2⎛⎫ ⎪⎝⎭,所以2132a a -=, ∴2a =(12a =-舍去), 假设存在正数m ,且1m ≠符合题意,由2a =得()()22log 2222x x x x m g x m --⎡⎤=+--⎣⎦, 设22x x t -=-,则()()22222222x x x x m t mt -----+=-+,∵[]21,log 3x ∈,2[2,3]x ∈,∴38,23t ⎡⎤∈⎢⎥⎣⎦,记()22h t t mt =-+, ∵函数()g x 在[]21,log 3上的最大值为0,∴(i )若01m <<时,则函数()22h t t mt =-+在38,23⎡⎤⎢⎥⎣⎦有最小值为1, 由于对称轴122m t =<,∴()min 31731312426h t h m m ⎛⎫==-=⇒= ⎪⎝⎭,不合题意. (ii )若1m 时,则函数()220h t t mt =-+>在38,23⎡⎤⎢⎥⎣⎦上恒成立,且最大值为1,最小值大于0, ①()max 1252512212736873241324m m m h t h m ⎧⎧<≤<≤⎪⎪⎪⎪⇒⇒=⎨⎨⎛⎫⎪⎪=== ⎪⎪⎪⎩⎝⎭⎩, 而此时7338,24823m ⎡⎤=∈⎢⎥⎣⎦,又()min 73048h t h ⎛⎫=< ⎪⎝⎭, 故()g x 在[]21,log 3无意义, 所以7324m =应舍去; ②()max 25252126313126m m h t h m ⎧⎧>>⎪⎪⎪⎪⇒⇒⎨⎨⎛⎫⎪⎪=== ⎪⎪⎪⎩⎝⎭⎩m 无解, 综上所述:故不存在正数m ,使函数()g x 在[]21,log 3上的最大值为0.。

2011九江市高一上学期期末数学试卷及答案

2011九江市高一上学期期末数学试卷及答案

江西九江市高一上学期期末数学试卷一.选择题:本大共12小题,每小题5分,共60分;在每小题的四个选项中只有一个是正确的;。

1、下列各式正确的是 ( B )A 、{}210x x ⊆≤B 、{}{}210x x ⊆≤C 、{}10x x ∅∈≤D 、{}10x x ∅⊂≤2、已知(){}(){},21,,3A x y y x B x y y x ==+==+,则A B = ( B ) A 、B B 、(){}2,5 C 、∅ D 、{}2,53、直线0133=+-x y 的倾斜角是 ( A ) A 、6π B 、 3π C 、4π D 、65π4、 设,αβ是两个不同的平面,l 是一条直线,以下命题正确的是 ( C ) A.若,l βαα⊥⊥,则l ∥βB.若//,//l l βα,则α∥βC.若,//l ααβ⊥,则l β⊥ D.若//,l ααβ⊥,则l β⊥ 5、8.函数2()ln f x x x=-的零点所在的大致区间是( C ) A .(1,2) B .(e ,3) C .(2,e ) D .(e,+∞)6、图1是偶函数()y f x =的局部图象,根据图象 所给信息,下列结论正确的是( C ) A .(1)(2)0f f --> B .(1)(2)0f f --= C .(1)(2)0f f --< D .(1)(2)0f f -+<7、已知函数(1)f x x -=-,则函数()f x 的表达式为( D )A .2()21(0)f x x x x =++≥B .2()21(1)f x x x x =++-≥C .2()21(0)f x x x x =---≥D .2()21(1)f x x x x =---≥- 8、已知0ab ≠,点(,)M a b 是圆x 2+y 2=r 2内一点,直线m 是以点M 为中点的弦所在的直线,直线l 的方程是2ax by r +=,则下列结论正确的是( C )y xo1 32图1正视图侧视图俯视图aaaa2a2a2aA.m//l ,且l 与圆相交B.l ⊥m,且l 与圆相切C.m//l ,且l 与圆相离D.l ⊥m,且l 与圆相离 9、一几何体的三视图如下,则它的体积是( A )A.333a π+ B. 3712a π C. 331612a π+ D. 373a π 10、若圆222)5()3(r y x =++-上有且只有两个点到直线234=-y x 的距离为1,则半径r 的取值范围是( A )A.)6,4(B.)6,4[C.]6,4(D.]6,4[11、设()f x 是定义在R 上的函数,令()()()2010g x f x f x =--, 则()()2010g x g x +-= 012、若直线210ax y ++=与直线20x y +-=互相垂直,则a = -2 13、与直线3450x y -+=平行且与圆224x y +=相切的直线的方程是01043=+-y x 或01043=--y x .14、 长方体的一个顶点上的三条棱长分别是3,4,5 ,且它的8个顶点都在同一个球面上,则这个球的表面积是 50π 15、已知函数()f x ,如果对任意一个三角形,只要它的三边长,,a b c 都在()f x 的定义域内,就有()()(),,f a f b f c 也是某个三角形的三边长,则称()f x 为“保三角形函数”.在函数①()1f x x =,②()2f x x =,③()23f x x =中, 其中 ①② 是“保三角形函数”.(填上正确的函数序号) 16、已知集合A={x |x x y 24-+=,R x ∈},集合B={y |32421--=+x x y ,A x ∈}。

2020-2021学年高一上学期期末考试数学卷及答案

2020-2021学年高一上学期期末考试数学卷及答案

2020-2021学年高一上学期期末考试数学卷及答案1.集合A和B分别表示y=x+1和y=2两个函数的图像上所有的点,求A和B的交集。

答案:A={(-∞,1]}。

B={2}。

A∩B=A={(-∞,1]}2.已知函数y=(1-x)/(2x^2-3x-2),求函数的定义域。

答案:分母2x^2-3x-2=(2x+1)(x-2),所以函数的定义域为x∈(-∞,-1/2]∪(2,∞)。

3.如果直线mx+y-1=0与直线x-2y+3=0平行,求m的值。

答案:两条直线平行,说明它们的斜率相等,即m=2.4.如果直线ax+by+c=0经过第一、第二,第四象限,求a、b、c应满足的条件。

答案:第一象限中x>0.y>0,所以ax+by+c>0;第二象限中x0,所以ax+by+c0.y<0,所以ax+by+c<0.综上所述,应满足ab<0.bc<0.5.已知两条不同的直线m和n,两个不同的平面α和β,判断下列命题中正确的是哪个。

答案:选项A是正确的。

因为如果m与α垂直,n与β平行,那么m和n的夹角就是α和β的夹角,所以m和n垂直。

6.已知圆锥的表面积为6π,且它的侧面展开图是一个半圆,求这个圆锥的底面半径。

答案:设底面半径为r,侧面的母线长为l,则圆锥的侧面积为πrl。

根据题意,πrl=6π,所以l=6/r。

而侧面展开图是一个半圆,所以底面周长为2πr,即底面直径为2r,所以侧面母线长l=πr。

将上述两个式子代入公式S=πr^2+πrl中,得到r=2.7.已知两条平行线答案:两条平行线的距离等于它们的任意一点到另一条直线的距离。

我们可以先求出l2上的一点,比如(0,7/8),然后带入l1的方程,得到距离为3/5.8.已知函数y=ax-1/(3x^2+5),如果它的图像经过定点P,求点P的坐标。

答案:点P的坐标为(1,2)。

因为当x=1时,y=a-1/8,所以a=17/8.又因为当x=2时,y=1/13,所以17/8×2-1/13=2,解得a=17/8,所以y=17x/8-1/(3x^2+5),当x=1时,y=2.9.已知a=3/5,b=1/3,c=4/3,求a、b、c的大小关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、解答题
17.已知全集 集合 , ,

(1)求 ;
(2)若 ,求实数 的取值范围.
18.如图:正三棱柱ABC—A1B1C1中,D是BC的中点,AA1=AB=1.
(1)求证:A1C//平面AB1D;
(2)求点C到平面AB1D的距离.
19.设函数 是定义域(0,+∞)上的增函数,且 = .
(1)求 的值;
考点:函数的概念.
5.C
【解析】
由题意可知,点AB,的中点坐标为(2,0,3),由于纵坐标为零,因此可知线段AB的中点在空间直角坐标系中的位置是在xoz面内,选C.
6.A
【解析】
试题分析:因为直线的斜率为1,所以 ,解得 ;故选A.
考点:直线的斜率公式.
7.C
【解析】
试题分析:若 , ,则 ,又因为 ,所以 ,故①正确;若 , ,则 或 ,又 ,则 可能平行或相交,故②错误;若 , ,则 或 ,又 ,则 可能平行、相交或异面,故③错误;若 , ,则 或 ,又 ,则 ,故④正确;故选C.
(1)若 ,试求点 的坐标;
(2)求证:经过 三点的圆必过定点,并求出所有定点的坐标.
22.已知函数 , 是常数.
(1)若 ,方程 有两解,求 的值.
(2)是否存在常数 ,使 对任意 恒成立?若存在,求常数 的取值范围;若不存在,简要说明理由.
参考答案
1.B
【解析】
试题分析:由题意,得 ,即集合 的元素个数是1;故选B.
3.直线 的斜率是()
A. B. C. D.
4.已知集合M={-1,1,2,4},N={0,1,2},给出下列四个对应关系:
①y=x2,②y=x+1,③y=2x,④y=log2|x|.其中能构成从M到N的函数的是()
A.①B.②C.③D.④
5.设 ,则线段AB的中点在空间直角坐标系中的位置是()
A.在 轴上B.在 面内C.在 面内D.在Байду номын сангаас面内
考点:圆的标准方程.
3.D
【解析】
试题分析:将 化为 ,即直线 的斜率为 ;故选D.
考点:1.直线方程的一般式和斜截式;2.直线的斜率.
4.D
【解析】
试题分析:当 时, ,所以 不能构成从M到N的函数;当 时, ,所以 不能构成从M到N的函数;当 时, ,所以 不能构成从M到N的函数;当 时, ,所以 能构成从M到N的函数;故选D.
考点:1.圆的一般方程;2.两圆的位置关系.
【技巧点睛】本题考查圆的一般方程和两圆的位置关系,属于中档题;因为 是两个不同圆上的动点,直接求其距离的最值无法下手;本题的技巧所在,将两动点的距离的最值问题转化为两圆的圆心间的距离问题,即 的最小值为两圆的圆心间的距离减去两圆的半径.
A.(-4,-3)B.(-3,-2)
C.(-2,-1)D.(-1,0)
二、填空题
13.计算:2log510+log50.25=.
14.设a,b∈R,且 ,若奇函数f(x)="lg" 在区间(-b,b)上有定义.则b的取值范围是.
15.已知x,y满足x2+y2=1,则 的最小值为_______
16.已知函数 ,如果对任意一个三角形,只要它的三边长 都在 的定义域内,就有 也是某个三角形的三边长,则称 为“保三角形函数”.在函数① ,② ,③ 中,其中是“保三角形函数”.(填上正确的函数序号)
(2)若 =1,求不等式 的解集.
20.已知两直线l1:ax-by+4=0,l2:(a-1)x+y+b=0,求分别满足下列条件的a、b的值.
(1)直线l1过点(-3,-1),并且直线l1与直线l2垂直;
(2)直线l1与直线l2平行,并且坐标原点到l1、l2的距离相等.
21.已知圆 的方程为 ,直线 的方程为 ,点 在直线 上,过 点作圆 的切线 ,切点为 .
考点:1.圆的对称性;2.直线与圆的位置关系.
10.A
【解析】
试题分析:
表示 轴上的点 到点 和点 的距离之和,由平面几何知识,得:当 三点
共线时, 取得最小值 ;故选A.
考点:两点间的距离公式.
11.C
【解析】
试题分析:圆 的圆心坐标为 ,半径为 ;
圆 的圆心坐标为 ,半径为 ,且 ,
则 的最小值为 ;故选C.
B.直线与圆相交,但不过圆心
C.直线与圆相切
D.直线与圆无公共点
9.过点A(11,2)作圆 的弦,其中弦长为整数的共有
A.16条B.17条C.32条D.34条
10.函数 的最小值为()
A. B. C. D.
11.点P在圆 上,点Q在圆 上,则|PQ|的最小值是()
A.5B.0C.3 -5D.5-2
12.已知单调函数f(x)满足分f(0)=3,且 = ,则函数零点所在区间为()
考点:1.集合的表示;2.集合的运算.
【易错点睛】本题考查利用描述法表示集合和集合的交集运算,属于基础题;利用描述法表示集合时,要注意代表元素的意义,且不要出现错误;如 表示函数 的定义域,是一个数集; 表示函数 的值域,是一个数集; 表示函数 的图象,是一个点集.
2.B
【解析】
试题分析:由圆的方程 ,可得该圆的圆心坐标为 ;故选B.
考点:空间中线面位置关系的转化.
8.C
【解析】
直线 的倾斜角为 ,则将其绕原点按逆时针方向旋转 后得到的直线的倾斜角为 ,所以直线方程为 .圆心 到直线 的距离 ,所以直线与圆相切,故选C
9.C
【解析】
试题分析:将 化为 ,即该圆的圆心坐标为 ,半径为 ,且 ,且经过点 的弦的最大长度为 (当弦过圆心时),最小弦长为 (当弦与直线 垂直时),所以其中弦长为整数的可能是10(一条), (各两条,共30条),26(一条),一共32条;故选C.
6.过点M(-1,m),N(m+1,4)的直线的斜率等于1,则m的值为()
A.1B. C.2D.
7.已知直线 平面 且 给出下列四个命题:
①若 则 ②若 则 ③若 则 ④若 则
其中真命题是()
A.①②B.①③C.①④D.②④
8.直线 绕原点逆时针方向旋转 后所得直线与圆 的位置关系是()
A.直线过圆心
【最新】江西省九江市一中高一上学期期末数学试卷
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知集合 ,则集合 的元素个数是()
A.0B.1C.2D.3
2.圆 的圆心坐标为()
A.(1,2)B.(1,-2)C.(-1,2)D.(-1,-2)
相关文档
最新文档