平行四边形的图形变换

合集下载

人教版八年级数学下册《平行四边形的性质》平行四边形PPT优质教学课件

人教版八年级数学下册《平行四边形的性质》平行四边形PPT优质教学课件

10 ●O
∴AC= AB2−BC2= 102−82=6
∵OA=OC,∴OA=12AC=3
B
C
∴S ABCD= BC×AC=8×6=48.
随堂检测
1.如图,在▱ABCD中,对角线AC、BD相交于点O,若 AC=14,BD=8,AB=10,则△OAB的周长为 21 .
2.如图,平行四边形ABCD中,AD=5cm,AB⊥BD, 点O是两条对角线的交点,OD=2cm,则AB= 3 cm.
叫做这两条平行线之间的距离.
如图,直线a∥b,A是直线a上的任意
A
a
一点,AB ⊥b ,B是垂足,线段AB的
b
长就是a、b之间的距离.
B
随堂检测
1.如图,在 ABCD中,
A
D
A:基础知识:
B
C
若∠A=130°,则∠B=_5_0_°___ 、∠C=_1_3_0_°__ 、∠D=__5_0_°__.
B:变式训练: (1)若∠A+ ∠C= 200°,则∠A=__1_0_0_°_ 、∠B=__8_0_°__; (2)若∠A:∠B= 5:4,则∠C=__1_0_0_°_ 、∠D=___8_0_°_.
随堂检测
C:拓展延伸:
A
D
如图,在 ABCD中,
B
C
(1)∠A:∠B : ∠C : ∠D的度数可能是( B )
A. 1 : 2 : 3 : 4
B.3 : 2 : 3 : 2
C.2 : 3 : 3 : 2
D.2 : 2 : 3 : 3
(2)连接AC, 若∠D=60°, ∠DAC=40°,则 ∠B=_6_0_°_,
一条直线的距离相等.
已知:如图,EF∥MN,A,D是直线

四边形与图形变换

四边形与图形变换

五、 四边形与图形变换1. 概念(1) 四边形四边形有关知识① n 边形的内角和为 .外角和为 .② 如果一个多边形的边数增加一条,那么这个多边形的内角和增加 ,外角和增加 .③ n 边形过每一个顶点的对角线有 条,n 边形的对角线有 条.(2) 平面图形的镶嵌① 当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个____________时,就拼成一个平面图形.② 只用一种正多边形铺满地面,请你写出这样的一种正多边形____________.(3) 平面的密铺定义:把形状、大小完全相同的一种或几种平面图形拼接在一起,使得平面上不留空隙,不重叠,这就是平面图形的密铺,也叫平面图形的镶嵌.(4) 对于限于用一种图形密铺的问题,有三角形、四边形和正六边形,如果能实现平面图形的密铺,密铺图的每个顶点都必须集中在几个多边形的顶角,于是在每个顶点集中的顶角刚好拼成一个周角.※易错知识辨析多边形的内角和随边数的增加而增加,但多边形的外角和随边数的增加没有变化,外角和恒为360 º.(5) 平行四边形① 平行四边形的性质1) 平行四边形对边______,对角______;角平分线______;邻角______.2) 平行四边形两个邻角的平分线互相______,两个对角的平分线互相______.(填“平行”或“垂直”)3) 平行四边形的面积公式____________________.② 平行四边形的判定1) 定义法:两组对边 的四边形是平行四边形.2) 边:两组对边 的四边形是平行四边形;一组对边 的四边形是平行四边形.3) 角:两组对角 的四边形是平行四边形.4) 对角线:对角线 的四边形是平行四边形.(6) 特殊的平行四边形的之间的关系平行四边形矩形菱形正方形(7)特殊的平行四边形的判别条件成为矩形,需增加的条件是_______ _____ ;成为菱形,需增加的条件是_______ _____ ;要使矩形ABCD成为正方形,需增加的条件是______ ____ ;要使菱形ABCD成为正方形,需增加的条件是______ ____ .(9)梯形①梯形的面积公式是________________.②等腰梯形的性质:边 __________________________________.角 __________________________________.对角线 __________________________________.③等腰梯形的判别方法__________________________________.④梯形的中位线长等于__________________________.(10)轴对称及轴对称图形的意义①轴对称:两个图形沿着一条直线折叠后能够互相重合,我们就说这两个图形成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点,对应线段叫做对称线段.②如果一个图形沿某条直线对折后,直线两旁的部分能够互相重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.③轴对称的性质:如果两个图形关于某广条直线对称,那以对应线段相等,对应角相等,对应点所连的线段被对称轴垂直平分.④简单的轴对称图形:线段:有两条对称轴:线段所在直线和线段中垂线.角:有一条对称轴:该角的平分线所在的直线.等腰(非等边)三角形:有一条对称轴,底边中垂线.等边三角形:有三条对称轴:每条边的中垂线.(11)中心对称图形①定义:在平面内,一个图形绕某个点旋转180○,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.②性质:中心对称图形上的每一对对应点所连成的线段都被对称中心平分.③中心对称与旋转对称的关系:中心对称是旋转角是180o的旋转对称.④中心对称的判定:如果两个点的连线被某一点M平分,则这两个点关于点M成中心对称.(12)图形的平移①平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.注意:①平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换.②图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是图形平移的依据.③图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出图形平移的基本性质的依据.(13)平移的基本性质:由平移的基本概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.注意:①要正确找出“对应线段,对应角”,从而正确表达基本性质的特征.②“对应点所连的线段平行且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.(14)简单的平移作图平移作图:确定一个图形平移后的位置所需条件为:①图形原来的位置;②平移的方向;③平移的距离.(15)图形的旋转①旋转的概念:图形绕着某一点(固定)转动的过程,称为旋转,这一固定点叫做旋转中心。

教材分析之第十八章 平行四边形

教材分析之第十八章  平行四边形

第十八章平行四边形一、地位与作用同三角形一样,四边形也是最基本的平面图形,是本学段“空间与图形”的主要研究对象.本章将在平行线、三角形的基础上进一步研究一些特殊四边形的知识,探索平行四边形、矩形、菱形、正方形的有关性质和常用判定方法,并对有关结论进行推理证明,进一步发展学生的逻辑思维能力和推理论证能力,对学生要求较高. 就本学期的教学内容来讲,本章是教学重点和难点之一. 就中考来讲,四边形的知识会以填空题、中档解答题、动手操作题、综合解答题等形式进行考察,2014年只有16题、20题涉及本章知识,分值为约3+4分,2015年只有20题、22题、23题涉及本章知识,分值为约4+4+1分,2016年只有14题、16题涉及本章知识,分值为3+3分,从近几年武汉的中考题看来,本章考试所占分值还是很重要的. 所以,学好这一章,既是对三角形知识的巩固,又是为后续的几何学习做好充分的知识和能力储备,更是为中考打下坚实的基础。

二、知识结构图从属关系:演变关系:三、课标要求及学习目标1、【课标要求】1、“理解平行四边形、矩形、菱形、正方形的概念,以及它们之间的关系”,这种“关系”是特殊与一般的关系,即图形越来越特殊,它的性质就越来越多,判定它需要的条件也越来越多,这对于研究平行四边形、矩形、菱形、正方形的性质和判定有着重要的作用。

这部分知识像链条一样环环紧扣,这条“知识链”不仅蕴涵着“一般和特殊”的思想,而且也是引导学生感悟“分类”思想的好素材。

2、四边形与三角形有着紧密的联系,研究四边形性质常常借助三角形的有关知识。

但是四边形与三角形有一个本质的差异:四边形不具有稳定性,三角形是具有稳定性。

如果不重视这种差异,就会给理解和掌握相关的知识带来困难。

比如,学生常常不能正确掌握正多边形的定义,其原因就是在于边数大于或等于4的多边形不具有稳定性,由各边相等不能推出各个角相等,所以必须定义“各边相等、各角相等的多边形叫做正多边形”;而三角形具有稳定性,由三边相等可以推出三个角相等,所以只需定义“各边相等的三角形叫做正三角形”。

探索平行四边形的特点

探索平行四边形的特点

探索平行四边形的特点平行四边形是几何学中一种重要的图形,具有一些独特的性质和特点。

在本文中,我们将深入探讨平行四边形的定义、特征、性质和应用。

一、平行四边形的定义和特征平行四边形是由四条边组成的四边形,它的对边互相平行。

平行四边形具有以下特征:1. 对边平行特性:平行四边形的对边是互相平行的。

这意味着相邻两边的方向是平行的,永远不会相交。

2. 对角线交点连线平分特性:平行四边形的对角线相交于一个点,并且这个点将对角线等分。

也就是说,对角线的中点是平行四边形的顶点。

二、平行四边形的性质平行四边形除了上述定义和特征外,还具有一些重要的性质。

1. 边长性质:平行四边形的对边长度相等。

这意味着相对的两条边长度是相等的。

2. 角度性质:平行四边形的内角和为360度。

相邻两个内角以及对角的和都等于180度。

3. 直角性质:特殊情况下,平行四边形可以是矩形,其中每个角都是直角。

这意味着平行四边形可以包含正方形作为一种特例。

4. 对边比例性质:平行四边形两对对边的长度比例相等。

这意味着,如果一对对边的长度比例为a:b,那么另一对对边的长度比例也为a:b。

三、平行四边形的应用平行四边形的性质和特点在实际中有广泛的应用。

1.建筑设计:平行四边形的性质使得它在建筑设计中被广泛应用。

一些建筑物的地基、墙壁和天花板等常常设计为平行四边形,以增加结构的稳定性和美观性。

2.工程计算:平行四边形的对边比例性质在工程计算中起到重要作用。

例如,当计算桥梁或电线杆的倾斜度时,可以利用平行四边形的对边比例关系来确定相应的长度。

3.计算面积和周长:平行四边形的面积计算可以通过底边和对应的高来求解。

周长计算可以通过四边的边长之和来得到。

4.图形变换:平行四边形在平移、旋转和镜像等图形变换中有很多应用。

例如,在制作地图和计算机图像处理中,平行四边形的变换被广泛用于投影和坐标转换。

结论通过对平行四边形的定义、特征、性质和应用的深入探讨,我们可以更好地理解和应用这一几何图形。

专题 特殊的平行四边形中的图形的折叠模型(学生版)

专题 特殊的平行四边形中的图形的折叠模型(学生版)

专题11特殊的平行四边形中的图形的折叠模型几何变换中的翻折(折叠、对称)问题是历年中考的热点问题,试题立意新颖,变幻巧妙,主要考查学生的识图能力及灵活运用数学知识解决问题的能力。

翻折以矩形对称最常见,变化形式多样。

无论如何变化,解题工具无非全等、相似、勾股以及三角函数,从条件出发,找到每种对称下隐藏的结论,往往是解题关键。

本专题以各类几个图形(菱形、矩形、正方形等)为背景进行梳理及对应试题分析,方便掌握。

【知识储备】折叠问题的解决,大都是以轴对称图形的性质作为切入点,而数形变化,是解决这类问题的突破口。

有了“折”就有了”形”--轴对称图形、全等形;有了“折”就有了“数”--线段之间、角与角之间的数量关系。

"折”就为“数”与“形”之间的转化搭起了桥梁。

特殊平行四边形中的折叠问题,还要考虑特殊平行四边形本身的性质,有时也需要用到计算工具:相似和勾股定理。

折叠的性质:重合部分是全等图形,对应边、对应角相等;对称点的连线被对称轴垂直平分。

【知识储备】(1)矩形的翻折模型【常见模型】BC A .3.6B .4.8例2.(2023春·河南商丘·八年级统考期末)如图,在长方形使得点D 落在BC 边上D ¢处,则DE 的长是(A .3B .4例3.(2023春·广东潮州·八年级统考期末)如图矩形交于点E ,若4,8AB AD ==.(1)求证:例4.(2023·贵州·八年级统考期末)如图,在矩形得到FBE ,EF 交BC 于点H ,延长A .5B .2ABA.35B.25例6.(2023春·江苏连云港·八年级统考期末)如图,矩形心,点E为边AB上的动点,连接EO例7.(2023春·河南南阳·八年级校考阶段练习)如图,将矩形EH=,EF=重叠的四边形EFGH,3cmA.18cm B.18.4cm(2)菱形的翻折模型【常见模型】A ∠结论I :当'A N AD ∥时,四边形'ANA M 是菱形;结论Ⅱ:当点'A 在线段MC 上时,'AC 的长度为A .I 对Ⅱ不对B .I 不对Ⅱ对A .①②④B .①②③如图所示,点A .90CEF ∠=︒B .CE AG ∥C(3)正方形的翻折模型【常见模型】上取一点例4.(2023春·重庆·八年级专题练习)如图,在正方形翻折,使点D的对应点D¢恰好落在的垂直平分线分别交EF、A D''于点在边例6.(2023·广东深圳·统考中考模拟)如图在正方形对角线AC上,将AD沿AF翻折,使点例7.(2023春·江苏宿迁·八年级统考期末)问题情境:如图1,在正方形ABCD 中,6AB =,点F 是边AD 上一点(点F 不与,A D 重合),将CDF 沿直线CF 翻折,点D 落在点E 处.(1)如图2,当点E 落在对角线AC 上时,求DF 的长.(2)如图3,连接,,AC BD BD 分别交,CF AC 于点M ,点O ,连接OE 并延长交AD 于点G ,当M 为OD 中点时,试判断OG 与CF 的位置关系,并说明理由.(3)如图4,在线段CE 上取一点Q ,且使2CQ =,连接,AE BQ ,则在点F 从点A 运动到点D 的过程中,AE BQ +的值是否存在最小值?如果存在,请求出其值;若果不存在,请说明理由.课后专项训练A.23B.232-C.52.(2023春·江苏·八年级专题练习)如图,菱形ABCD的对角线相交于点所示的方式折叠,使点B与O重合,折痕为EF,则五边形A.14B.16C上,将A.3个B.2个C.0个边上,连接A .230α-︒B .30α+︒C .1208.(2023春·重庆合川·八年级统考期末)如图,在矩形沿BE 所在直线翻折至四边形BCDE 所在平面内,得的面积为()A .63B .83,将矩形纸片翻折,使点A.12B.1511.(2023·江苏苏州·校考二模)如图,正方形连接BE,将ABE沿BE翻折得到A.5510-B.512.(2023·陕西西安·八年级校考期末)如图,正方形A.107B.52C的对角线17.(2023·河南信阳·校考三模)如图,在矩形ABCD 中,6AB =,10BC =,将矩形翻折,使边18.(2023春·江苏无锡·八年级校考期中)如图,矩形得到AD C ',CD '与AB 交于点E ,再以CD19.(2023·江苏苏州·八年级统考期末)如图,在正方形ABCD 中,点E 是边AB 的中点,将BCE 沿CE 翻折得到GCE .延长CG 交AD 于点H ,连接EH .(1)求证:EAH EGH ≌△△;(2)若10AB =,求CH 的长.20.(2022秋·江西景德镇·九年级统考期中)【操作体验】如图,在正方形ABCD 中,点E 在AB 边上,点F 在CD 边上.将四边形EBCF 沿直线EF 翻折,得到四边形EHGF ,顶点B 落在AD 边上的点H (不与点A 、D 重合)处,点C 落在正方形右侧的点G 处,HG 与CD 相交于点P .(1)在图1中,若4cm AE =,45AEH ∠=︒,则HD =_____cm ,EFG ∠的度数为_________【操作体验】(2)当2BE AE =时,如图2,求证:2PF CF =.【操作体验】(3)利用图3探究,当正方形边长不变时,随着折痕EF 的变化,DHP 的周长是否会发生变化?如果会,请说明变化规律;如果不会,请加以证明,并探究正方形周长与DHP 的周长的关系.,。

平行四边形恒等变换

平行四边形恒等变换

平行四边形恒等变换
平行四边形是一种特殊的四边形,具有两对平行边。

平行四边形恒等变换是指通过变换操作保持平行四边形的形状和大小不变。

平行四边形恒等变换的基本操作有平移、旋转和对称变换。

1. 平移变换:
平移变换是将平行四边形沿着一定方向移动一段距离,同时保持平行四边形的形状和大小。

平行四边形的对应边保持平行,对应角保持相等。

平移变换可以使用向量来表示,其中向量的大小和方向表示平移的距离和方向。

2. 旋转变换:
旋转变换是将平行四边形按照某个旋转中心旋转一定角度,同时保持平行四边形的形状和大小。

旋转变换可以使用旋转矩阵来表示,其中旋转矩阵根据旋转角度来确定平行四边形的旋转方向。

3. 对称变换:
对称变换是将平行四边形按照一条直线或一个点进行对称,同
时保持平行四边形的形状和大小。

对称变换可以使用对称轴或对称
中心来表示,其中对称轴可以是平行四边形的边或对角线,对称中
心可以是平行四边形的重心或中点。

平行四边形恒等变换在几何学和图形变换中具有重要的作用。

通过平行四边形恒等变换,我们可以推导出平面上其他图形的变换
规律,并进行相关的几何证明和计算。

总结:平行四边形恒等变换包括平移、旋转和对称变换三种基
本操作,通过这些变换操作可以保持平行四边形的形状和大小不变。

平行四边形的特性

平行四边形的特性

平行四边形的特性平行四边形是一种具有特殊几何性质的四边形,它拥有独特的性质和特点。

本文将详细介绍平行四边形的特性。

一、基本定义平行四边形是指具有两组对边分别平行的四边形。

根据这个定义,我们可以得出以下结论:1. 对边平行性:平行四边形的两组对边分别平行。

即,AB || CD,AD || BC。

2. 对角线关系:平行四边形的对角线互相平分,并且互相垂直。

即,AC和BD互相平分,同时AC ⊥ BD。

二、对边和角的特性1. 对边长度关系:平行四边形的对边长度相等。

即,AB = CD,AD = BC。

2. 对角线长度关系:平行四边形的对角线长度相等。

即,AC = BD。

3. 内角和:平行四边形的内角和为360度。

即,∠A + ∠B + ∠C +∠D = 360°。

三、角的特性1. 对角的特点:平行四边形的相对的内角是对等的。

即,∠A =∠C,∠B = ∠D。

2. 同位角关系:平行四边形的同位角(同位于两对顶点的角)是相等的。

即,∠A = ∠C,∠B = ∠D。

3. 内角关系:平行四边形的内角是对补的。

即,∠A + ∠D = 180°,∠B + ∠C = 180°。

四、边和角的特性1. 对边共线性:平行四边形的对边延长线会相交于一点,使得对边共线。

2. 相邻角关系:平行四边形的相邻角是补角。

即,∠A + ∠B = 180°,∠B + ∠C = 180°,∠C + ∠D = 180°,∠D + ∠A = 180°。

3. 交替角关系:平行四边形的交替角是相等的。

即,∠A = ∠C,∠B = ∠D。

四、平行四边形的判定1. 充分条件:如果一个四边形的两对边分别平行,则它是一个平行四边形。

2. 必要条件:如果一个四边形是平行四边形,则它的两对边分别平行。

五、平行四边形的应用平行四边形的性质在几何学和应用数学中有广泛的运用。

它们可以用于解决各种实际问题和证明几何命题,例如:1. 面积计算:平行四边形的面积可以通过底边长度和高的乘积来计算。

初中数学八年级下册第十八章《平行四边形》简介

初中数学八年级下册第十八章《平行四边形》简介

初中数学八年级下册第十八章《平行四边形》简介平行四边形是特殊的四边形。

本章我们在平行线、三角形和四边形的基础上进一步研究平行四边形;并通过平行四边形角、边的特殊化,研究矩形、菱形和正方形等特殊的平行四边形,认识这些概念之间的联系与区别,明确它们的内涵与外延;探索并证明平行四边形、矩形、菱形、正方形的有关性质定理和判定定理,进一步明确命题及其逆命题的关系,不断发展学生的合情推理和演绎推理能力。

本章教学时间约需14课时,具体分配如下(仅供参考):18.1 平行四边形6课时18.2 特殊的平行四边形6课时数学活动小结2课时一、教科书内容和本章学习目标(一)本章知识结构框图(二)教科书内容平行四边形是常见的几何图形,既有丰富的性质,又在现实生活中具有广泛的应用,尤其是矩形、菱形、正方形等特殊平行四边形的性质更加丰富、应用更加广泛。

学生在第一学段已经学习过平行四边形,本学段七年级下册“三角形”一章中研究了多边形及其内角和等内容,包括四边形及其内角和;八年级上册“全等三角形”一章又研究了三角形全等的判定及全等三角形的性质。

这些内容是学习本章的重要基础。

本章引言直接进入特殊的四边形——平行四边形:两组对边分别平行的四边形的学习,在平行四边形的基础上,学习矩形、菱形、正方形这些特殊平行四边形。

“18.1 平行四边形”主要研究平行四边形的概念、性质定理和判定定理;在平行四边形概念和性质的基础上,介绍两条平行线间距离的概念;作为性质定理和判定定理的一个应用,探究并证明三角形中位线定理。

“18.2 特殊的平行四边形”首先研究特殊的平行四边形:矩形和菱形,它们分别是有一个角是直角,或有一组邻边相等的特殊的平行四边形。

18.2.1和18.2.2分别研究矩形和菱形的概念、性质定理和判定定理,在矩形和菱形的基础上,再研究它们的特殊情况:同时具有两个特殊条件的平行四边形:正方形,它是有一个角是直角的特殊菱形,或者是有一组邻边相等的特殊矩形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. ﻩB. ﻩ
C. ﻩD.
二、填空题(共2小题;共10分)
5. 如图,在矩形 中, ,对角线 , 相交于点 , 垂直平分 于点 ,则 的长为.
6.如图,在四边形 中,对角线 ,垂足为 ,点 , , , 分别为边 , , , 的中点.若 , ,则四边形 的面积为.
三、解答题(共8小题;共104分)
7.如图,在平行四边形 中,点 是边 的中点,连接 并延长,交 延长线于点 ,连接 , .
【解析】因为 垂直平分 ,
所以, , ,

6.
【解析】提示:利用中位线可知四边形 是平行四边形,
再根据 ,可知平行四边形 是矩形.
第三部分
7. (1) 四边形 为平行四边形,
, .

又 为 的中点,
.
在 和 中,


四边形 是平行四边形.
(2)
8.(1)在 和 中,

.


,
.
又 ,
四边形 是菱形.
(1)求证:四边形 是平行四边形;
(2)若 ,则当 时,四边形 是矩形.
8.已知:如图,四边形 中, , , 是对角线 上一点,且 .

(1)求证:四边形 是菱形;
(2)如果 ,且 ,求证:四边形 是正方形.
9.如图,在菱形 中,对角线 , 相交于点 ,过点 作对角线 的垂线交 的延长线于点 .

(1)求证:四边形 是平行四边形;
(2)
【解析】当四边形 的边满足条件 时, .
当 时,四边形 是菱形,此时 .
因为 , , , ,
所以 .
所以当四边形 的边满足条件 时, .

,
.
,
四边形 为平行四边形.
(2) 四边形 为菱形,
, ,
四边形 是矩形,
, ,
.
, ,
, , 菱形 的面积为 .
13.(1)菱形;
理由:因为四边形 是矩形,所以 .
因为 , , 分别是 , , 的中点,
所以 , ,所以 .
同理可得 ,
所以四边形 是菱形.
(2)当四边形 满足 且 时,四边形 是正方形.

(1)求证:四边形 是平行四边形;
(2)若四边形 是菱形, ,求菱形 的面积.
13.如图所示, , , , 分别是四边形 的边 , , , 的中点.

(1)当四边形 是矩形时,四边形 是形,请说明理由;
(2)当四边形 满足什么条件时,四边形 是正方形?并说明理由.
14.已知:在四边形 中, , , , 分别是 , , , 的中点.
理由:因为 , 分别是四边形 的边 , 的中点,
所以 , ,
同理, , , , .
因为 ,所以 ,
所以平行四边形 是菱形.
因为 ,所以 ,所以四边形 是正方形.
14.(1) 连接 , , , .
因为 , 分别是 , 的中点,
所以 .
同理 , , ,
所以 , .
所以四边形 是平行四边形.
所以 与 互相平分.
11.如图 ,将一张矩形纸片 沿着对角线 向上折叠,顶点 落到点 处, 交 于点 .
(1)求证: 是等腰三角形;
(2)如图 ,过点 作 ,交 于点 ,连接 交 于点 ,
ﻩ①判断四边形 的形状,并说明理由;
②若 , ,求 的长.
12.准备一张矩形纸片,按如图操作:
将 沿 翻折,使点 落在对角线 上的 点,将 沿 翻折,使点 落在对角线 上的 点.
(2) ,
.
设 , ,
则 ,
解得 .


四边形 是正方形.
9.(1) 四边形 是菱形,
, ,
, ,
,即 ,


四边形 是平行四边形;
(2) 四边形 是菱形, , ,
, , ,
四边形 是平行四边形,
, ,
的周长为 .
10.(1)在矩形 中, , .


.
即 .
在 中, .
在 中, .
,

同理得, .
四边形 为平行四边形.
A. ﻩB. ﻩ
C. D.
2.如图,菱形 中,对角线 , 相交于点 , 为 边的中点,若菱形 的周长为 ,则 的长为

ﻩA. ﻩB.
C. ﻩD.
3.下列性质中,菱形具有而矩形不一定具有的是
A. 对角线相等B.对角线相互平分
C.对角线相互垂直D.邻边相互垂直
4.如图,已知菱形 的顶点 , .若菱形绕点 逆时针旋转,每秒旋转 ,则第 时,菱形的对角线交点 的坐标为
(2)在正方形 中, .
设 ,则 .
在 中, .
.
,
.
.
在 中, ,
.


即 .
11.(1)根据折叠, ,
又 ,

,

是等腰三角形.
(2)① , ,
四边形 为平行四边形,
,
四边形 为菱Leabharlann .② , , ,,
四边形 为菱形,
, , ,
设 ,

在 中, ,
,
, ,


12. (1) 四边形 是矩形,
, , ,
平行四边形的图形变换
———————————————————————————————— 作者:
———————————————————————————————— 日期:
平行四边形的图形变换
一、选择题(共4小题;共20分)
1.如图,将平行四边形 绕点 逆时针旋转 ,得到平行四边形 ,若点 恰好落在 边上,则 的度数为
(1)求证: 与 互相平分;
(2)当四边形 的边满足条件时, .
答案
第一部分
1. Cﻩ
2.Bﻩ
3.Cﻩ
4.B【解析】 四边形 是菱形,
点 是 的中点,

菱形绕点 逆时针旋转,每秒旋转 ,
旋转的角度为 .

菱形 终止的位置与原图形关于原点 成中心对称,
第 时,菱形的对角线交点 的坐标为 .
第二部分
5.
(2)若 , ,求 的周长.
10. 在一次课题学习中,老师让同学们合作编题.某学习小组受赵爽弦图的启发,编写了下面的这道题,请你来解一解.
ﻩ如图,将矩形 的四边 , , , 分别延长至 , , , ,使得 , ,连接 , , , .
(1)求证:四边形 为平行四边形;
(2)若矩形 是边长为 的正方形,且 , ,求 的长.
相关文档
最新文档