西门子海上风电安装介绍_Offshore Solutions_US

合集下载

海上风电项目的施工与安装流程

海上风电项目的施工与安装流程

海上风电项目的施工与安装流程近年来,随着可再生能源的快速发展和能源转型的需求,海上风电项目成为了一个备受关注的领域。

海上风电项目的施工与安装流程是整个项目成功实施的关键,它涉及到多个步骤和环节,需要高效的组织和协调,以确保项目的安全和质量。

本文将详细介绍海上风电项目的施工与安装流程。

1. 选址与勘测在开始施工与安装之前,需要对海上风电项目的选址进行研究和勘测。

选址需要考虑风能资源、水深、海底地质条件、海洋环境等因素。

同时,还需要进行地质勘测和测量,以确定海底的地质条件和确定风机的布局。

2. 设计与预算在选址确定后,需要进行海上风电项目的设计与预算工作。

设计工作包括风机的布局设计、支撑结构的设计、电缆敷设的设计等。

预算工作包括施工费用、设备采购费用、维护费用等的估算。

3. 厂内制造与运输海上风电项目中的风机和支撑结构通常在陆地上进行制造,然后通过特殊的船只运输到海上安装的位置。

制造过程中需要严格控制质量,并且进行必要的测试和检验。

4. 预备工作在开始海上施工与安装之前,需要进行一系列的预备工作。

包括设备的检查和维护、施工人员的培训与岗前培训、安全计划和施工计划的制定等。

同时还需要准备好所需的材料、设备和工具。

5. 安装风机基础在海上风电项目中,风机的稳定性和安全性是关键。

因此,首先需要安装风机基础。

这涉及到船只的定位和沉锚,并使用钢管或桩将基础固定在海底。

6. 安装风机一旦风机基础安装完成,就可以开始风机的安装。

这涉及到将风机的各个组件从船上起吊到正确的位置,并使用螺栓将它们连接起来。

安装过程中需要严格按照设计要求进行,确保每个组件都正确安装和连接。

7. 敷设电缆安装风机后,需要将风机与陆地的电网连接起来。

这需要敷设电缆,并将其连接到风机和陆地的变电站。

电缆的敷设需要使用专业的船只和设备,确保敷设质量和可靠性。

8. 调试与测试一旦电缆敷设完成,就可以进行风机的调试和测试工作。

这包括对风机的电气系统、控制系统和机械系统进行测试和调试。

【风力发电技术】_海上风电培训3海上风场电力系统

【风力发电技术】_海上风电培训3海上风场电力系统
Garrad Hassan
海上风场电力系统
Offshore electrical systems
内容 Contents
1. 介绍Introduction 2. 阵列电缆-集电系统Array cables – collection systems 3. 海上分电站Offshore substations 4. 传输到海岸Transmission to shore 5. 岸上工作Onshore works 6. 总结Summary
Electrical collection systems – cable J-tube entry
若无计划,会出现问题
Very problematic once it doesn’t go to plan
电力收集系统-电缆保护
Electrical collection systems – cable protection
Alternately can rock dump, mattress, pipe.
调查
Survey !
其他危险,例如:沉 船、管线
Also other hazards, e.g. wrecks, pipelines
电力收集系统-成本
Electrical collection systems – costs
典型的单线框图
Typical Single Line Diagram (SLD)
现有的电网
Existing grid
岸上分电站
onshore substation
海上分电站
offshore substation
海底高压
电缆
Subsea HV cable
风机
turbines

海上风电项目施工流程

海上风电项目施工流程

海上风电项目施工流程
下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!
Download tips: This document is carefully compiled by theeditor. l hope that after you downloadthem,they can help yousolve practical problems. The document can be customized andmodified afterdownloading,please adjust and use it according toactual needs, thank you!
海上风电项目施工流程:
①前期准备:完成项目规划,可行性研究,获得官方审批与海域使用权。

②选址勘察:详尽海底地形、地质与海洋气象调查,评估风能潜力。

③设计规划:定制风机排列、海上升压站布局,完成详细设计。

④基础建设:海上打桩,构建风机基础及海上升压站平台。

⑤设备制造:风电机组、变压器等关键部件生产与测试。

⑥海上运输:利用专业船只将大型组件运输至安装地点。

⑦风机安装:海上吊装风力发电机,精准对接组装。

⑧海缆敷设:铺设海底电缆,连接风机与升压站及陆上电网。

⑨升压站建设:完成电气设备安装与调试,确保电力转换与传输。

⑩系统调试:全面系统测试,包括单机与整体运行效能验证。

⑪并网验收:通过电网公司验收,实现并网发电。

⑫运维管理:建立监控系统,进行日常维护与故障快速响应。

海上风电项目施工工艺流程

海上风电项目施工工艺流程

海上风电项目施工工艺流程小朋友们,今天咱们来了解一个超级厉害的东西——海上风电项目的施工工艺流程!首先呢,要做海上风电项目,就得先做好准备工作。

就像咱们出去郊游之前要准备好吃的、喝的还有帐篷一样。

工人们要先去了解大海的情况,看看风大不大呀,水有多深呀。

还要选好在哪里建这个风电项目。

选好了地方,接下来就要开始建基础啦!这就像是给房子打地基一样重要。

在海里建基础有好几种办法呢。

有一种办法叫单桩基础。

工人叔叔会用大大的船把一根超级长、超级粗的钢管运到海里指定的地方,然后用特别厉害的机器把这根钢管插到海底的泥土里,插得牢牢的,这样就能支撑起上面的大风车啦。

还有一种叫导管架基础。

这个就像是一个大架子,先在陆地上把这个架子做好,然后用船运到海里,再放到海底。

这个大架子也能稳稳地站在海里,给上面的大风车提供支撑。

基础做好了,下面就要安装塔筒啦。

塔筒就像是大风车的身体,一节一节的。

工人叔叔会用大吊车把这些塔筒一节一节地吊起来,然后组装在一起。

接下来就是安装机舱啦。

机舱就像是大风车的脑袋,里面有好多重要的零件。

把机舱安装在塔筒的最上面,可要小心不能碰坏了。

然后就是安装叶片啦。

叶片就像是大风车的手臂,又长又大。

把叶片安装在机舱上,这时候大风车的样子就慢慢出来啦。

安装好了这些,可还不算完呢。

还得给大风车接上电线,就像我们家里的电器要插电线才能有电一样。

把电线从大风车上接到陆地上,这样发出来的电才能被我们用。

在施工的过程中,工人叔叔们可辛苦了。

他们要在海上工作,有时候会遇到大风大浪,但是他们都很勇敢,不怕困难。

为了保证施工的安全,工人们还要穿上救生衣,带上各种安全设备。

而且还有专门的人在旁边看着,一旦有危险就能马上帮忙。

施工的时候,还要注意不能伤害到海里的小动物和植物。

因为大海是它们的家,我们要保护好它们的家。

海上风电项目建好以后,大风车就会呼呼地转起来,把风能变成电能,然后通过电线送到我们的家里,让我们能开灯、看电视、吹空调。

海上风电风机整体安装工艺【图】

海上风电风机整体安装工艺【图】

海上风电风机整体安装工艺相较于分体式安装,整体式安装特别适用于规模大的风电场建设,具有施工安全效率高的特点。

海上风机整体安装施工工艺的三个主要环节是:风机陆域拼装,风机整体运输,风机海上吊装对接,其中海上吊装对接为最关键的环节,直接决定海上风机整体安装实施的成败。

海上风机整体安装工艺主要研究包括:(1)研究风机拼装码头选址方案,陆域风机拼装工艺,对拼装机械设备和拼装流程进行优化,提高拼装效率;(2)研究一套风机整体运输工装设备,确保风机在运输过程中稳定安全;(3)对风机整体在海上起吊及安装对接过程工艺,进行研究,研制一套能够使风机平稳对接,自动对孔的自动化工艺设备;(4)研究海上风电风机整体安装工装设备拆除工艺,为风机整体安装施工工艺流水作业提供技术支持。

1陆域风机拼装工艺研究(1)码头选址研究为合理选择风机陆域拼装码头,项目团队对项目周边码头进行了多次考察,如烟台打捞局码头、烟台来福士码头、乳山港码头、乳山船厂码头、扬帆船厂码头、海阳港码头6个码头(各码头情况见“风场附近码头条件一览表”和“各码头实地情况表”),在综合考虑码头前沿地基承载力、码头前沿场地面积、码头泊位水深、码头泊位使用情况、与本工程风场间的距离等因素后,最终选择海阳港码头作为风机拼装码头。

风场附近码头条件一览表各码头实地情况表(2)风机拼装机械方案及工艺流程研究陆域风机拼装工艺需采用大型起重机进行风机部件,包含塔筒、机舱、轮毂、发电机、叶片以及本风机整体安装为确保风机稳定的各类工装系统设备。

起重机的吊高吊重主要依据起吊过程中最大构件的吊高、吊重要求进行选型,最终选择1250t履带式起重机作为本项目陆域风机拼装主作业机械,同时配备500t履带式起重机作为辅助起重机配合完成塔筒构件的翻身工作。

陆域风机塔筒、专用工装、叶片拼装2风机整体运输工装设备研究和开发为了确保风机在运输船拼装完成后,能够安全运至风电场,同时在风机整体起吊时能够顺利与运输船实现分离,需对风机运输工装进行研发,研制出一套海绑系统能够将95m高的风机稳定的固定于风机运输船上,同时满足船级社规定的运输拖航海况,本项目研制的风机整机运输工装设备,包含井字架、平衡梁、运输固定底座,一船每次可运输1-2台风机。

海上风电设备安装中的风险评估及管理

海上风电设备安装中的风险评估及管理

海上风电设备安装中的风险评估及管理随着可再生能源的快速发展,海上风电成为了中国能源产业的重要组成部分。

然而,海上风电设备的安装过程中存在着一系列的风险和挑战。

为了确保海上风电项目的安全顺利进行,必须对风险进行全面评估和有效管理。

本文将探讨海上风电设备安装中的风险评估和管理方法。

首先,对于海上风电设备安装过程中的风险评估,需要考虑以下几个方面:1. 气象条件:海上气象条件的复杂性是海上风电设备安装中的主要风险之一。

强风、大浪、暴雨等极端天气条件可能会给安装过程带来不可控的风险。

因此,需要通过气象预测和监测系统来实时了解海上气象条件,确保在安全的时间窗口内进行设备安装。

2. 海上施工环境:海上施工环境的复杂性也是一个重要的风险因素。

海上的水深、洋流、浪高等因素都需要考虑进去。

此外,海上船只和设备的运行状况以及工作人员的技能和经验也是风险的重要因素。

因此,需要对施工环境进行详细的调研和评估,并配备合适的船只和设备,确保施工过程安全可靠。

3. 设备安全性:海上风电设备的安全性是风险评估的重要方面。

设备是否符合相关安全标准和规范,是否有可靠的防护措施,是否经过充分的测试和认证等都需要考虑。

此外,设备的质量和可靠性也是风险评估的重要指标。

因此,需要对风电设备进行全面的检验和测试,确保其安全和可靠性。

基于以上风险评估,可以采取一系列的风险管理措施来确保海上风电项目的安全进行:1. 制定严格的安全管理计划:根据风险评估的结果,制定详细的安全管理计划和施工方案。

明确责任和权限,确保每个环节都得到合理的安排和控制。

2. 加强技术培训和技能提升:设备的安装需要高度专业化的技术和技能。

因此,需要对施工人员进行充分的技术培训和技能提升,提高其安全意识和应对突发事件的能力。

3. 健全安全监测和警示系统:部署安全监测和警示系统,实时监测设备的安全状况,及时发现并应对潜在的安全风险。

4. 加强沟通和协调:设备安装涉及多个环节的协同和配合,需要各方之间的密切沟通和协调。

海上风机安装方法

海上风机安装方法

海上运输及起吊粗导向缓冲与同步下降精定位自动对中拆除
1风机组拼
风机组拼23456
工装塔筒
将平衡梁吊上
运输塔架运输塔架,,抱
箍器抱紧风机
塔筒防止风机
倾覆倾覆。

平衡梁
海上基础平台
起吊开始前松开抱箍器起吊开始前松开抱箍器。

起重船吊起风电
机组,准备安装在海上基础平台上。

起重船吊装风电机组靠近基础平台起重船吊装风电机组靠近基础平台。

上部吊架外围钢管碰到粗导向。

沿着粗导向下降。

装置,沿着粗导向下降
粗导向结束后,风电。

机组开始软着陆。

机组开始软着陆
位于上部吊架的精定位销插入精定位自动对中系统的销孔中定位自动对中系统的销孔中。

精定位自动对中系统调整风机法兰位。

插入螺栓连接法兰。

置。

对中完成后,插入螺栓连接法兰
平衡梁下降到上部吊架
的搁架上后对半拆分
上部吊架系统对半拆分下部就位系统分别拆除。

海上风电高桩承台基础施工工艺流程 英文

海上风电高桩承台基础施工工艺流程 英文

海上风电高桩承台基础施工工艺流程英文Offshore wind power is an important part of the renewable energy mix, and the construction of high-pile cap foundations is a critical part of this industry. 海上风电是可再生能源组合的重要组成部分,而高桩承台基础的施工是该行业的关键部分。

The construction process for offshore wind power high-pile cap foundations involves several important steps. These steps include initial site assessment, seabed preparation, pile driving, reinforcement and formwork installation, and concrete pouring. 海上风电高桩承台基础的施工过程包括几个重要步骤。

这些步骤包括初始场地评估,海床准备,桩打设备,钢筋和模板安装,以及混凝土浇筑。

One of the initial steps in the construction process is the assessment of the site where the high-pile cap foundation will be installed. This assessment involves studying the seabed conditions, water depth, and potential hazards such as underwater currents and geological formations. 施工过程中的一个初始步骤是对将安装高桩承台基础的场地进行评估。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Answers for energy.Sustainable profit Offshore wind power – firmly established as a viable source of renewable energyDue to higher, more consistent wind speeds at sea, offshore wind turbines can generate substantially more energy than onshore wind turbines. Offshore wind farms may reach capacity factors in the range of 50%. Even considering the planning constraints relating to shipping lanes, fishing, bird migration, and the like, the world has abundant space for offshore projects.Offshore wind power has its challenges, however. Conditions during installation, operation, and maintenance may be harsh, and the product requirements are high. It takes a special supplier to provide stable, long-term offshore partnerships.When it comes to offshore wind power, no supplier can match Siemens in terms of experience and reliability. Siemens has a proven track record for delivering offshore projects on budget. From the world’s first offshore wind farm almost 20 years ago to today’s largest offshore wind farms, all projects have been deliv-ered on time and on budget. All projects operate with high availability. Optimized processes across the complete project life cycle make Siemens a stable, reliable, and trustworthy business partner.Number one in offshore Grown from experience Siemens has developed a broad realm of experience and excellent skills in deliver-ing offshore projects.From the outset Siemens has played a key role in founding the offshore wind industry by installing the world’s first offshore wind farm in Vindeby, Denmark, in 1991. The 11 turbines installed in this pioneering project are still in excellent condition. The turbines have consistently operated at high availability, reflecting the unique combination of product quali-ty and dedicated offshore modifications. Now, amidst the current boom in off-shore projects, Siemens still leads the world in offshore technology. With an installed offshore capacity of more than 600 MW and a high order intake, the company remains the preferred supplier of wind turbines to offshore projects. Furthermore, unlike any other offshore wind turbine supplier, Siemens offers equipment for the entire energy value chain, from the wind turbine to net conversion, efficient feed-in to smart energy grids, and power distribution.Siemens offers integrated solutions and services that perfectly meet the high demands along the entire wind energy conversion chain4Making history, over and over againThe trend in offshore wind farms is towards larger and more complex proj-ects, located further from shore, in deeper waters, which are exposed to severe sea and wind conditions.Utilizing the knowledge gained from almost two decades of experience in the offshore environment, Siemens is equipped to handle the challenges of this unique environment.Siemens has not only supplied the world’s first, but also the world’s largest offshore projects. For several years, the 165-MW Nysted offshore wind farm held the record as the largest offshore project. In September 2009, that record will be broken by the 200-MW Horns Rev II project. The 500-MW Greater Gabbard project, currently under instal l ation, will raise the bar again. And the world’s first 1-GW project, London Array, will represent yet another stride towards large-scale, green energy supply.All record projects – and all feature Siemens wind turbines.Providing the best technologyWhen access conditions are difficultand when high wind resources makeevery hour count, reliability is the keyto profitability.Over the years, Siemens turbines haveset the standard for robustness andre l iability. Designed with offshore appli-cations in mind, the turbines have arugged, conservative structural design,automatic lubrication systems with amplesupplies, climate control of the internalenvironment, and a simple generatorsystem without slip rings. These andmany other high-quality design featuresprovide exceptional reliability with longservice intervals.Siemens turbines are built to last. Delivering on a promiseDelivering projects on time and withinbudget is one of Siemens’ majorstrengths. Since the offshore industrywas established in 1991, and despitethe logistical challenges associated withoffshore installation works, everySiemens offshore project has beencompleted within budget and on time.This unique track record was not estab-lished by chance. It requires deep respectfor the challenging conditions, detailedplanning, and superior and consistentproject management skills requiredduring the execution phase. All of whichare key elements of the Siemens offshoremodel.The Siemens offshore model has beenproven to deliver results. Everywhere,every time.Siemens can also supply turnkey grid connectionsfor wind farms, including construction of theoffshore transformer station5Maximized potential across the boardA well-proven and robust installation processPre-assembly of components Once all necessary compo- n ents have been delivered, pre -assembly commences. Siemens designs, plans, and executes all work processes to minimize the amount of work required offshore.Components delivery to port Siemens transports all compo-nents, parts and equipment to a harbor site close to the pro-posed wind farm. The site serves as the assembly and embarka-tion station for the project.Storage of rotor bladesSpecialists place rotor blades in the storage area, ready for shipment to the site. The blades are stored in special transport fixtures used on the installation vessel. In some cases, blades are shipped as completed rotors.Load outService technicians load allcomponents onto the transport vessel in accordance with the project plan. Siemens’ proprie-tary fixtures and sea fastenings are used for safe transport andworking procedures.6Experience counts in installation Drawing on almost two decades of expe-rience in successfully delivering offshore projects on time and within budget, Siemens knows exactly what it takes. Over the years, a large number of aspects of installation methodology have been tested and analyzed. Gradually, best practices have been established, and even though the process often needs to be adjusted to fit project-specific re q uirements, the fundamental approach remains the same.Installation scopeThe Siemens installation scope istailored to the needs of individual cus-tomers. One classical approach is an all-in equipment supply where Siemens provides the installation vessels. In an-other approach, the customer provides the installation vessels and Siemenscarries out the work. Further alternatives are possible, depending on the custom-er’s skills and objectives and a joint evalu-ation of the most optimal solutions. Irrespective of the installation scope, Siemens’ customers will always benefit from the reliability and robustness of a proven installation process.TransportA transportation vessel takes the components to the site. Transportation time can vary from site to site based on many factors, including the vessel type, the distance from the port of origin to the site, and weather conditions.InstallationThe transport vessel arrives on- site. The tower is lifted onto the foundation. Service technicians then lift the nacelle onto the tower and the rotor is mounted on the nacelle, either as a com-pleted unit or in single-blade installation.CommissioningOnce the turbine is mechanically completed and energized, it is thoroughly tested for commis-sioning. Some tests are auto m at-ically performed by the turbine computer controller, while others are performed by the service crew.Service and maintenance Siemens provides service and maintenance during the warran-ty period. Long-term service and maintenance contracts are also available from Siemens to ensureyears of trouble-free operation.By thoroughly understanding the com-plexity and challenges associated with implementing an offshore project, and by establishing optimized installation processes, Siemens maximizes the value of each link in the chain, providing mini-mum costs and optimum predictability in project delivery.7Simply the bestThe fundamental pillars –the best turbines and the best serviceThe blades are mounted on double-row pitch bearings fitted to a large rotor hub. The pitch actuation system is hydraulic, offering maximum robustness and safety. Like the turbine itself, the blades are designed to last.NacelleThe nacelles of the Siemens’ offshore turbine types are ideally suited for severe offshore operating conditions.Major components such as the main shaft, the gearbox, and the yaw system are all of particularly heavy dimensions. The automatic lubrication systems have redundant lubricant reserves to enable continued operation even if scheduled maintenance is severely delayed by weather. The nacelle canopy is metallic to provide optimum lightning and fire protection. All safety systems are fail-safe and have layers of redundancy. Fully integrated climate control and compre-hensive offshore-grade surface protec-tion contribute to long service life. Overall performance is well-proven and all details are designed using market-leading engineering practices.TowerSiemens offshore turbines are normally mounted on tubular steel towers fitted with internal personnel hoists.A prefabricated power module is located at the bottom of the tower and provides the platform for the power converter, the turbine transformer, and the medium-voltage switchgear.Turbine types offeredTwo Siemens turbine types are offeredfor offshore projects, the SWT-2.3 andthe SWT-3.6. Both types offer the samekey features.RotorThe rotor blades for Siemens’ offshoreturbines are made of fiberglass-reinforcedepoxy, manufactured using the proprie-tary Siemens IntegralBlade® process.Unlike conventional wind turbine blades,the IntegralBlades® are cast in one piecein a closed process. This process leavesno weak points at glue joints and pro-vides optimum quality. The aerodynamicdesign represents state-of-the-art windturbine technology, offering maximumenergy extraction from any availablewind resource, and the structural designlives up to the usual Siemens safetyfactors in addition to all industry codesand standards.Blades on a service vessel before mounting The inside of an SWT-3.6 8Service and maintenanceReliable and competent service and main-tenance is almost as important for profit-able offshore wind power projects as selecting the right turbine equipment. Due to sea and wind conditions, access may be restricted for long periods, and the losses resulting from trivial errors could be substantial.Siemens is known as the most experi-enced and reliable offshore service pro-vider, with an unmatched track record for maintaining optimum availability. Central demand planning, excellent diag-nostics capabilities, and competent field service teams offer fast response times and well-planned service operations.The service offering can be adjusted to match the owner’s skill sets, objectives, and interest in participation. Irrespective of the service scope, Siemens’ support enables owners to maximize revenue and earnings throughout the project lifetime.MonitoringSiemens offshore turbines are equipped with the unique Siemens WebWPS SCADA system. This system offers remote control and a variety of status views and useful reports from a standard Internet browser. The status views present information such as electrical and mechanical data, operation and fault status, meteorologi-cal data, and grid station data.Voltage and frequency control, and other grid-related adjustments, can be imple-mented by the integrated park pilot utility in the WebWPS SCADA system.In addition to this WebWPS SCADA system, the turbine is equipped witha web-based turbine condition monitor-ing (TCM®) system. The TCM® system con t inuously carries out precise condition diagnostics on main turbine components and gives early warning of possible com-ponent problems in real time. Basedon the TCM® system, Siemens can detect and correct any problems at the earliest possible stage, thereby reducing mainte-nance costs, optimizing availability, and maximizing energy output.Grid performanceGrid stability requirements grow as morewind power is fed into the grid. Siemensalso sets the standard in the field of gridcompliance.Power conversion is implemented withSiemens’ unique NetConverter® system.This system uses full conversion of thepower generated, efficiently decouplinggenerator and turbine dynamics fromthe grid. The NetConverter® systemoffers maximum flexibility in the turbineresponse to voltage and frequency con-trol, fault ride-through, and output ad-justment. As a result, Siemens turbinescomply with all relevant grid codes.Blades being transported before mounting Service technicians at work on an SWT-2.3-939World’s first offshore wind farmSiemens was the first wind turbinemanufacturer to venture out to sea.In 1991, 11 turbines of 450 kW wereinstalled at Vindeby, off the southernislands of Denmark.The turbines, which are still runningefficiently today, gave Siemens a headstart in offshore projects and provideda testing ground for offshore modifica-tions. These modifications are nowthoroughly proven and form the basisof today’s turbine technology.The mega farms of tomorrow havetheir roots in this humble installation.Offshore wind turbines are growingNot only are offshore wind farms in-creasing in size, but so is the equipment.In 2004, Siemens introduced theSWT-3.6-107 turbine type. Eight timeslarger than the first offshore turbines,the 3.6-MW turbine type is now consid-ered the de facto standard for offshoreprojects.In 2007, the first 25 SWT-3.6-107 windturbines were installed at Burbo Banks.Published by and copyright © 2009: Siemens AGEnergy SectorFreyeslebenstrasse 191058 Erlangen, GermanySiemens Wind Power A/SBorupvej 167330 Brande, Denmark/windFor more information, please contactour Customer Support Center.Phone: +49 180 524 70 00Fax: +49 180 524 24 71(Charges depending on provider)E-mail: support.energy@ Renewable Energy DivisionOrder No. E50001-W310-A118-X-4A00 Printed in GermanyDispo 34804, c4bs No. 7491fb 1829 WS 09092.5Printed on elementary chlorine-freebleached paper.All rights reserved.Trademarks mentioned in this documentare the property of Siemens AG, its affiliates,or their respective owners.Subject to change without prior notice.The information in this document contains general descriptions of the technical options available, which may not apply in all cases. The required technical options should therefore be specified in the contract./energy。

相关文档
最新文档