高数试题及答案

合集下载

高等数学试题及答案

高等数学试题及答案

高等数学试题及答案近年来,高等数学的学习在大学教育中扮演着重要的角色。

通过高等数学的学习,学生们能够提高数学思维能力,培养逻辑推理和问题解决的能力。

为了帮助学生更好地掌握高等数学知识,本文将提供一些高等数学试题及答案。

第一部分:微积分1. 计算下列定积分:a) ∫(3x^2 - 2x + 1)dxb) ∫(sinx + cosx)dxc) ∫(e^2x + 5)dx答案:a) x^3 - x^2 + x + Cb)-cosx + sinx + Cc) 0.5e^2x + 5x + C2. 求函数 f(x) = x^3 - 3x^2 的最值点及最值。

a) 最大值b) 最小值答案:a) 最大值点:x = 1,最大值:f(1) = -1b) 最小值点:x = 2,最小值:f(2) = -4第二部分:线性代数1. 计算矩阵 A = [1 2 3; 4 5 6; 7 8 9] 的转置矩阵。

答案:A^T = [1 4 7; 2 5 8; 3 6 9]2. 解方程组:2x + 3y = 74x - 2y = 10答案:x = 3, y = -1第三部分:概率论与数理统计1. 已知事件 A 发生的概率为 P(A) = 0.4,事件 B 发生的概率为 P(B) = 0.3,事件 A 和事件 B 相互独立,求 P(A ∪ B)。

答案:由于事件 A 和事件 B 相互独立,所以 P(A ∪ B) = P(A) + P(B) - P(A ∩ B)P(A ∪ B) = 0.4 + 0.3 - (0.4 * 0.3) = 0.582. 一批产品的重量服从均值为 50kg,标准差为 2kg 的正态分布。

从中随机抽取一个产品,求其重量在 52kg 以上的概率。

答案:标准化分数:z = (x - μ) / σ其中,x 为指定值,μ 为均值,σ 为标准差。

求解:P(x > 52) = 1 - P(x ≤ 52)= 1 - P(z ≤ (52 - 50) / 2)= 1 - P(z ≤ 1)= 1 - 0.8413= 0.1587第四部分:常微分方程1. 求解微分方程 dy/dx = 2x答案:对方程两边同时积分得:∫dy = ∫2xdx得:y = x^2 + C2. 求解初值问题 dy/dx = 2x,y(0) = 1答案:对方程两边同时积分得:∫dy = ∫2xdx得:y = x^2 + C代入初始条件 y(0) = 1,得:1 = 0^2 + C所以 C = 1因此,所求解为 y = x^2 + 1通过以上一系列高等数学试题及答案的学习,相信能够帮助学生们更好地掌握高等数学知识,提高他们的数学分析和解决问题的能力。

完整)高等数学考试题库(附答案)

完整)高等数学考试题库(附答案)

完整)高等数学考试题库(附答案)高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分)。

1.下列各组函数中,是相同的函数的是()。

A)f(x)=ln(x^2)和g(x)=2lnxB)f(x)=|x|和g(x)=x^2C)f(x)=x和g(x)=x^2/xD)f(x)=2|x|和g(x)=1/x答案:A2.函数f(x)=ln(1+x)在x=0处连续,则a=()。

A)1B)0C)-1D)2答案:A3.曲线y=xlnx的平行于直线x-y+1=0的切线方程为()。

A)y=x-1B)y=-(x+1)C)y=(lnx-1)(x-1)D)y=x答案:C4.设函数f(x)=|x|,则函数在点x=0处()。

A)连续且可导B)连续且可微C)连续不可导D)不连续不可微答案:A5.点x=0是函数y=x的()。

A)驻点但非极值点B)拐点C)驻点且是拐点D)驻点且是极值点答案:A6.曲线y=4|x|/x的渐近线情况是()。

A)只有水平渐近线B)只有垂直渐近线C)既有水平渐近线又有垂直渐近线D)既无水平渐近线又无垂直渐近线答案:B7.∫f'(1/x^2)dx的结果是()。

A)f(1/x)+CB)-f(x)+CC)f(-1/x)+CD)-f(-x)+C答案:C8.∫ex+e^(-x)dx的结果是()。

A)arctan(e^x)+CB)arctan(e^(-x))+CC)ex-e^(-x)+CD)ln(ex+e^(-x))+C答案:D9.下列定积分为零的是()。

A)∫π/4^π/2 sinxdxB)∫0^π/2 xarcsinxdxC)∫-2^1 (4x+1)/(x^2+x+1)dxD)∫0^π (x^2+x)/(e^x+e^(-x))dx答案:A10.设f(x)为连续函数,则∫f'(2x)dx等于()。

A)f(1)-f(0)B)f(2)-f(0)C)f(1)-f(2)D)f(2)-f(1)答案:B二.填空题(每题4分,共20分)。

高数试题及答案 五套

高数试题及答案   五套

高学试题及答案一、单项选择题(本大题共5小题,每小题2分,共10分)1.设f(x)=lnx ,且函数ϕ(x)的反函数1ϕ-2(x+1)(x)=x-1,则[]ϕ=f (x)( ) ....A B C D x-2x+22-x x+2 ln ln ln ln x+2x-2x+22-x2.()02lim1cos t t xx e e dtx-→+-=-⎰( )A .0B .1C .-1D .∞3.设00()()y f x x f x ∆=+∆-且函数()f x 在0x x =处可导,则必有( ).lim 0.0.0.x A y B y C dy D y dy ∆→∆=∆==∆= 4.设函数,131,1x x x ⎧≤⎨->⎩22x f(x)=,则f(x)在点x=1处( )A.不连续B.连续但左、右导数不存在C.连续但不可导D. 可导5.设C +⎰2-x xf(x)dx=e,则f(x)=( )2222-x -x -x -x A.xe B.-xe C.2e D.-2e二、填空题(本大题共10小题,每空3分,共30分) 请在每小题的空格中填上正确答案。

错填、不填均无分。

6.设函数f(x)在区间[0,1]上有定义,则函数f(x+14)+f(x-14)的定义域是__________. 7.()()2lim 1_________n n a aq aq aq q →∞++++<=8.arctan lim _________x x x→∞=9.已知某产品产量为g 时,总成本是2g C(g)=9+800,则生产100件产品时的边际成本100__g ==MC10.函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的点ξ是_________.11.函数3229129y x x x =-+-的单调减少区间是___________.12.微分方程3'1xy y x -=+的通解是___________. 13.设2ln 2,6aa π==⎰则___________.14.设2cos xz y=则dz= _______.15.设{}2(,)01,01y DD x y x y xe dxdy -=≤≤≤≤=⎰⎰,则_____________. 三、计算题(一)(本大题共5小题,每小题5分,共25分)16.设1xy x ⎛⎫= ⎪⎝⎭,求dy.17.求极限0ln cot lim ln x x x +→18.求不定积分.19.计算定积分I=.⎰20.设方程2z x 2e 1y xz -+=确定隐函数z=z(x,y),求','x y z z 。

高数期末考试题及答案大全

高数期末考试题及答案大全

高数期末考试题及答案大全试题一:极限的概念与计算问题:计算极限 \(\lim_{x \to 0} \frac{\sin x}{x}\)。

答案:根据洛必达法则,当分子分母同时趋向于0时,可以对分子分母同时求导,得到:\[\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cosx}{1} = \cos(0) = 1.\]试题二:导数的应用问题:设函数 \(f(x) = x^3 - 3x^2 + 2x\),求其在 \(x=1\) 处的切线方程。

答案:首先求导数 \(f'(x) = 3x^2 - 6x + 2\)。

在 \(x=1\) 处,导数值为 \(f'(1) = -1\),函数值为 \(f(1) = 0\)。

切线方程为 \(y - 0 = -1(x - 1)\),即 \(y = -x + 1\)。

试题三:不定积分的计算问题:计算不定积分 \(\int \frac{1}{x^2 + 1} dx\)。

答案:这是一个基本的三角换元积分问题,令 \(x = \tan(\theta)\),\(dx = \sec^2(\theta) d\theta\)。

则 \(\int \frac{1}{x^2 + 1} dx = \int \frac{1}{\tan^2(\theta) + 1} \sec^2(\theta) d\theta = \int \cos^2(\theta) d\theta\)。

利用二倍角公式,\(\cos^2(\theta) = \frac{1 +\cos(2\theta)}{2}\)。

积分变为 \(\int \frac{1}{2} d\theta + \frac{1}{2} \int\cos(2\theta) d\theta = \frac{\theta}{2} +\frac{\sin(2\theta)}{4} + C\)。

高数数学试题及答案

高数数学试题及答案

高数数学试题及答案一、单项选择题(每题2分,共10分)1. 函数y=x^2的导数是()。

A. 2xB. x^2C. 2x^2D. x答案:A2. 极限lim(x→0) (sin(x)/x)的值是()。

A. 0B. 1C. πD. 2答案:B3. 曲线y=x^3+3x^2+2在x=-1处的切线斜率是()。

A. -2B. 4C. -4D. 2答案:B4. 积分∫(0到1) x^2 dx的值是()。

A. 1/3B. 1/2C. 2/3D. 3/2答案:A5. 函数y=e^x的不定积分是()。

A. e^x + CB. e^(-x) + CC. ln(x) + CD. x^e + C答案:A二、填空题(每题2分,共10分)1. 函数y=ln(x)的定义域是()。

答案:(0, +∞)2. 微分dy=f'(x)dx中的f'(x)表示函数f(x)的()。

答案:导数3. 函数y=x^3的二阶导数是()。

答案:6x4. 曲线y=x^2在x=1处的切线方程是()。

答案:y=2x-15. 定积分∫(0到π) sin(x) dx的值是()。

答案:2三、计算题(每题10分,共20分)1. 计算极限lim(x→∞) (x^2 - 3x + 2) / (x^3 + 5x^2 - 2x)。

答案:02. 计算不定积分∫(1/(1+x^2)) dx。

答案:arctan(x) + C四、证明题(每题15分,共30分)1. 证明:若函数f(x)在区间[a, b]上连续,则f(x)在[a, b]上必有界。

答案:略2. 证明:若函数f(x)在区间[a, b]上可导,且f'(x)≥0,则f(x)在[a, b]上单调递增。

答案:略结束语:以上是本次高数数学试题及答案的全部内容,希望同学们认真复习,取得优异成绩。

高数试题及详细答案

高数试题及详细答案

1、计算曲线积分:22x y L eds +⎰,其中L 为圆周:222x y a +=,直线y x=及X 轴在第一象限所围成的扇形的整个边界。

解:22402(1)4ax y xaa a Leds e dx e adt e ae ππ+=++=-+⎰⎰⎰2、计算曲线积分:2L x yzds ⎰,其中L 为折线ABCD ,这里A ,B ,C ,D 依次为(0,0,0),(0,0,2),(1,0,2),(1,3,2)。

解:2132220002129Lx yzds zdz x dx y dy =⋅⋅+⋅⋅+⋅⋅=⎰⎰⎰⎰3、计算曲线积分:2221Lds x y z++⎰,其中L 为曲线:cos ,sin t t x e t y e t ==,t z e =上相应于参数t 从0变到2的这段弧。

(答:2(1)2e --) 4、设L 是以点(1,0),(0,1),(1,0),(0,1)A B C D --为顶点的正方形边界,则积分Ldsx y+⎰=( C ) (A) 4 (B) 2 (C) (D) 4、计算对坐标的曲线积分L xydx ⎰,其中L 为圆周222(),(0)x a y a a -+=> 及X 轴围成的在第一象限整个边界(按逆时针方向绕行)。

解:12cos :,:0:,:02sin 0x a a x xL L x a y a y θθπθ=+=⎧⎧→→⎨⎨==⎩⎩1223()(cos )sin sin 02aLL L xydx xydx a a a a d x dxaπθθθθπ=+=-++⋅=-⎰⎰⎰⎰⎰5、利用格林公式计算下列对坐标的曲线积分:(1)计算曲线积分33242()()L xy x y dx x x y dy +++⎰,其中L 由2,1y x y == 所围成的平面区域D 的正向边界。

(答:0)(2)计算曲线积分(sin )(cos )x x L e y y x dx e y y dy -+++⎰,其中L为圆周y =(2,0)A a 到点O(0,0)的一段弧。

高数试题及答案

高数试题及答案

高数试题及答案一、选择题1. 下列函数中,哪一个是周期函数?A. y = x^2B. y = sin(x)C. y = e^xD. y = ln(x)答案:B2. 函数f(x) = 2x^3 - 5x^2 + 7在x=1处的导数是:A. -1B. 1C. 3D. 5答案:B二、填空题1. 若f(x) = 3x - 2,求f'(x) = __________。

答案:32. 曲线y = x^3在点(1,1)处的切线斜率是 __________。

答案:3三、解答题1. 求函数f(x) = x^2 + 3x - 5的极值点。

解:首先求导数f'(x) = 2x + 3。

令f'(x) = 0,解得x = -3/2。

将x = -3/2代入原函数,得到f(-3/2) = -11/4。

由于f'(x)在x < -3/2时为负,在x > -3/2时为正,所以x = -3/2是函数的极小值点,对应的极小值为-11/4。

2. 证明函数f(x) = x^3 - 6x^2 + 9x + 8在区间[1,3]上是单调递增的。

证明:首先求导数f'(x) = 3x^2 - 12x + 9。

观察导数,可以发现f'(x) = 3(x - 1)(x - 3)。

由于1 ≤ x ≤ 3,所以(x - 1)和(x - 3)的符号相同,即f'(x) ≥ 0。

因此,函数f(x)在区间[1,3]上是单调递增的。

四、计算题1. 计算定积分∫(0,1) (2x - 1)dx。

解:首先求出被积函数的原函数F(x) = x^2 - x。

然后根据定积分的定义,计算F(1) - F(0) = 1^2 - 1 - (0^2 - 0) = 1 - 1 = 0。

2. 计算二重积分∬(0,1)(0,1) xy dA。

解:由于积分区域是一个单位正方形,我们可以将二重积分分解为两个定积分的乘积。

首先计算内层定积分∫(0,1) y dy = [1/2 *y^2](0,1) = 1/2。

高等数学考试题库(附答案)

高等数学考试题库(附答案)

《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰ ②()220dx a x a >-⎰ ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题 1.2- 2. 3. 2 4.arctanln x c + 5.2 三.计算题 1①2e ②162.11xy x y '=+- 3. ①11ln ||23x C x +++②ln ||x C + ③()1x e x C --++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ). (A) ()121x x e -(B) 12x x e - (C) ()121x x e + (D) 12xxe8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰ ②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc +②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy t t t y dx dx ππ=====且切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)x r r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x - C 、 C x +2sin D 、2sin 2x-7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e - ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ). A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x lnC 、⎰+=C x xdx sin cosD 、⎰++=C x xdx 211tan7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0 D 、241a π 10、方程( )是一阶线性微分方程. A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxe C e C 221+.三、1、31 ; 2、1arccos 12---x xx ; 3、dx x x 221)1(1-- ;4、C x ++ln 22 ;5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略七年级英语期末考试质量分析一、试卷分析:本次试卷的难易程度定位在面向大多数学生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程名称 高等数学I (A )解答
一 选择题(4小题,每题4分,共16分)
1. 下列数列收敛的是( C )。

(A) n n x n n 1]
1)1[(++-= (B) n n n x )1(-=
(C) n x n n 1)1(-= (D) n n x n 1-=
2.已知函数231)(22+--=x x x x f 下列说法正确的是( B )。

(A) )(x f 有2个无穷间断点 (B) )(x f 有1个可去间断点,1个无穷间断点
(C) )(x f 有2个第一类间断点 (D) )(x f 有1个无穷间断点,1个跳跃间断点
3.设 ⎪⎩⎪⎨⎧>≤=1,1,3
2)(23x x x x x f ,则)(x f 在x =1处的( B )。

(A) 左右导数都存在 (B) 左导数存在,右导数不存在
(C) 左导数不存在,右导数存在 (D) 左、右导数都不存在
4.函数
2)4(121++
=x x y 的图形( B )
(A) 只有水平渐近线 (B) 有一条水平渐近线和一条铅直渐近线
(C) 只有铅直渐近线 (D) 无渐近线 二 填空题(4小题,每题4分,共16分)
1.x x x 23sin lim 0→=__3/2_________
2.
x x e y x sin ln 2-+=则='y _2e x +1/x -cos x _ 3. 已知隐函数方程:024=-+y xe x 则='y -(4+e y ) / (x e y )
4. 曲线332x x y +=在 x = 1 处对应的切线方程为: y =11x -6 .
三 解答题(5小题,每题6分,共30分)
1. 计算x x x x 21lim ⎪⎭⎫ ⎝
⎛+∞→ 解: 原式=211lim ⋅∞→⎪⎭⎫ ⎝⎛+x x x e = 2
2. 计算x e e x x x sin lim 0-→-。

解: 原式=2cos lim 0=+-→x e e x
x x
3. 计算a
x dt t f x x
a a x -⎰+→)(lim ,其中)(x f 在[a,
b ]上连续。

解:原式)()()(lim a f a x xf dt t f x a a x =+⎰→
4.求不定积分dx x x x )1(⎰+。

解:原式=c x x dx x x ++=+-⎰21252123
252)(
5. 求定积分⎰++4
122dx x x 解:原式=
322)12(6)12(3241)12()12312(41123122140
212340
40=⎪⎪⎭⎫ ⎝⎛+++=++++=+++⎰⎰x x x d x x dx x x
四 解答题(15分) 求函数
19323+--=x x x y 的单调区间、凹凸区间及极值。

解:y ’=3x 2-6x -9=3(x +1)(x -3)令y ’=0得驻点:x =-1,x =3
(-∞,-1) y’>0 函数单增, (-1,3)y’<0 函数单减, (3,+∞)y’>0 函数单增
(-∞,1) y’’<0 函数上凸, (1,+∞)y’’ >0函数上凹。

极大值 y (-1)= 6 极小值 y (3)=-26
五 解答题(12分)
求曲线522+=x y ,0y =,3,
0==x x 所围平面图形的面积,并求该平面图形
绕x 轴旋转一周所得旋转体的体积。

解:曲线所围平面图形的面积
33532)52(303302=⎥⎦⎤⎢⎣⎡+=+=⎰x x dx x A
该平面图形绕x 轴旋转一周所得旋转体的体积 ππππ4.449)2532054()25204()52(3
035303
02422=++=++=+=⎰⎰x x x dx x x dx x V 。

六 解答题(2小题,每题3分,共6分)
1. 写出xoy 面上的平面曲线 y = x 2+3绕y 轴旋转所成旋转曲面方程.
解:旋转曲面方程为:y = x 2 + z 2 +3
2. 写出旋转曲面 2 x 2 + 5 y 2 + 2 z 2 – 25 = 0 是由哪条曲线绕哪个坐标轴旋转而成. (要写出曲线方程)
解:旋转曲面 2 x 2 + 5 y 2 + 2 z 2 – 25 = 0 是由曲线
⎩⎨⎧==-+⎩⎨⎧==-+0025250025522222x z y z y x 或
绕y 轴旋转而成
七 证明题(5分)
证明两直线L 1、L 2平行,其中
⎩⎨⎧=-++=+--⎩
⎨⎧=++=-+-025205852:03013:21z y x z y x L z x z y x L
证明:L 1的方向向量与L 2的方向向量分别为: }9,18,9{}5,2,1{}8,5,2{}1,2,1{}1,0,1{}1,1,3{21--=⨯--=--=⨯-=L L
两向量对应坐标成比例,故两向量平行,
点(-1,-6,-2)在直线L 1上,而不在直线L 2上,两直线不共线, 所以两直线L 1、L 2平行。

相关文档
最新文档