高数B试题及答案
高数考研测试题及答案

高数考研测试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)=x^3-3x^2+2,求f'(x)的值。
A. 3x^2-6xB. x^3-3x^2+2C. 3x^2-6x+2D. 3x^2-6x+1答案:A2. 计算定积分∫(0,1) x^2 dx的值。
A. 1/3B. 1/2C. 1D. 2答案:A3. 若lim(x→0) [f(x) - sin(x)]/x = 1,则f'(0)的值为。
A. 1B. 0C. -1D. 2答案:A4. 设函数f(x)=e^x,则f'(x)的值是多少?A. e^(-x)B. e^xC. x*e^xD. ln(e^x)答案:B二、填空题(每题5分,共20分)1. 设函数f(x)=x^2-4x+c,若f(1)=-3,则c的值为______。
答案:-22. 求极限lim(x→∞) (1+1/x)^x的值。
答案:e3. 设函数f(x)=x^2-6x+8,求f(x)的最小值。
答案:-44. 计算二重积分∬(D) xy dA,其中D为x^2+y^2≤1的区域。
答案:π/4三、解答题(每题10分,共40分)1. 求函数f(x)=x^3-6x^2+9x+1在x=2处的切线方程。
答案:首先求导得到f'(x)=3x^2-12x+9,代入x=2得到f'(2)=3,然后计算f(2)=1,所以切线方程为y-1=3(x-2),即3x-y-5=0。
2. 求定积分∫(0,2) (3x^2-2x+1) dx。
答案:首先计算原函数F(x)=x^3-x^2+x,然后计算F(2)-F(0)=8-4+2=6。
3. 求极限lim(x→0) (sin(x)-x)/x^3。
答案:利用洛必达法则,分子分母同时求导得到cos(x)-1,再求导得到-sin(x),代入x=0得到-0=0,所以原极限值为0。
4. 求函数f(x)=ln(x)的反函数。
答案:反函数为f^(-1)(x)=e^x。
南京工业大学 高数B(B)试卷含答案

南京工业大学 高等数学B 试题(B )卷(闭)2011--2012学年第一学期 使用班级 浦生工等 班级 学号 姓名一、填空题(共18分,每小题3分)1. 1.设()()则,12xx x f += ()=∞→x f x lim2.设()x f 在1=x 处可导,且 ()21='f ,则 ()()=-+→hf h f h 121lim3.设函数()x y 是由方程 3=+xy e y所确定,则 ='|y4.如 ()422++=x x x f ,则适合等式 ()()()()0202-'=-ξf f f 的=ξ5.如()()=+=⎰x f C edx x xf x则,6.()⎰-=+113cosdx x x x二、选择题(共12分,每小题2分)1.当0→x 时,下列无穷小中与 x cos 1-等价的是( )A.xB. x 21 C. 2x D 221x .2.设 ()()⎩⎨⎧>+<+=0,0,1ln x a e x x x f x,是连续函数,则 ,a 满足:( )A.a 为任意实数,B.1-=aC. ,0=aD.1=a3.若()()(),R x x f x f ∈--= ,且在 ()∞,0内()(),0,0>''>'x f x f 则()x f 在()0,∞-内必有:( ) A.()()0,0<''<'x f x f B.()()0,0>''<'x f x f C.()()0,0<''>'x f x f D.()()0,0>''>'x f x f4.在下列极限中,正确的是:( )A.22sin lim 0=→x x xB.1arctan lim =+∞→xx x C .e x xx =+→0lim D.∞=--→24lim22x x x 5.定积分 =⎰dx x π20sin ( )A. 0B. 4C. 2D. 16.直线L 与x 轴平行,且与曲线 xe x y -=相切,则切点坐标是( )A.()1,1B.()1,1-C.()1,0-D.()1,0三、计算题(共48分,每小题6分)1.xe x x 1lim 20-→ 2.设 2222++=x x y ,求 y '3.设有参数方程()0sin 322>⎩⎨⎧=++=t tt y t t x ,求 dx dy4.()dx x x ⎰+1215.dx xx ⎰+1316.设 ()()⎰+=13sin dx x f x x x f ,求()x f 的表达式。
高数b农业期末考试题及答案

高数b农业期末考试题及答案一、选择题(每题5分,共20分)1. 函数f(x)=x^3-3x+1在x=1处的导数为:A. 1B. 2C. 3D. 4答案:B2. 曲线y=x^2在x=2处的切线斜率为:A. 0B. 2C. 4D. 8答案:C3. 极限lim(x→0)(sin(x)/x)的值为:A. 0B. 1C. 2D. 3答案:B4. 定积分∫(0,1) (2x+1)dx的值为:A. 1B. 3/2C. 2D. 5/2答案:D二、填空题(每题5分,共20分)1. 函数f(x)=x^2+3x+2的极小值点为______。
答案:-3/22. 函数y=ln(x)的导数为______。
答案:1/x3. 函数f(x)=x^3-6x^2+11x-6的单调递增区间为______。
答案:(2,3)和(3,+∞)4. 曲线y=x^3-9x在点(1,-8)处的切线方程为______。
答案:y=-12x+3三、解答题(每题15分,共40分)1. 求函数f(x)=x^3-6x^2+11x-6的单调区间和极值点。
解答:首先求导数f'(x)=3x^2-12x+11。
令f'(x)=0,得到x=1和x=3/3。
因此,函数在(-∞,1)和(3,+∞)上单调递增,在(1,3)上单调递减。
极小值点为x=1,极大值点为x=3。
2. 求曲线y=x^2-4x+5与直线y=2x-6的交点坐标。
解答:将两个方程联立,得到x^2-6x+11=0。
解得x=1或x=5。
将x 值代入直线方程,得到y=-4或y=4。
因此,交点坐标为(1,-4)和(5,4)。
四、证明题(共20分)1. 证明:若函数f(x)在区间[a,b]上连续,则f(x)在[a,b]上必有最大值和最小值。
证明:根据连续函数的性质,我们知道f(x)在[a,b]上必有最大值M和最小值m。
对于任意x∈[a,b],有m≤f(x)≤M。
因此,f(x)在[a,b]上必有最大值和最小值。
大学高等数学上下考试题库(及答案)

高数试题1(上)及答案一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dx x x ++⎰②()0a > ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2-2.33-3.24.arctan ln x c+5.2三.计算题1①2e②162.11xyx y'=+-3. ①11ln||23xCx+++②22ln||x a x C-++③()1xe x C--++四.应用题1.略2.18S=《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121xx e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰②)0a > ③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π 三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc + ②()22ln x a x c +++ ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1. 函数219y x=-的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120xedx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解.八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d = 6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ).A 、2sinxB 、 2sin x -C 、 C x +2sinD 、2sin 2x -7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C x x++-2ln 18、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分; 4、求不定积分⎰++11x dx ;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ;4、C x x +++-+)11ln(212;5、)12(2e- ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a xx ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0 D 、241a π 10、方程( )是一阶线性微分方程.A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxeC e C 221+.三、1、31 ; 2、1arccos 12---x x x ; 3、dx xx 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略《高等数学》试卷1(下)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ).A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x y x y 的定义域是( ).A.(){}21,22≤+≤y x y x B.(){}21,22<+<y x y xC.(){}21,22≤+<y xy x D (){}21,22<+≤y x y x4.两个向量a 与b垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1- 6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz=( ).A.22B.22-C.2D.2-7.若p 级数∑∞=11n p n 收敛,则( ). A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nnx 的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x -11 B.x -22 C.x -12 D.x-21 10.微分方程0ln =-'y y y x 的通解为( ). A.xce y = B.xe y = C.xcxe y = D.cxe y = 二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z 2_____________________________.4.x+21的麦克劳林级数是___________________________. 5.微分方程044=+'+''y y y 的通解为_________________________________. 三.计算题(5分⨯6)1.设v e z usin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin ,其中22224:ππ≤+≤y x D . 4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).5.求微分方程xe y y 23=-'在00==x y条件下的特解.四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点⎪⎭⎫⎝⎛31,1,求此曲线方程 .《高数》试卷2(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21M M ( ). A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为( ). A.6π B.4π C.3π D.2π 3.函数()22arcsin yx z +=的定义域为( ).A.(){}10,22≤+≤y x y x B.(){}10,22<+<y x y xC.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.6 5.函数22232y x xy z --=的极大值为( ). A.0 B.1 C.1- D.216.设223y xy x z ++=,则()=∂∂2,1xz ( ).A.6B.7C.8D.9 7.若几何级数∑∞=0n nar是收敛的,则( ).A.1≤rB. 1≥rC.1<rD.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是( ). A.条件收敛 B.绝对收敛 C.发散 D.不能确定 10.微分方程0ln =-'y y y x 的通解为( ). A.cxe y = B.xce y = C.xe y = D.xcxe y = 二.填空题(4分⨯5)1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y t x 213平行,则直线l 的方程为__________________________.2.函数xye z =的全微分为___________________________. 3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________. 4.211x+的麦克劳林级数是______________________. 5.微分方程03=-ydx xdy 在11==x y 条件下的特解为______________________________.三.计算题(5分⨯6)1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.5.求微分方程023=+'+''y y y 的通解. 四.应用题(10分⨯2) 1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.2.如图,以初速度0v 将质点铅直上抛,不计阻力,求质点的运动规律().t x x =(提示:g dt x d -=22.当0=t 时,有0x x =,0v dtdx=)《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分) 1、二阶行列式 2 -3 的值为( )4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( ) A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( ) A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,22 5、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π)A 、R 2AB 、2R 2AC 、3R 2AD 、A R 2217、级数∑∞=-1)1(n nnn x 的收敛半径为( )A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( ) A 、一阶 B 、二阶 C 、三阶 D 、四阶 10、微分方程y``+3y`+2y=0的特征根为( ) A 、-2,-1 B 、2,1 C 、-2,1 D 、1,-2 二、填空题(本题共5小题,每题4分,共20分) 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。
厦门理工学院高数1(B)期中考试试卷参考答案(1)

1 y 1 ( x 1) 2 cos t t sin t 1 sin t t cos t
. .
.
7. 设参数方程为
x t (1 sin t ) dy ,则 dx y t cos t
2 ln x 3
8. 若 y x 2 ln x , 则 y =
系
相应地函数增量 y 的线性主部为 0.2,则 f (1) A.0.1 B.0.5 C.-1 D. 1
( D )
第 3 页 共 7 页
得分 阅卷人
三、计算题(每题 5 分,共 25 分) , 请把答案写在问题的 下面。
1. 求极限 lim(
x 1
1 3 ) 1 x 1 x3
解: lim
sin 2 1 x
信 级 班级 生
专业
1 sin 2 1 2 2 e x sin …………… x x
装
考
…7 分
系
第 6 页 共 7 页
4. 试求由方程 2 y x ( x y) ln( x y ) 所确定的函数 y y ( x) 的微分 dy 解: 2 y 1 (1 y) ln( x y ) ( x y )
f (0) b f (0 ) lim (e x 1) 2. …………
x 0
……6 分 …7 分
…………… 综上:当a 1, b 2时,f ( x)在x 0处可导。
第 5 页 共 7 页
2.求极限 lim
x 0
1 tan x 1 sin x etan x esin x
则dy
…7 分ቤተ መጻሕፍቲ ባይዱ
得分 阅卷人
高等数学试题(含答案)

高等数学试题(含答案)高等数学试题(含答案)一、选择题1.已知函数f(x)=x^2+3x+2,下列哪个选项是f(x)的导数?A. 2x+3B. 2x+2C. x^2+3D. 3x+22.若函数f(x)=e^x,那么f'(x)等于:A. e^-xB. e^xC. ln(x)D. e^x+13.设函数y=f(x)在点x=2处可导,且f'(2)=3,则曲线y=f(x)在点(2,f(2))处的切线斜率为:A. 2B. 3C. 1D. 6二、计算题1.计算极限lim(x→1) [(x-1)/(x^2-1)]答案:1/22.计算积分∫(0 to 1) (2x+1) dx答案:3/23.设曲线C的方程为y=x^3,计算曲线C的弧长。
答案:∫(0 to 1) √(1+9x^4) dx三、证明题证明:若函数f(x)在区间[a,b]上连续,且在(a,b)可导,那么必然存在c∈(a,b),使得 f'(c) = [f(b)-f(a)] / (b-a)。
证明过程:由于f(x)在区间[a,b]上连续,根据连续函数的介值定理,f(x)在[a,b]上会取到最大值M和最小值m。
设在点x=c处取得最大值M(即f(c)=M)。
根据费马定理,如果f(x)在点x=c处可导,并且f'(c)存在,那么f'(c)=0。
由于f(x)在(a,b)可导,故f'(c)存在。
那么,根据导数的定义,f'(c)=[f(c)-f(a)]/(c-a)。
又因为f(c)=M,将其代入上式得到f'(c)=(M-f(a))/(c-a)。
同理,根据费马定理,如果f(x)在点x=d处取得最小值m(即f(d)=m),那么f'(d)也等于0。
将f(d)=m代入上式得到f'(d)=(m-f(a))/(d-a)。
由于f(x)是连续函数,故在区间[a,b]上必然存在一个点c∈(a,b),使得它处于最大值M和最小值m之间,即m<f(c)<M。
高数专B

装订线长春师范学院课程结业考试试卷评阅三联单第一联(本联与试卷一同保存)领导审核签字:考试科目:《高等数学》命题教师:王忠文适用年级:11级专科学年度:2011—2012 学期:第1学期考生人数:144人监考教师填写:试卷密号学生填写:学院班级考场-----------------------------------------------------------------------------------------------------------------------------------第二联(本联由成绩录入人保存)考试科目:《高等数学》命题教师:王忠文适用年级:11级专科学年度:2011—2012 学期:第1学期考生人数:144人监考教师填写:试卷密号阅卷教师填写:分数阅卷人学生填写:学院班级考场注:待试卷批阅结束后请成绩录入人持第二联到分院领取第三联进行录入、提交成绩。
成绩提交完毕,本联及第三联与成绩单一同放入试卷及成绩分析文件袋保存。
-----------------------------------------------------------------------------------------------------------------------------------第三联(本联在考试结束后由监考教师撕下装订由分院单独封存)考试科目:《高等数学》命题教师:王忠文适用年级:11级专科学年度:2011—2012 学期:第1学期考生人数:144人监考教师填写:试卷密号学生填写:姓名:学号:班级:学院:考场:注:1.三联单中试卷密号由监考教师在考试结束后随机编写,可按收卷顺序编写,保证每份试卷的密号是该考场中唯一的数值(001-200),同一张三联单上的试卷密号须一致,密号不得外泄。
2.三联单中学生信息必须填写准确,试卷其他位置不得填写任何个人信息或做记号,否则按作弊处理。
高等数学上册试题B

高等数学上册试题B一、单项选择题(下面每道题目中有且仅有一个答案正确,将所选答案填入题后括号内。
共24分)1.(3分)设()x f 的定义域为[]1,0,()x f ln 的定义域为( ) A.[]1,0 B.()2,0 C.[]e ,1 D.()1,02.(3分)设()x x x f =,()22x x =ϕ,则()[]x f ϕ是( ) A.xx 2 B.22x C.x x 22 D.xx23.(3分)在区间()+∞∞-,内,函数()()1lg 2++=x x x f 是( )A.周期函数 B.有界函数 C.奇函数 D.偶函数4.(3分)()⎪⎩⎪⎨⎧=≠=0,0,2tan x a x xxx f ,当a 为何值时,()x f 在0=x 处连续( ) A.1 B.2 C.0 D.4-5.(3分)设()()⎪⎩⎪⎨⎧=≠+=0,0,11x x x x f x α,要使()x f 在0=x 处连续,则=α( ) A.0 B.0 C.e D.e 16.(3分)函数1+=x y 在0=x 处满足条件( ) A.连续但不可导 B.可导但不连续 C.不连续也不可导 D.既连续已可导7.(3分)已知()()()()()d x c x b x a x x f ----=且()()()()d c b c a c k f ---=',则=k ( ) A.a B.b C.c D.d8.(3分)下列函数中,是同一函数的原函数的函数对是( )A.x 2sin 21与x 2cos 41- B.x ln ln 与x 2lnC.2xe 与xe 2 D.2tanx 与x x 2sin 1cot +-二、填空题9.(3分)=→x x x x 2sin 1sinlim 22010.(3分)设()231ln e x y ++=,则='y11.(3分)设⎩⎨⎧==t y t x ln 2,则=dxdy12.(3分)曲线23bx ax y +=有拐点()3,1,则=a ,=b13.(3分)()x F 是()x f 的一个原函数,则()=⎰--dx e f e xx14.(3分)函数()⎰--x t tdte e2的驻点=x15.(3分)=-⎰π2sin 1dx x 16.(3分)=⎰-22cos 2xdx xe x1=-yxe 确定函数()x y y =,求()0y '18.(5分)求nx mx x sin ln sin ln lim0→19.(5分)求⎰dxe x120.(5分)()⎰-321ln e e x x dx21.(5分)⎰--223cos cos ππdxx x22.(5分)讨论⎰-1121dx x 的收敛性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学B (上)试题1答案
一、判断题(每题2分,共16分)(在括号里填写“√”或“×”分别表示“对”或“错”) ( × )1. 两个无穷大量之和必定是无穷大量. ( × )2. 闭区间上的间断函数必无界.
( √ )3. 若)(x f 在某点处连续,则)(x f 在该点处必有极限. ( × )4. 单调函数的导函数也是单调函数.
( √ )5. 无穷小量与有界变量之积为无穷小量.
( × )6. ()y f x =在点0x 连续,则()y f x =在点0x 必定可导. ( × )7. 若0x 点为()y f x =的极值点,则必有0()0f x '=. ( × )8. 若()()f x g x ''≡,则()()f x g x ≡.
二、填空题(每题3分,共24分) 1. 设2
)1(x x f =-,则(3)f =16. 2.1lim sin
x x x
→∞
=1。
3.112lim sin sin x
x x x x x x x →∞⎡⎤+⎛⎫++=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦
2
1e +.
4. 曲线3
26y y x -=在(2,2)-点切线的斜率为2
3
.
5.设0()f x A '=,则000
(2)(3)
lim
h f x h f x h h
→+--=
5A
.
6. 设1
()sin cos
,(0)f x x x x
=≠,当(0)f =0时,)(x f 在0=x 点连续.
7. 函数3
3y x x =-在x =1
-处有极大值.
8. 设)(x f 为可导函数,(1)1f '=,2
1()()F x f f x x ⎛⎫=+ ⎪⎝⎭
,则=')1(F 1
.
三、计算题(每题6分,共42分)
1.求极限 3(2)(3)(4)
lim
5n n n n n
→+∞+++ . 解: 3
(2)(3)(4)
lim 5n n n n n →+∞+++
234lim 111n n n n →+∞
⎛⎫⎛⎫⎛⎫
=+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭
(3分)
1= (3分)
2. 求极限 0cos lim sin x x x x
x x →--.
解:0cos lim sin x x x x
x x
→--
01cos sin lim
1cos x x x x
x →-+=- (2分) 02sin cos lim
sin x x x x
x
→+= (2分) 3= (2分)
3. 求2
3
(1)(2)(3)y x x x =+++在(0,)+∞内的导数.
解:ln ln(1)2ln(2)3ln(3)y x x x =+++++, (2分)
123123
y y x x x '=+++++, (2分) 故2
3
123(1)(2)(3)123y x x x x x x ⎛⎫'=+++++ ⎪+++⎝⎭
(2分) 4. 求不定积分221
d 1x x x ++⎰.
解:
221d 1x x x ++⎰
2
2211d(1)d 11x x x x
=++++⎰⎰ (3分) 2ln(1)arctan x x C =+++ (3分)
5. 求不定积分2sin d x x x ⎰
.
解:2sin d x x x ⎰
()22
1sin d 2x x =
⎰ (3分) 21
cos 2x C =-+ (3分)
6.求不定积分sin 2d x x x ⎰
. 解: sin 2d x x x ⎰
11sin 2d(2)dcos222x x x x x =
=-⎰⎰ (2分) ()
1
cos 2cos2d 2
x x x x =--⎰ (2分)
11
cos 2sin 224
x x x C =-++ (2分)
7. 求函数()
cos sin x
y x =的导数.
解:ln cos ln sin y x x = (3分)
()
()cos 1
2
sin cot
lnsin x y x x x +'=- (3分)
四、解答题(共9分)
某车间靠墙壁要盖一间长方形小屋,现有存砖只够砌20米长的墙壁,问应围成的长方形的长,宽各为多少才能使这间小屋面积最大.
解:设垂直于墙壁的边为x ,所以平行于墙壁的边为202x -,
所以,面积为2
(202)220S x x x x =-=-+, (3分)
由4200S x '=-+=,知 (3分) 当宽5x =时,长20210y x =-=, (3分) 面积最大51050S =⨯=(平方米)。
五、证明题(共9分)
若在(,)-∞+∞上()0,(0)0f x f ''>=.证明:()
()f x F x x
=在区间(,0)-∞和(0,)+∞上单调增加. 证明:2
()()
()xf x f x F x x
'-'=
,令()()()G x xf x f x '=- (2分) (0)0(0)(0)0G f f '=⋅-=, (2分)
在区间(,0)-∞上,()()0G x xf x '''=>, (2分) 所以()(0)0G x G >=,单调增加。
(2分) 在区间(0,)+∞上,()()0G x xf x '''=<,
所以0(0)()G G x =>,单调增加。
(1分)。