2019年上海高考试卷解析
2019年上海高考试卷答案解析

2019.6.7上海市高考数学试卷一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)1. 已知集合(,3)A =-∞,(2,)B =+∞,则A B = 。
2. 已知z ∈C ,且满意1i 5z =-,求z = 。
3. 已知向量(1,0,2)a =,(2,1,0)b =,则a 与b 的夹角为 。
4. 已知二项式5(21)x +,则绽开式中含2x 项的系数为 。
5. 已知x 、y 满意02x y x y ≥⎧⎪≥⎨⎪+≤⎩,求23z x y =-的最小值为 。
6. 已知函数()f x 周期为1,且当01x <≤,2()log f x x =,则3()2f = 。
7. 若,x y +∈R ,且123y x+=,则y x的最大值为 。
8. 已知数列{}n a 前n 项与为n S ,且满意2n n S a +=,则5S = 。
9. 过曲线24y x =的焦点F 并垂直于x 轴的直线分别与曲线24y x =交于A 、B ,A 在B 上方,M 为抛物线上一点,(2)OM OA OB λλ=+-,则λ= 。
10. 某三位数密码,每位数字可在0-9这10个数字中任选一个,则该三位数密码中,恰有 两位数字一样的概率是 。
11. 已知数列{}n a 满意1n n a a +<(*n ∈N ),若(,)n n P n a (3)n ≥均在双曲线22162x y -=上, 则1lim ||n n n P P +→∞= 。
12. 已知2()||1f x a x =--(1x >,0a >),()f x 与x 轴交点为A ,若对于()f x 图像上随意一点P ,在其图像上总存在另一点Q (P 、Q 异于A ),满意AP AQ ⊥,且||||AP AQ =,则a = 。
二、选择题(本大题共4题,每题5分,共20分)13. 已知直线方程20x y c -+=的一个方向向量d 可以是( )A. (2,1)-B. (2,1)C. (1,2)-D. (1,2) 14. 一个直角三角形的两条直角边长分别为1与2,将该三角形分别绕其两个直角边旋转得到的两个圆锥的体积之比为( )A. 1B. 2C. 4D. 8 15. 已知ω∈R ,函数2()(6)sin()f x x x ω=-⋅,存在常数a ∈R ,使得()f x a +为偶函数,则ω的值可能为( )A.2π B. 3π C. 4πD.5π 16. 已知tan tan tan()αβαβ⋅=+,有下列两个结论:① 存在α在第一象限,β在第三象限;② 存在α在第二象限,β在第四象限;则( )A. ①②均正确B. ①②均错误C. ①对②错D. ①错②对三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,在长方体1111ABCD A B C D -中,M 为1BB 上一点,已知2BM =,3CD =,4AD =,15AA =.(1)求直线1AC 与平面ABCD 的夹角; (2)求点A 到平面1A MC 的间隔 . 18. 已知1()1f x ax x =++,a ∈R . (1)当1a =时,求不等式()1(1)f x f x +<+的解集; (2)若()f x 在[1,2]x ∈时有零点,求a 的取值范围. 19. 如图,A B C --为海岸线,AB 为线段,BC 为四分之一圆弧,39.2BD =km ,22BDC ︒∠=,68CBD ︒∠=,58BDA ︒∠=.(1)求BC 的长度;(2)若40AB =km ,求D 到海岸线A B C --的最短间隔 .(准确到0.001km )20. 已知椭圆22184x y +=,1F 、2F 为左、右焦点,直线l 过2F 交椭圆于A 、B 两点.(1)若直线l 垂直于x 轴,求||AB ;(2)当190F AB ︒∠=时,A 在x 轴上方时,求A 、B 的坐标;(3)若直线1AF 交y 轴于M ,直线1BF 交y 轴于N ,是否存在直线l ,使得11F AB F MN S S =,若存在,求出直线l 的方程,若不存在,请说明理由.21. 数列{}n a ()n ∈*N 有100项,1a a =,对随意[2,100]n ∈,存在n i a a d =+,[1,1]i n ∈-,若k a 与前n 项中某一项相等,则称ka 具有性质P.(1)若11a =,2d =,求4a 全部可能的值;(2)若{}n a 不是等差数列,求证:数列{}n a 中存在某些项具有性质P ; (3)若{}n a 中恰有三项具有性质P ,这三项与为c ,请用a 、d 、c 表示12100a a a ++⋅⋅⋅+.参考答案一、填空题1、(2,3)2、5i -3、2arccos 54、405、6-6、1-7、98(提示:132y x=+≥,∴298y x≤=) 8、31169、3 10、27100(分析:211103232710100C C C P ⋅⋅==,选用到的两个数字×选用一次的数字的位置×选用一次的数字)11、3(解析:法一,由条件有22182na n -=,得n a =1||n n P P +==1lim ||n n n P P +→∞=;)(解析:法二(极限法),当n →∞时,1n n P P +与渐近线平行,1n n P P +在x 轴投影为1,渐近线斜角θ满意:tan θ=11lim ||3cos6n n n P P π+→∞==) 12、a =2()||=01f x a x =--,解得21x a =+,则21,0A a ⎛⎫+ ⎪⎝⎭,取11,P a a ⎛⎫+ ⎪⎝⎭,则:1,AP a a ⎛⎫-⎪⎝⎭,因为A P Q 、、满意AP AQ ⊥,且||||AP AQ =,则1,AQ a a ⎛⎫ ⎪⎝⎭,所以211,Q a aa ⎛⎫++ ⎪⎝⎭,Q 点在2()||1f x a x =--图像上,则21211a aa a-=++-,得221||2a a a a -=+,2212a a a a-=+,()()22120a a +-=,所以22a =,a = 二. 选择题13、D 14.、B15、C (分析:2()(6)sin[()]f x a x a x a ω+=+-⋅+,因为()f x a +为偶函数,所以6a =,且sin[(6)]x ω+也为偶函数,所以62k πωπ=+,当1k =时,4πω=)16、D (分析:特别值验证,取tan 1α=-,则tan 1β=-所以② 正确,再取几组验证,① 错) 三、解答题17、(1)4π;(2)103. 【解析】(1)连接AC ,1AA ABCD ⊥面,则1ACA ∠即为直线1AC 与平面ABCD 的夹角。
《流沙中的弱水河》(2019年上海市高考题)阅读训练及答案解析

《流沙中的弱水河》阅读练习及答案(2019年上海市高考题)阅读下文,完成第8—11题。
(15分)流沙中的弱水河蒙语中的巴丹吉林,意为“绿色深渊”。
这片名叫巴丹吉林的沙漠,古称“流沙”。
从史前到不远的17世纪,这里一直草场茂密,风吹草低,牧人鞭梢儿撩起云彩。
但是诗意的名字阻挡不了沙漠的进攻,疯狂的沙漠风云怒卷,摧枯拉朽,聚起黄沙和硬石,日日推进,沙漠强大的攻势使巴丹吉林所包含的绿洲逐渐缩小,绿洲千百年来的顽强坚守和无奈溃退,让我感到了时间的强悍和傲慢,嗅到了与自然对抗的弥天血腥。
但是,巴丹吉林沙漠深处的额济纳绿洲和北部边缘的鼎新绿洲并没有被流沙掩埋。
弱水河自始至终都在它的身体之内发出嘹亮的歌声,关注“儒愿学堂”获取更多资料,儒愿学堂专注语文培优。
以清洁的水质营养并支撑着巴丹吉林沙漠和它体内体外的两片绿洲。
我不敢想象,如果没有弱水河,今天的巴丹吉林沙漠将会怎样,它的苍黄颜色、浩瀚凶猛的性格都不会被我发现。
我甚至想,弱水河对巴丹吉林沙漠的光顾、滋润和穿越更像是上天的安排。
我始终坚信,每一个生命都有着自己与生俱来的生存能力和适宜环境,哪怕是一株毫不起眼的青草、藤萝和水藻。
因此,我总觉得巴丹吉林沙漠是幸运的,它的幸运当然就是弱水河了。
其实,我早就应该想到,在干燥的沙漠,如果没有水,没有河流,我们的生命怎么会如此葱茏浓郁呢?弱水河就在身边。
可是我最初并没有发现它的踪迹,只是隐隐地感觉到,在近处或远处的苍茫之中,总有什么在沉默,在隐藏,在呼吸和奔走。
这也正是我所忽视了的弱水河,它不事声张,自知自己的意义和方向。
当地人习惯将弱水河称作黑河。
两者比较,我倾向于前者,古典,精美,悠远并张力四射。
“黑河”太俗了,坦白得让人掀不起一丝想象的波澜,轻率、功利、直奔主题、省略过程。
在巴丹吉林沙漠边缘,长期伏案和单调枯燥的生活,让我感到自己不再是一个完整的人,而是一部坏了多处的机器,少去了青草的茂绿和阳光的直射。
夏天的一个傍晚,我走了出来。
2019年上海市高考数学试卷+参考答案+详情解析

2019年上海市高考数学试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分). 1.(4分)已知集合A=(﹣∞,3),B=(2,+∞),则A∩B=.2.(4分)已知z∈C,且满足=i,求z=.3.(4分)已知向量=(1,0,2),=(2,1,0),则与的夹角为.4.(4分)已知二项式(2x+1)5,则展开式中含x2项的系数为.5.(4分)已知x,y满足,则z=2x﹣3y的最小值为.6.(4分)已知函数f(x)周期为1,且当0<x≤1时,f(x)=log2x,则f()=.7.(5分)若x,y∈R+,且+2y=3,则的最大值为.8.(5分)已知数列{a n}前n项和为S n,且满足S n+a n=2,则S5=.9.(5分)过曲线y2=4x的焦点F并垂直于x轴的直线分别与曲线y2=4x交于A,B,A 在B上方,M为抛物线上一点,=λ+(λ﹣2),则λ=.10.(5分)某三位数密码,每位数字可在0﹣9这10个数字中任选一个,则该三位数密码中,恰有两位数字相同的概率是.11.(5分)已知数列{a n}满足a n<a n+1(n∈N*),P n(n,a n)(n≥3)均在双曲线﹣=1上,则|P n P n+1|=.12.(5分)已知f(x)=|﹣a|(x>1,a>0),f(x)与x轴交点为A,若对于f(x)图象上任意一点P,在其图象上总存在另一点Q(P、Q异于A),满足AP⊥AQ,且|AP|=|AQ|,则a=.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)已知直线方程2x﹣y+c=0的一个方向向量可以是()A.(2,﹣1)B.(2,1)C.(﹣1,2)D.(1,2)14.(5分)一个直角三角形的两条直角边长分别为1和2,将该三角形分别绕其两个直角边旋转得到的两个圆锥的体积之比为()A.1 B.2 C.4 D.815.(5分)已知ω∈R,函数f(x)=(x﹣6)2•sin(ωx),存在常数a∈R,使f(x+a)为偶函数,则ω的值可能为()A.B.C.D.16.(5分)已知tanα•tanβ=tan(α+β).有下列两个结论:①存在α在第一象限,β在第三象限;②存在α在第二象限,β在第四象限;则()A.①②均正确B.①②均错误C.①对②错D.①错②对三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)如图,在长方体ABCD﹣A1B1C1D1中,M为BB1上一点,已知BM=2,CD =3,AD=4,AA1=5.(1)求直线A1C和平面ABCD的夹角;(2)求点A到平面A1MC的距离.18.(14分)已知f(x)=ax+,a∈R.(1)当a=1时,求不等式f(x)+1<f(x+1)的解集;(2)若f(x)在x∈[1,2]时有零点,求a的取值范围.19.(14分)如图,A﹣B﹣C为海岸线,AB为线段,为四分之一圆弧,BD=39.2km,∠BDC=22°,∠CBD=68°,∠BDA=58°.(1)求的长度;(2)若AB=40km,求D到海岸线A﹣B﹣C的最短距离.(精确到0.001km)20.(16分)已知椭圆+=1,F1,F2为左、右焦点,直线l过F2交椭圆于A,B两点.(1)若直线l垂直于x轴,求|AB|;(2)当∠F1AB=90°时,A在x轴上方时,求A、B的坐标;(3)若直线AF 1交y轴于M,直线BF1交y轴于N,是否存在直线l,使得S=S,若存在,求出直线l的方程;若不存在,请说明理由.21.(18分)数列{a n}(n∈N*)有100项,a1=a,对任意n∈[2,100],存在a n=a i+d,i∈[1,n﹣1],若a k与前n项中某一项相等,则称a k具有性质P.(1)若a1=1,d=2,求a4所有可能的值;(2)若{a n}不为等差数列,求证:数列{a n}中存在某些项具有性质P;(3)若{a n}中恰有三项具有性质P,这三项和为c,使用a,d,c表示a1+a2+…+a100.2019年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分). 1.(4分)已知集合A=(﹣∞,3),B=(2,+∞),则A∩B=(2,3).【分析】根据交集的概念可得.【解答】解:根据交集的概念可得A∩B=(2,3).故答案为:(2,3).【点评】本题考查了交集及其运算,属基础题.2.(4分)已知z∈C,且满足=i,求z=5﹣i.【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.【解答】解:由=i,得z﹣5=,即z=5+=5﹣i.故答案为:5﹣i.【点评】本题考查复数代数形式的乘除运算,是基础的计算题.3.(4分)已知向量=(1,0,2),=(2,1,0),则与的夹角为.【分析】直接利用向量的夹角公式的应用求出结果.【解答】解:向量=(1,0,2),=(2,1,0),则,,所以:cos=,故:与的夹角为.故答案为:【点评】本题考查的知识要点:向量的夹角公式的应用,主要考察学生的运算能力和转换能力,属于基础题型.4.(4分)已知二项式(2x+1)5,则展开式中含x2项的系数为40 .【分析】先求得二项式展开式的通项公式,再令x的幂指数等于2,求得r的值,即可求得含x2项的系数值.【解答】解:二项式(2x﹣1)5的展开式的通项公式为T r+1=C5r•25﹣r•x5﹣r,令5﹣r=2,求得r=3,可得展开式中含x2项的系数值为C53•22=40,故答案为:40.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.5.(4分)已知x,y满足,则z=2x﹣3y的最小值为﹣6 .【分析】画出不等式组表示的平面区域,由目标函数的几何意义,结合平移直线,可得所求最小值.【解答】解:作出不等式组表示的平面区域,由z=2x﹣3y即y=,表示直线在y轴上的截距的相反数的倍,平移直线2x﹣3y=0,当经过点(0,2)时,z=2x﹣3y取得最小值﹣6,故答案为:﹣6.【点评】本题考查线性规划的运用,考查平移法求最值的方法,数形结合思想,考查运算能力,属于基础题.6.(4分)已知函数f(x)周期为1,且当0<x≤1时,f(x)=log2x,则f()=﹣1 .【分析】由题意知函数f(x)周期为1,所以化简f()再代入即可.【解答】解:因为函数f(x)周期为1,所以f()=f(),因为当0<x≤1时,f(x)=log2x,所以f()=﹣1,故答案为:﹣1.【点评】本题考查函数的周期性,属于简单题.7.(5分)若x,y∈R+,且+2y=3,则的最大值为.【分析】根据基本不等式可得.【解答】解:3=+2y≥2,∴≤()2=;故答案为:【点评】本题考查了基本不等式及其应用,属基础题.8.(5分)已知数列{a n}前n项和为S n,且满足S n+a n=2,则S5=.【分析】由已知数列递推式可得数列{a n}是等比数列,且,再由等比数列的前n项和公式求解.【解答】解:由S n+a n=2,①得2a1=2,即a1=1,且S n﹣1+a n﹣1=2(n≥2),②①﹣②得:(n≥2).∴数列{a n}是等比数列,且.∴.故答案为:.【点评】本题考查数列递推式,考查等比关系的确定,训练了等比数列前n项和的求法,是中档题.9.(5分)过曲线y2=4x的焦点F并垂直于x轴的直线分别与曲线y2=4x交于A,B,A 在B上方,M为抛物线上一点,=λ+(λ﹣2),则λ= 3 .【分析】直接利用直线和抛物线的位置关系的应用求出点的坐标,进一步利用向量的运算求出结果.【解答】解:过y2=4x的焦点F并垂直于x轴的直线分别与y2=4x交于A,B,A在B 上方,依题意:得到:A(1,2)B(1,﹣2),设点M(x,y),所以:M为抛物线上一点,=λ+(λ﹣2),则:(x,y)=λ(1,2)+(λ﹣2)(1,﹣2)=(2λ﹣2,4),代入y2=4x,得到:λ=3.故答案为:3【点评】本题考查的知识要点:直线和抛物线的位置关系的应用,向量的坐标运算的应用,主要考察学生的运算能力和转换能力,属于基础题型.10.(5分)某三位数密码,每位数字可在0﹣9这10个数字中任选一个,则该三位数密码中,恰有两位数字相同的概率是.【分析】分别运用直接法和排除法,结合古典概率的公式,以及计数的基本原理:分类和分步,计算可得所求值.【解答】解:方法一、(直接法)某三位数密码锁,每位数字在0﹣9数字中选取,总的基本事件个数为1000,其中恰有两位数字相同的个数为C C=270,则其中恰有两位数字相同的概率是=;方法二、(排除法)某三位数密码锁,每位数字在0﹣9数字中选取,总的基本事件个数为1000,其中三位数字均不同和全相同的个数为10×9×8+10=730,可得其中恰有两位数字相同的概率是1﹣=.故答案为:.【点评】本题考查古典型概率的求法,注意运用直接法和排除法,考查排列组合数的求法,以及运算能力,属于基础题.11.(5分)已知数列{a n}满足a n<a n+1(n∈N*),P n(n,a n)(n≥3)均在双曲线﹣=1上,则|P n P n+1|=.【分析】法一:根据两点之间的距离和极限即可求出,法二:根据向量法,当n→+∞时,P n P n+1与渐近线平行,P n P n+1在x轴的投影为1,渐近线倾斜角为θ,则tanθ=,即可求出.【解答】解:法一:由﹣=1,可得a n=,∴P n(n,),∴P n+1(n+1,),∴|P n P n+1|==∴求解极限可得|P n P n+1|=,方法二:当n→+∞时,P n P n+1与渐近线平行,P n P n+1在x轴的投影为1,渐近线倾斜角为θ,则tanθ=,故P n P n+1==故答案为:.【点评】本题考查了双曲线的简单性质和点与点的距离公式,极限的思想,向量的投影,属于中档题.12.(5分)已知f(x)=|﹣a|(x>1,a>0),f(x)与x轴交点为A,若对于f(x)图象上任意一点P,在其图象上总存在另一点Q(P、Q异于A),满足AP⊥AQ,且|AP|=|AQ|,则a=.【分析】本题根据题意对函数f(x)分析之后可画出f(x)大致图象,然后结合图象可不妨设点P在左边曲线上,点Q在右边曲线上.设直线AP的斜率为k,联立直线与曲线的方程可得P点坐标,同理可得Q点坐标.再分别算出|AP|、|AQ|,再根据|AP|=|AQ|及k的任意性可解得a的值.【解答】解:由题意,可知:令f(x)=|﹣a|=0,解得:x=+1,∴点A的坐标为:(+1,0).则f(x)=.∴f(x)大致图象如下:由题意,很明显P、Q两点分别在两个分段曲线上,不妨设点P在左边曲线上,点Q在右边曲线上.设直线AP的斜率为k,则l AP:y=k(x﹣﹣1).联立方程:,整理,得:kx2+[a﹣k(+2)]x+k(+1)﹣a﹣2=0.∴x P+x A=﹣=+2﹣.∵x A=+1,∴x P=+2﹣﹣x A=1﹣.再将x P=1﹣代入第一个方程,可得:y P=﹣a﹣.∴点P的坐标为:(1﹣,﹣a﹣).∴|AP|===.∵AP⊥AQ,∴直线AQ的斜率为﹣,则l AQ:y=﹣(x﹣﹣1).同理类似求点P的坐标的过程,可得:点Q的坐标为:(1﹣ak,a+).∴|AQ|===∵|AP|=|AQ|,及k的任意性,可知:=a2,解得:a=.故答案为:.【点评】本题主要考查对函数分析能力,根据平移对称画出符合函数的图象,采用数形结合法分析问题,以及用平面解析几何的方法进行计算,以及设而不求法的应用.本题是一道较难的中档题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)已知直线方程2x﹣y+c=0的一个方向向量可以是()A.(2,﹣1)B.(2,1)C.(﹣1,2)D.(1,2)【分析】先根据直线方程得直线的一个法向量,再根据法向量可得直线的方向向量.【解答】解:依题意,(2,﹣1)为直线的一个法向量,∴方向向量为(1,2),故选:D.【点评】本题考查了直线的方向向量,空间直线的向量,属基础题.14.(5分)一个直角三角形的两条直角边长分别为1和2,将该三角形分别绕其两个直角边旋转得到的两个圆锥的体积之比为()A.1 B.2 C.4 D.8【分析】直接利用圆锥的体积公式求得两个圆锥的体积,作比得答案.【解答】解:如图,则,,∴两个圆锥的体积之比为.故选:B.【点评】本题考查圆锥的定义,考查圆锥体积的求法,是基础题.15.(5分)已知ω∈R,函数f(x)=(x﹣6)2•sin(ωx),存在常数a∈R,使f(x+a)为偶函数,则ω的值可能为()A.B.C.D.【分析】直接利用三角函数的性质的应用和函数的奇偶性的应用求出结果.【解答】解:由于函数f(x)=(x﹣6)2•sin(ωx),存在常数a∈R,f(x+a)为偶函数,则:f(x+a)=(x+a﹣6)2•sin[ω(x+a)],由于函数为偶函数,故:a=6,所以:,当k=1时.ω=故选:C.【点评】本题考查的知识要点:三角函数的性质的应用,主要考察学生的运算能力和转换能力,属于基础题型.16.(5分)已知tanα•tanβ=tan(α+β).有下列两个结论:①存在α在第一象限,β在第三象限;②存在α在第二象限,β在第四象限;则()A.①②均正确B.①②均错误C.①对②错D.①错②对【分析】考虑运用二次方程的实根的分布,结合导数判断单调性可判断①;运用特殊值法,令tanα=﹣,结合两角和的正切公式,计算可得所求结论,可判断②.【解答】解:由tanα•tanβ=tan(α+β),即为tanα•tanβ=,设m=tanα,n=tanβ,可得n2m2+n(1﹣m)+m=0,若m>0,可得上式关于n的方程有两个同号的根,若为两个正根,可得n>0,即有m>1,考虑△=f(m)=(1﹣m)2﹣4m3,f′(m)=2m﹣2﹣8m2=﹣8(m﹣)2﹣,当m>1时,f(m)递减,可得f(m)<f(1)=﹣4<0,则方程无解,β在第三象限不可能,故①错;可令tanα=﹣,由tanα•tanβ=tan(α+β),即为tanα•tanβ=,可得﹣tanβ=,解得tanβ=﹣6±,存在β在第四象限,故②对.故选:D.【点评】本题考查三角函数的正切公式,以及方程思想、运算能力,属于基础题.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)如图,在长方体ABCD﹣A1B1C1D1中,M为BB1上一点,已知BM=2,CD =3,AD=4,AA1=5.(1)求直线A1C和平面ABCD的夹角;(2)求点A到平面A1MC的距离.【分析】(1)由题意可得A1C与平面ABCD所成夹角为∠A1CA,判断△A1CA为等腰三角形,即可求出,(2)如图建立坐标系,根据向量的关系可得点A到平面A1MC的距离d=,求出法向量即可求出.【解答】解:(1)依题意:AA1⊥平面ABCD,连接AC,则A1C与平面ABCD所成夹角为∠A1CA,∵AA1=5,AC==5,∴△A1CA为等腰三角形,∴∠A1CA=,∴直线A1C和平面ABCD的夹角为,(2)(空间向量),如图建立坐标系,则A(0,0,0),C(3,0,0),A1(0,0,5),M(3,0,2),∴=(3,4,0),=(3,4,﹣5),=(0,4.﹣2),设平面A1MC的法向量=(x,y,z),由,可得=(2,1,2),∴点A到平面A1MC的距离d===.【点评】本题考查了线面角的求法和点到平面的距离,考查了运算求解能力和转化与化归能力,空间想象能力,属于中档题.18.(14分)已知f(x)=ax+,a∈R.(1)当a=1时,求不等式f(x)+1<f(x+1)的解集;(2)若f(x)在x∈[1,2]时有零点,求a的取值范围.【分析】(1)直接利用转换关系,解分式不等式即可.(2)利用分离参数法和函数的值域的应用求出参数的范围.【解答】解:(1)f(x)=ax+(a∈R).当a=1时,f(x)=x+.所以:f(x)+1<f(x+1)转换为:x++1,即:,解得:﹣2<x<﹣1.故:{x|﹣2<x<﹣1}.(2)函数f(x)=ax+在x∈[1,2]时,f(x)有零点,即函数在该区间上有解,即:,即求函数g(x)在x∈[1,2]上的值域,由于:x(x+1)在x∈[1,2]上单调,故:x(x+1)∈[2,6],所以:,故:【点评】本题考查的知识要点:分式不等式的解法及应用,分离参数法的应用,主要考察学生的运算能力和转换能力,属于基础题.19.(14分)如图,A﹣B﹣C为海岸线,AB为线段,为四分之一圆弧,BD=39.2km,∠BDC=22°,∠CBD=68°,∠BDA=58°.(1)求的长度;(2)若AB=40km,求D到海岸线A﹣B﹣C的最短距离.(精确到0.001km)【分析】(1)由题意可求BC,及弧BC所在的圆的半径R,然后根据弧长公式可求;(2)根据正弦定理可得,,可求sin A,进而可求A,进而可求∠ABD,根据三角函数即可求解.【解答】解:(1)由题意可得,BC=BD sin22°,弧BC所在的圆的半径R=BC sin=,弧BC的长度为===16.310km;(2)根据正弦定理可得,,∴sin A==0.831,A=56.2°,∴∠ABD=180°﹣56.2°﹣58°=65.8°,∴DH=BD×sin∠ABD=35.750km<CD=36.346km∴D到海岸线A﹣B﹣C的最短距离为35.750km【点评】本题主要考查了利用三角函数,正弦定理求解三角形,还考查了基本运算.20.(16分)已知椭圆+=1,F1,F2为左、右焦点,直线l过F2交椭圆于A,B两点.(1)若直线l垂直于x轴,求|AB|;(2)当∠F1AB=90°时,A在x轴上方时,求A、B的坐标;(3)若直线AF 1交y轴于M,直线BF1交y轴于N,是否存在直线l,使得S=S,若存在,求出直线l的方程;若不存在,请说明理由.【分析】(1)由题意方程求得右焦点坐标,进一步求得A,B的坐标,则|AB|可求;(2)设A(x1,y1),由∠F1AB=90°(∠F1AF2=90°),利用数量积为0求得x1与y1的方程,再由A在椭圆上,得x1与y1的另一方程,联立即可求得A的坐标.得到直线AB 的方程,与椭圆方程联立即可求得B的坐标;(3)设A(x1,y1),B(x2,y2),M(0,y3),N(0,y4),直线l:x=my+2(斜率不存在时不满足题意),联立直线方程与椭圆方程,结合S=S,得2|y 1﹣y2|=|y3﹣y4|,再由直线AF1的方程:,得M纵坐标,由直线BF1的方程:,得N的纵坐标,结合根与系数的关系,得||=4,解得m值,从而得到直线方程.【解答】解:(1)依题意,F2(2,0),当AB⊥x轴时,则A(2,),B(2,﹣),得|AB|=2;(2)设A(x1,y1),∵∠F1AB=90°(∠F1AF2=90°),∴=,又A在椭圆上,满足,即,∴,解得x1=0,即A(0,2).直线AB:y=﹣x+2,联立,解得B(,﹣);(3)设A(x1,y1),B(x2,y2),M(0,y3),N(0,y4),直线l:x=my+2(斜率不存在时不满足题意),则,.联立,得(m2+2)y2+4my﹣4=0.则,.由直线AF1的方程:,得M纵坐标;由直线BF1的方程:,得N的纵坐标.若S=S,即2|y 1﹣y2|=|y3﹣y4|,|y3﹣y4|=||=||=||=2|y1﹣y2|,∴|(my1+4)(my2+4)|=4,|m2y1y2+4m(y1+y2)+16|=4,代入根与系数的关系,得||=4,解得m=.∴存在直线x+或满足题意.【点评】本题考查椭圆的简单性质,考查直线与椭圆位置关系的应用,考查计算能力,属难题.21.(18分)数列{a n}(n∈N*)有100项,a1=a,对任意n∈[2,100],存在a n=a i+d,i∈[1,n﹣1],若a k与前n项中某一项相等,则称a k具有性质P.(1)若a1=1,d=2,求a4所有可能的值;(2)若{a n}不为等差数列,求证:数列{a n}中存在某些项具有性质P;(3)若{a n}中恰有三项具有性质P,这三项和为c,使用a,d,c表示a1+a2+…+a100.【分析】(1)根据a1=1,d=2逐一求出a2,a3,a4即可;(2){a n}不为等差数列,数列{a n}存在a m使得a m=a m﹣1+d不成立,根据题意进一步推理即可证明结论;(3)去除具有性质P的数列{a n}中的前三项后,数列{a n}的剩余项重新排列为一个等差数列,且该数列的首项为a,公差为d,求a1+a2+…+a100即可.【解答】解:(1)∵数列{a n}有100项,a1=a,对任意n∈[2,100],存在a n=a i+d,i∈[1,n﹣1],∴若a1=1,d=2,则当n=2时,a2=a1+d=3,当n=3时,i∈[1,2],则a3=a1+d=3或a3=a2+d=5,当n=4时,i∈[1,3],则a4=a1+d=3或a4=a2+d=5或a4=a3+d=(a1+d)+d =5或a4=a3+d=(a2+d)+d=7∴a4的所有可能的值为:3,5,7;(2)∵{a n}不为等差数列,∴数列{a n}存在a m使得a m=a m﹣1+d不成立,∵对任意n∈[2,10],存在a n=a i+d,i∈[1,n﹣1];∴存在p∈[1,n﹣2],使a m=a p+d,则对于a m﹣q=a i+d,i∈[1,n﹣q﹣1],存在p=i,使得a m﹣q=a m,因此{a n}中存在具有性质P的项;(3)由(2)知,去除具有性质P的数列{a n}中的前三项,则数列{a n}的剩余项均不相等,∵对任意n∈[2,100],存在a n=a i+d,i∈[1,n﹣1],则一定能将数列{a n}的剩余项重新排列为一个等差数列,且该数列的首项为a,公差为d,∴a1+a2+…+a100==97a+4656d+c.【点评】本题考查了等差数列的性质和前n项和公式,考查了逻辑推理能力和计算能力,关键是对新定义的理解,属难题.。
2019年高考数学上海卷及答案解析

数学试卷 第1页(共14页) 数学试卷 第2页(共14页)绝密★启用前2019年普通高等学校招生全国统一考试(上海卷)数 学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共36分)一、填空题(本大题共12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.已知集合{1,2,3,4,5}A =,{356}B =,,,则AB = .2.计算22231lim 41n n n n n →∞-+=-+ .3.不等式|1|5x +<的解集为 . 4.函数2()(0)f x x x =>的反函数为 .5.设i 为虚数单位,365z i i -=+,则||z 的值为6.已知22214x y x a y a +=-⎧⎨+=⎩,当方程有无穷多解时,a 的值为 . 7.在6x ⎛⎝的展开式中,常数项等于 .8.在ABC △中,3AC =,3sin 2sin A B =,且1cos 4C =,则AB = . 9.首届中国国际进口博览会在上海举行,某高校拟派4人参加连续5天的志愿者活动,其中甲连续参加2天,其他人各参加1天,则不同的安排方法有 种(结果用数值表示)10.如图,已知正方形OABC ,其中(1)OA a a =>,函数23y x =交BC 于点P ,函数12y x -=交AB 于点Q ,当||||AQ CP +最小时,则a 的值为 .11.在椭圆22142x y +=上任意一点P ,Q 与P 关于x 轴对称,若有121F P F P ⋅,则1F P与2F Q 的夹角范围为 .12.已知集合[,1]U[4,9]A t t t t =+++,0A ∉,存在正数λ,使得对任意a A ∈,都有A aλ∈,则t 的值是 .二、选择题(本大题共4题,每题5分,共20分) 13.下列函数中,值域为[0,)+∞的是( ) A .2xy =B .12y x = C .tan y x =D .cos y x = 14.已知,a b R ∈,则“22a b >”是“||||a b >”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件15.已知平面αβγ、、两两垂直,直线a b c 、、满足:a α⊆,b β⊆,c γ⊆,则直线a b c 、、不可能满足以下哪种关系( ) A .两两垂直B .两两平行C .两两相交D .两两异面16.以()1,0a ,()20,a 为圆心的两圆均过(1,0),与y 轴正半轴分别交于()1,0y ,()2,0y ,且满足12ln ln 0y y +=,则点1211,a a ⎛⎫⎪⎝⎭的轨迹是( ) A .直线B .圆C .椭圆D .双曲线三、解答题(本大题共5题,共14+14+14+16+18=76分)17.如图,在正三棱锥P ABC -中,2,PA PB PC AB BC AC ====== (1)若PB 的中点为M ,BC 的中点为N ,求AC 与MN 的夹角; (2)求P ABC -的体积.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共14页) 数学试卷 第4页(共14页)18.已知数列{}n a ,13a =,前n 项和为n S . (1)若{}n a 为等差数列,且415a =,求n S ;(2)若{}n a 为等比数列,且lim 12n n S →∞<,求公比q 的取值范围.19.改革开放40年,我国卫生事业取得巨大成就,卫生总费用增长了数十倍.卫生总费用包括个人现在支出、社会支出、政府支出,如表为2012年—2015年我国卫生货用中个人现金支出、社会支出和政府支出的费用(单位:亿元)和在卫生总费用中的占(数据来源于国家统计年鉴)(1)指出2012年到2015年之间我国卫生总费用中个人现金支出占比和社会支出占比的变化趋势:(2)设1t =表示1978年,第n 年卫生总费用与年份之间拟合函数6.44200.1136357876.6053()1tf t e -=+研究函数()f t 的单调性,并预测我国卫生总费用首次超过12万亿的年份.20.已知抛物线方程24y x =,F 为焦点,P 为抛物线准线上一点,Q 为线段PF 与抛物线的交点,定义:||()||PF d P FQ =.(1)当81,3P ⎛⎫-- ⎪⎝⎭时,求()d P ;(2)证明:存在常数a ,使得2()||d P PF a =+;(3)123,,P P P 为抛物线准线上三点,且1223PP P P =,判断()()13d P d P +与()22d P 的关系.21.已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈.(1)若120,3a d π==,求集合S ; (2)若12a π=,求d 使得集合S 恰好有两个元素;(3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的值.t数学试卷 第5页(共14页) 数学试卷 第6页(共14页)2019年普通高等学校招生全国统一考试(上海卷)数学答案解析1.【答案】{3,5}【解析】解:集合{1,2,3,4,5}A =,{356}B =,,,{3,5}A B ∴=.故答案为:{3,5}. 2.【答案】2【解析】解:2222312231lim lim 241411n n n n n n n n n n→∞→∞-+-+==-+-+. 故答案为:2. 3.【答案】{6,4}-【解析】解:由15x +<得515x -<+<,即64x -<<. 故答案为:{6,4}-.4.【答案】1()0)f x x -> 【解析】解:由2(0)y x x =>解得x1()0)f x x -∴=>故答案为1()0)f x x -∴=> 5.【答案】【解析】解:由365z i i -=+,得366z i =+,即22z i =+,||||z z ∴=故答案为: 6.【答案】2-【解析】解:由题意,可知: 方程有无穷多解,∴可对①,得:442x y +=-.再与②式比较,可得:2a =-.故答案为:2-. 7.【答案】15【解析】解:6x ⎛ ⎝展开式的通项为36216r rr T C x -+=令3902r -=得2r =, 故展开式的常数项为第3项:2615C =. 故答案为:15. 8.【解析】解:3sin 2sin A B =,∴由正弦定理可得:32BC AC =, ∴由3AC =,可得:2BC =,1cosC 4=,∴由余弦定理可得:2221324232AB +--=⨯⨯,∴解得:AB9.【答案】24【解析】解:在五天里,连续的2天,一共有4种,剩下的3人排列,故有33424A =种, 故答案为:24.10.【解析】解:由题意得:点坐标为a ⎫⎪⎪⎭,点坐标为a ⎛ ⎝,11||||23AQ CP a +=,当且仅当a =时,取最小值,11.【答案】1arccos ,3ππ⎡⎤-⎢⎥⎣⎦【解析】解:设(,)P x y ,则Q 点(,)x y -,椭圆22142x y+=的焦点坐标为(,(,2⨯P Q数学试卷 第7页(共14页) 数学试卷 第8页(共14页)121F P F P ⋅,2221x y ∴-+≤,结合22142x y +=可得:2[1,2]y ∈故1F P 与2F Q 的夹角θ满足:(2221222122381cos 31,223F P F Qy y y F P F Q x θ⋅-⎡⎤====-+∈--⎢⎥++⎣⎦⋅故1arccos ,3θππ⎡⎤∈-⎢⎥⎣⎦故答案为:1arccos ,3ππ⎡⎤-⎢⎥⎣⎦12.【答案】1或3-【解析】解:当0t >时,当[,1]a t t ∈+时,则[4,9]t t aλ∈++,当[4,9]a t t ∈++时,则[,1]t t aλ∈+,即当a t =时,9t aλ+;当9a t =+时,t aλ,即(9)t t λ=+; 当1a t =+时,4t aλ+,当4a t =+时,1t aλ+,即(1)(4)t t λ=++,(9)(1)(4)t t t t ∴+=++,解得=1t .当104t t +<<+时,当[,1]a t t ∈+时,则[,1]t t aλ∈+.当[4,9]a t t ∈++,则[4,9]t t aλ∈++,即当a t =时,1t aλ+,当1a t =+时,t aλ,即(1)t t λ=+,即当4a t =+时,9t aλ+,当9a t =+时,4t aλ+,即(4)(9)t t λ=++,(1)(4)(9)t t t t ∴+=++,解得3t =-.当90t +<时,同理可得无解. 综上,的值为1或3-. 故答案为:1或3-.13.【答案】B【解析】解:A ,2xy =的值域为(0,)+∞,故A 错B ,y [0,)+∞,值域也是[0,)+∞,故B 正确C ,tan y x =的值域为(,)-∞+∞,故C 错D ,cos y x =的值域为[1,1]-+,故D错故选:B 14.【答案】C【解析】解:22a b >等价,22|||a b >,得“||||a b >”,∴“22a b >”是“||||a b >”的充要条件,故选:C 15.【答案】B【解析】解:如图1,可得,,a b c 可能两两垂直; 如图2,可得,,a b c 可能两两相交;t数学试卷 第9页(共14页) 数学试卷 第10页(共14页)如图3,可得,,a b c 可能两两异面;故选:B 16.【答案】A【解析】解:因为111r a =-21112y a =-,同理可得22212y a =-, 又因为12ln ln 0y y +=, 所以121y y =,则()()1212121a a --=, 即12122a a a a =+, 则12112a a +=, 设1211x a y a ⎧=⎪⎪⎨⎪=⎪⎩,则2x y +=为直线,故选:A17.【答案】解:(1),M N 分别为,PB BC 的中点,//MN PC ∴, 则PCA ∠为AC 与MN 所成角, 在PAC △中,由2,PA PC AC ===可得222cos 2PC AC PA PCA PC AC +-∠===⋅AC ∴与MN的夹角为; (2)过P 作底面垂线,垂直为O ,则O 为底面三角形的中心, 连接AO 并延长,交BC 于N ,则32123AN AO AN ===,.PO ∴==11333224P ABC V -∴=⨯=.18.【答案】解:(1)4133315,4a a d d d =+=+=∴=,2(1)3422n n n S n n n -∴=+⨯=+; (2)()31,lim 1n n n n q S S q →∞-=-存在,11q ∴-<<,lim n n S →∞∴存在,11q ∴-<<且0q ≠,()313lim lim11n n n n q S qq→∞→∞-∴==--, 3121q ∴<-,34q ∴<,10q ∴-<<或304q <<, ∴公比q 的取值范围为3(1,0)0,4⎛⎫-⋃ ⎪⎝⎭.19.【答案】解:(1)由表格数据可知个人现金支出占比逐渐减少,社会支出占比逐渐增多. (2)6.44200.1136t y e -=是减函数,且 6.44200.11360t y e -=>,6.44200.1136357876.6053()1tf t e -∴=+在N 上单调递增, 令 6.4200.1136357876.60531200001t e->+,解得50.68t >,数学试卷 第11页(共14页) 数学试卷 第12页(共14页)当51t 时,我国卫生总费用超过12万亿,预测我国到2028年我国卫生总费用首次超过12万亿.20.【答案】解:(1)抛物线方程24y x =的焦点8(1,0),1,3F P ⎛⎫-- ⎪⎝⎭,84323PF k ==,PF 的方程为4(1)3y x =-,代入抛物线的方程,解得14Q x =,抛物线的准线方程为1x =-,可得103PF =, 15||144QF =+=,||8()||3PF d P QF ==; (2)证明:当(1,0)P -时,2()||2222a d P PF =-=⨯-=, 设()1,P P y -,0P y >,:1PF x my =+,则2P my =-, 联立1x my =+和24y x=,可得2440y my --=,2Q y m ==+,2()||22P P Q y d P PF y -==22=-=,则存在常数a ,使得2()||d P PF a =+; (3)设()()()1122331,,1,,1,P y P y P y ---,则()()()132132242d P d p d P PFP F P F ⎡+⎤-=+-=⎣⎦=由()2213131628y y y y ⎡⎤-++=-⎣⎦,()()()()(22222213131313134444840y y y yy y y y y y ++-+=+-=->,则()()()1322d P d P d P +>.21.【答案】解:(1)等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈.当120,3a d π==,集合S ⎧⎪=⎨⎪⎪⎩⎭. (2)12a π=,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈恰好有两个元素,如图:根据三角函数线,①等差数列{}n a 的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d π=,②1a 终边落在OA 上,要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,如图OB ,OC ,此时23d π=,综上,23d π=或者d π=.(3)①当3T =时,3n n b b +=,集合{}123,,S b b b =,符合题意.②当4T =时,4n n b b +=,()sin 4sin n n a d a +=,42n n a d a k π+=+,或者42n n a d k a π+=-,等差数列{}n a 的公差(0,]d π∈,故42n n a d a k π+=+,2k d π=,又1,2k ∴= 当1k =时满足条件,此时{,1,1}S =--.③当5T =时,5n n b b +=,()sin 5sin ,52n n n n a d a a d a k π+=+=+,或者52n n a d k a π+=-,因为(0,]d π∈,故1,2k =.当1k =时,sin ,1,sin 1010S ππ⎧⎫=-⎨⎬⎩⎭满足题意.④当6T =时,6n n b b +=,()sin 6sin n n a d a +=,所以62n n a d a k π+=+或者62n n a d k a π+=-,(0,]d π∈,故1,2,3k =.当1k =时,22S =⎨⎪⎪⎩⎭,满足题意.⑤当7T =时,()7,sin 7sin sin n n n n n b b a d a a +=+==,所以72n n a d a k π+=+,或者72n n a d k a π+=-,(0,]d π∈,故1,2,3k =∴∴∴数学试卷 第13页(共14页) 数学试卷 第14页(共14页)当1k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=,227d m n ππ==-,7,7m n m -=>,不符合条件. 当2k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=,247d m n ππ==-,m n -不是整数,不符合条件. 当3k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=或者4π,267d m n ππ==-,或者467d m n ππ==-,此时,m n -均不是整数,不符合题意. 综上,3,4,5,6T =.。
2019年高考试题-英语(上海卷)解析版

2019 年高考试题 - 英语(上海卷)解析版注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!无论是单选、多选还是论述题,最重要的就是看清题意。
在论述题中,问题大多具有委婉性,尤其是历年真题部分,在给考生较大发挥空间的同时也大大增加了考试难度。
考生要认真阅读题目中提供的有限材料,明确考察要点,最大限度的挖掘材料中的有效信息,建议考生答题时用笔将重点勾画出来,方便反复细读。
只有经过仔细推敲,揣摩命题老师的意图,积极联想知识点,分析答题角度,才能够将考点锁定,明确题意。
I.ListeningComprehensionSectionADirections: InsectionA,youwillheartenshortconversationsbetweentwospeakers.Atthee ndofeachconversation,aquestionwillbeaskedaboutwhatwassaid.Theconversationandthe questionwillbespokenonlyonce.Afteryouhearaconversationandthequestionaboutit,rea dthefourpossibleanswersonyourpaper,anddecidewhichoneisthebestanswertothequestio nyouhaveheard.1.W:Canyoudescribewhatyoudo?M:Iwashofficebuildingwindows.Igohighupinthebaskettoreachthewindows.Q:Whatistheman'sjob?A.Abasketballplayer.B.Alaundryworker.C.Awindowwasher.D.Arockclimber【答案】 C.Awindowwasher.【解析】这是一道事实细节题。
2019年上海高考数学试卷及答案

2019年上海高考数学试卷一、填空题(每小题 4分,满分56分)1 11 .函数f(x)的反函数为f (X ) ______________ .x 22 若全集 U R ,集合 A {x x 1} U{x|x 0},则 C U A _________________23. 设m 是常数,若点F(0,5)是双曲线mx 14.不等式 ______________ 3的解为x(结果用反三角函数值表示)之间的距离为 千米.7.若圆锥的侧面积为 2 ,底面面积为,则该圆锥的体积为 _____________8. 函数v sin x cos x 的最大值为2 69.马老师从课本上抄录一个随机变量 的概率分布律如下表:请小牛同学计算 的数学期望.尽管“! ”处完全无法看清,且两个“”处字迹模糊,但能断 定这两个“”处的数值相同.据此,小牛给出了正确答案E = ____________ .a b 10.行列式 ____________________________________________________ (a,b,c,d{ 1,1,2})所有可能的值中,最大的是 __________________________________________ . c duuu mur11. 在正三角行 ABC 中,D 是BC 上的点 若AB=3,BD=1,则ABgAD ___________ .12. 随机抽取的9位同学中,至少有2位同学在同一月份出生的概率为 _____________ 默认每个月 的天数相同,结果精确到 ).1的一个焦点,则 m= __________5.在极坐标系中,直线(2COS sin )2与直线 cos 1的夹角大小为 _________________6.在相距2千米的A 、B 两点处测量目标点C ,若 CAB 75: CBA 60o ,则 A C 两点13.设g(x)是定义在R上,以1为周期的函数,若函数f(x) x g(x)在区间[3,4]上的值域为[2,5],贝U f (x )在区间[10,10]上的值域为 _________14.已知点0(0,0)、Q (0,1)和点R o (3,1),记Q o R O 的中点为 P i ,取Q o P i 和P i R o 中的一条,记其 端点为Q 1、R 1,使之满足|OQ 1I 2 |OR I 2 0,记Q 1R 1的中点为P 2,取Q 1P 2和P 2RI中的一条,记其端点为Q 2、R 2,使之满足 |OQ 2| 2 |OR 2 I 2P,P 2丄,P n ,L ,则 n im QRI0成立的点M 的个数为(三、解答题(本大题满分 74 分) 19. (本大题满分12分)已知复数 乙满足(乙 2)(1 i ) 1 i (i 为虚数单位),复数Z 2的虚部为2,且乙Z 2是(A ) {a n }是等比数列.(B )4 ,a3 丄,a 2n 1,L 或 a ?, a 4 ,L ,a 2n 丄 是等比数列. (C ) a 1, a 3,L,a 2n 1,L 和a 2,a 4丄 ,a 2n ,L均是等比数列.(D )4,a3 丄,a2n 1,L 和 a 2, a 4,L,a2n 丄 均是等比数列,且公比相同{A n }为等比数列的充要条件是()0.依次下去,得到二、选择题 (每小题 5分,满分20分) 15.若 a, bR ,且ab 0,则下列不等式中,恒成立的是((A) a 22b 2ab . ( B ) a b1 (C)—a、abb a 小(D )a b 2.16.下列函数中,既是偶函数,又是在区间(0,)上单调递减的函数是((A) y In 丄|x|(B ) y x 3.(C )2|x|.(D ) yCOSX .17.设A,A 2,A 3, A 4, A s 是平面上给定的5个不同点, uiuu 则使MA , uuu MA >uuu MA 3 iuuuMA mur MA 5(A ) 0.(B ) 1.(C ) 5.(D ) 10.18.设{a n }是各项为正数的无穷数列,A 是边长为a i ,a i 1的矩形的面积(i1,2,L ),则实数,求z 2.20. (本大题满分12分,第1小题满分4分,第二小题满分 8分)xx已知函数f(x) a 2 b 3 ,其中常数a,b 满足a b 0(1 )若a b 0,判断函数f (x)的单调性;(2)若a b 0,求f (x 1) f (x)时的x 的取值范围.21. (本大题满分14分,第1小题满分6分,第二小题满分 8分)已知ABCD A 1B 1C 1D 1是底面边长为1的正四棱柱,。
2019上海高考物理试卷及解答

2019年上海高考物理试卷本试卷共7页,满分150分,考试时间120分钟。
全卷包括六大题,第一、二大题为单项选择题,第三大题为多项选择题,第四大题为填空题,第五大题为实验题,第六大题为计算题。
考生注意:1.答卷前,考生务必在试卷和答题卡上用蓝色或黑色的钢笔或圆珠笔填写姓名、准考证号.并将条形码贴在指定的位置上。
2.第一、第二和第三大题的作答必须用2B 铅笔涂在答题纸上相应区域内与试卷题号对应的位置,需要更改时,必须将原选项用橡皮擦去,重新选择。
第四、第五和第六大题的作答必须用蓝色或黑色的钢笔或圆珠笔写在答题纸上与试卷题号对应的位置(作图可用铅笔).3.第30、31、32、33题要求写出必要的文字说明、方程式和重要的演算步骤。
只写出最后答案,而未写出主要演算过程中,不能得分。
有关物理量的数值计算问题,答案中必须明确写出数值和单位。
一.单项选择题.(共16分,每小題2分,每小题只有一个正确选项)1.在光电效应实验中,用单色光照射某种金属表面,有光电子逸出,则光电子的最大初动能取决于入射光的()A , (A )频率(B )强度(C )照射时间(D )光子数目2.下图为红光或紫光通过双缝或单缝所呈现的图样,则( )B ,(A )甲为紫光的干涉图样(B )乙为紫光的干涉图样(C )丙为红光的干涉图样(D )丁为红光的干涉图样3.与原子核内部变化有关的现象是( )C ,(A )电离现象(B )光电效应现象(C )天然放射现象 (D )α粒子散射现象 4.根据爱因斯坦的“光子说”可知( )B , (A )“光子说”本质就是牛顿的“微粒说” (B )光的波长越大,光子的能量越小 (C )一束单色光的能量可以连续变化(D )只有光子数很多时,光才具有粒子性5.在轧制钢板时需要动态地监测钢板厚度,其检测装置由放射源、探测器等构成,如图所示。
该装置中探测器接收到的是()D ,(A )X 射线 (B )α射线(C )β射线(D )γ射线6.已知两个共点力的合力为50N ,分力F 1的方向与合力F 的方向成30︒角,分力F 2的大小为30N 。
2019上海高考物理试卷及解答

f(A)(B)(C)(D)上海高考物理试卷一.单项选择题.(共16分,每小題2分,每小题只有一个正确选项)1.在光电效应实验中,用单色光照射某种金属表面,有光电子逸出,则光电子的最大初动能取决于入射光的()A,(A)频率(B)强度(C)照射时间(D)光子数目2.下图为红光或紫光通过双缝或单缝所呈现的图样,则()B,(A)甲为紫光的干涉图样(B)乙为紫光的干涉图样(C)丙为红光的干涉图样(D)丁为红光的干涉图样3.与原子核内部变化有关的现象是()C,(A)电离现象(B)光电效应现象(C)天然放射现象(D)α粒子散射现象4.根据爱因斯坦的“光子说”可知()B,(A)“光子说”本质就是牛顿的“微粒说”(B)光的波长越大,光子的能量越小(C)一束单色光的能量可以连续变化(D)只有光子数很多时,光才具有粒子性5.在轧制钢板时需要动态地监测钢板厚度,其检测装置由放射源、探测器等构成,如图所示。
该装置中探测器接收到的是()D,(A)X射线(B)α射线(C)β射线(D)γ射线6.已知两个共点力的合力为50N,分力F1的方向与合力F的方向成30︒角,分力F2的大小为30N。
则()C,(A)F1的大小是唯一的(B)F2的方向是唯一的(C)F2有两个可能的方向(D)F2可取任意方向7.如图,低电位报警器由两个基本的门电路与蜂鸣器组成,该报警器只有当输入电压过低时蜂鸣器才会发出警报。
其中()B,(A)甲是“与”门,乙是“非”门(B)甲是“或”门,乙是“非”门(C)甲是“与”门,乙是“或”门(D)甲是“或”门,乙是“与”门8.如图,光滑斜面固定于水平面,滑块A、B叠放后一起冲上斜面,且始终保持相对静止,A上表面水平。
则在斜面上运动时,B受力的示意图为()A,二.单项选择题.(共24分,每小题3)9.某种元素具有多种同位素,反映这些同位素的质量(A)(B)(C)(D)数A 与中子数N 关系的是图( )B ,10.小球每隔0.2s 从同一高度抛出,做初速为6m/s 的竖直上抛运动,设它们在空中不相碰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019.6.7上海市高考数学试卷一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1. 已知集合(,3)A =-∞,(2,)B =+∞,则A B =I 。
2. 已知z ∈C ,且满足1i 5z =-,求z = 。
3. 已知向量(1,0,2)a =r ,(2,1,0)b =r,则a r 与b r 的夹角为 。
4. 已知二项式5(21)x +,则展开式中含2x 项的系数为 。
5. 已知x 、y 满足002x y x y ≥⎧⎪≥⎨⎪+≤⎩,求23z x y =-的最小值为 。
6. 已知函数()f x 周期为1,且当01x <≤,2()log f x x =,则3()2f = 。
7. 若,x y +∈R ,且123y x +=,则yx的最大值为 。
8. 已知数列{}n a 前n 项和为n S ,且满足2n n S a +=,则5S = 。
9. 过曲线24y x =的焦点F 并垂直于x 轴的直线分别与曲线24y x =交于A 、B ,A 在B 上方,M 为抛物线上一点,(2)OM OA OB λλ=+-u u u u r u u u r u u u r,则λ= 。
10. 某三位数密码,每位数字可在0-9这10个数字中任选一个,则该三位数密码中,恰有 两位数字相同的概率是 。
11. 已知数列{}n a 满足1n n a a +<(*n ∈N ),若(,)n n P n a (3)n ≥均在双曲线22162x y -=上, 则1lim ||n n n P P +→∞= 。
12. 已知2()||1f x a x =--(1x >,0a >),()f x 与x 轴交点为A ,若对于()f x 图像 上任意一点P ,在其图像上总存在另一点Q (P 、Q 异于A ),满足AP AQ ⊥,且||||AP AQ =,则a = 。
二、选择题(本大题共4题,每题5分,共20分)13. 已知直线方程20x y c -+=的一个方向向量d u r可以是( )A. (2,1)-B. (2,1)C. (1,2)-D. (1,2)14. 一个直角三角形的两条直角边长分别为1和2,将该三角形分别绕其两个直角边旋转得到的两个圆锥的体积之比为( )A. 1B. 2C. 4D. 815. 已知ω∈R ,函数2()(6)sin()f x x x ω=-⋅,存在常数a ∈R ,使得()f x a +为偶函数, 则ω的值可能为( ) A.2π B. 3π C. 4πD. 5π16. 已知tan tan tan()αβαβ⋅=+,有下列两个结论:① 存在α在第一象限,β在第三象限;② 存在α在第二象限,β在第四象限;则( )A. ①②均正确B. ①②均错误C. ①对②错D. ①错②对三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,在长方体1111ABCD A B C D -中,M 为1BB 上一点,已知2BM =,3CD =,4AD =,15AA =.(1)求直线1AC 与平面ABCD 的夹角; (2)求点A 到平面1A MC 的距离.18. 已知1()1f x ax x =++,a ∈R . (1)当1a =时,求不等式()1(1)f x f x +<+的解集; (2)若()f x 在[1,2]x ∈时有零点,求a 的取值范围.19. 如图,A B C --为海岸线,AB 为线段,»BC为四分之一圆弧,39.2BD =km ,22BDC ︒∠=,68CBD ︒∠=,58BDA ︒∠=. (1)求»BC的长度; (2)若40AB =km ,求D 到海岸线A B C --的最短距离. (精确到0.001km )20. 已知椭圆22184x y +=,1F 、2F 为左、右焦点,直线l 过2F 交椭圆于A 、B 两点.(1)若直线l 垂直于x 轴,求||AB ;(2)当190F AB ︒∠=时,A 在x 轴上方时,求A 、B 的坐标;(3)若直线1AF 交y 轴于M ,直线1BF 交y 轴于N ,是否存在直线l ,使得11F AB F MN S S =V V , 若存在,求出直线l 的方程,若不存在,请说明理由.21. 数列{}n a ()n ∈*N 有100项,1a a =,对任意[2,100]n ∈,存在n i a a d =+,[1,1]i n ∈-,若k a 与前n 项中某一项相等,则称k a 具有性质P .(1)若11a =,2d =,求4a 所有可能的值;(2)若{}n a 不是等差数列,求证:数列{}n a 中存在某些项具有性质P ;(3)若{}n a 中恰有三项具有性质P ,这三项和为c ,请用a 、d 、c 表示12100a a a ++⋅⋅⋅+.参考答案一、填空题1、(2,3)2、5i -3、2arccos 54、405、6-6、1-7、98(提示:132y x =+≥,∴298y x ≤=) 8、31169、3 10、27100(分析:211103232710100C C C P ⋅⋅==,选用到的两个数字×选用一次的数字的位置×选用一次的数字)11(解析:法一,由条件有22182na n -=,得n a =1||n n P P +==1lim ||n n n P P +→∞=;) (解析:法二(极限法),当n →∞时,1n n P P +与渐近线平行,1n n P P +在x 轴投影为1,渐近线斜角θ满足:tan θ=11lim ||cos6n n n P P π+→∞==12、a =2()||=01f x a x =--,解得21x a =+,则21,0A a ⎛⎫+ ⎪⎝⎭,取11,P a a ⎛⎫+ ⎪⎝⎭,则:1,AP a a ⎛⎫- ⎪⎝⎭,因为A P Q 、、满足AP AQ ⊥,且||||AP AQ =,则1,AQ a a ⎛⎫ ⎪⎝⎭, 所以211,Q a a a ⎛⎫++ ⎪⎝⎭,Q 点在2()||1f x a x =--图像上,则21211a a a a-=++-,得221||2a a a a -=+,2212a a a a-=+,()()22120a a +-=,所以22a =,a =二. 选择题13、D 14.、B15、C (分析:2()(6)sin[()]f x a x a x a ω+=+-⋅+,因为()f x a +为偶函数,所以6a =,且sin[(6)]x ω+也为偶函数,所以62k πωπ=+,当1k =时,4πω=)16、D (分析:特殊值验证,取tan 1α=-,则tan 12β=-±,所以② 正确,再取几组验证,① 错)三、解答题 17、(1)4π;(2)103.【解析】(1)连接AC ,1AA ABCD ⊥面,则1ACA ∠即为直线1AC 与平面ABCD 的夹角。
在1Rt ACA V 中,15AA AC ==,则14ACA π∠=;(2)法一,等体积法:11C AA M A A MC V V --=,111133AA M A MC BC S d S ∆∆⨯=⨯有条件易得:1111154,35,32,52,2522AA MBC S A M AC MC ∆==⨯⨯==== ∴ )))22213252254cos 523252CA M +-∠==⨯⨯,13sin 5CA M ∠= ∴ 1111113=sin 32529225A MC S A M AC CA M ∆⨯⨯∠=⨯⨯⨯= ∴ 15104923d =⨯÷=。
法二,建立空间直角坐标系A xyz -, ()()()()110,0,5,3,0,2,0,0,5,3,4,0A A M A C =u u u r()()113,0,3, 3.4,5AM AC =-=-u u u u r u u u r 设()1,,n x y z AMC =⊥r面,则 110A M n AC n ⎧⋅=⎪⎨⋅=⎪⎩u u u u r r u u u r r ,得3303450x z x y z -=⎧⎨+-=⎩ 令1x =,则1121x y z =⎧⎪⎪=⎨⎪=⎪⎩,11,,12n ⎛⎫= ⎪⎝⎭r所以151031114n AA d n⋅===++r u u u r r。
x yz18、(1)(2,1)x ∈--;(2)11[,]26a ∈--. 【解析】(1)当1a =时,1()1f x x x =++,则()1(1)f x f x +<+得:111112x x x x ++<++++,化简:()()1012x x <++,解得(2,1)x ∈--; (2)由条件知,对[1,2]x ∈,1()01f x ax x =+=+有零点,则1(1)a x x -=+在[1,2]x ∈时有解;1(1)x x -+在[1,2]x ∈单调递增,则111,(1)26x x -⎡⎤∈--⎢⎥+⎣⎦。
19、(1)»16.310BC = km ;(2)35.752km.【解析】(1)∠BCD=180°-22°-68°=90°,则:»22sin 2216.3102224BCR BC BD πππ︒==⋅=⋅⋅≈ km ; (2)作DH ⊥AB 于点H ,在△ABD 中,sin sin BD AB BAD BDA =∠∠,即39.240sin sin58BAD ︒=∠ ∴56.21058BAD ︒∠≈,则1805856.2105865.78942ABD ︒︒︒︒∠=--= ∴sin 39.2sin65.7894235.752DH BD ABD ︒=⋅∠=⨯≈km 由(1)知:sin6836.346DC BD ︒=⋅≈ km所以D 到海岸线A B C --的最短距离为35.752 km 。
20.(1)22;(2)(0,2)A ,82(,)33B -;(3)320x y ±-=.【解析】(1)222222b AB a === (2)由条件有:12(2,0),(2,0)F F -,设直线方程:(2)y k x =-。
1122(,),(,)A x y B x y ,10y >当190F AB ︒∠=时,120F A F A ⋅=u u u r u u u r,得:()()11112,2,0x y x y +⋅-=,化简:22114x y +=……① ,因为A 在椭圆上,所以2211184x y +=……②联立① 、② 式,解得:1102x y =⎧⎨=⎩,即(0,2)A ,所以,直线方程为:2y x =-联立222184y xx y =-⎧⎪⎨+=⎪⎩得:2380x x -=,则283x =,223y =-,即82,33B ⎛⎫- ⎪⎝⎭。