对数函数概念教材课程
合集下载
对数函数(汇报课)课件

挑战练习题3
请计算log(5) (125)。
挑战练习题2
请计算log(3) (27)。
挑战练习题4
请计算log(6) (729)。
感谢观看
THANKS
总结词
对数函数图像与指数函数图像的关系
详细描述
对数函数和指数函数互为反函数,它们的图像关于直线 y=x对称。因此,可以通过指数函数的图像得到对数函数 的图像。
对数函数的单调性
总结词
对数函数的单调性判定
详细描述
对于底数大于1的对数函数,它在定义域内是单调递增的 ;对于底数在(0,1)之间的对数函数,它在定义域内是单调 递减的。
总结词
对数函数单调性的应用
详细描述
单调性在对数函数的应用中非常重要,例如在解决不等式 问题、求最值问题以及解决一些实际问题中都有广泛的应 用。
总结词
如何利用对数函数的单调性解题
详细描述
利用对数函数的单调性可以简化不等式的解法,也可以通 过求导等方式来求解最值问题。同时,在解决一些实际问 题时,也可以利用对数函数的单调性来简化问题的求解过 程。
基础练习题3
请计算以5为底7的对数。
基础练习题4
请计算以6为底8的对数。
进阶练习题
进阶练习题1
请计算log(2) (32)。
进阶练习题2
请计算log(3) (9)。
进阶练习题3
请计算log(5) (25)。
进阶练习题4
请计算log(6) (36)。
挑战练习题
挑战练习题1
请计算log(2) (8)。
对数函数的奇偶性
总结词
对数函数的奇偶性判定
详细描述
对于底数为正数的对数函数,它是非奇非偶函数;对于 底数为负数的对数函数,它是奇函数。
请计算log(5) (125)。
挑战练习题2
请计算log(3) (27)。
挑战练习题4
请计算log(6) (729)。
感谢观看
THANKS
总结词
对数函数图像与指数函数图像的关系
详细描述
对数函数和指数函数互为反函数,它们的图像关于直线 y=x对称。因此,可以通过指数函数的图像得到对数函数 的图像。
对数函数的单调性
总结词
对数函数的单调性判定
详细描述
对于底数大于1的对数函数,它在定义域内是单调递增的 ;对于底数在(0,1)之间的对数函数,它在定义域内是单调 递减的。
总结词
对数函数单调性的应用
详细描述
单调性在对数函数的应用中非常重要,例如在解决不等式 问题、求最值问题以及解决一些实际问题中都有广泛的应 用。
总结词
如何利用对数函数的单调性解题
详细描述
利用对数函数的单调性可以简化不等式的解法,也可以通 过求导等方式来求解最值问题。同时,在解决一些实际问 题时,也可以利用对数函数的单调性来简化问题的求解过 程。
基础练习题3
请计算以5为底7的对数。
基础练习题4
请计算以6为底8的对数。
进阶练习题
进阶练习题1
请计算log(2) (32)。
进阶练习题2
请计算log(3) (9)。
进阶练习题3
请计算log(5) (25)。
进阶练习题4
请计算log(6) (36)。
挑战练习题
挑战练习题1
请计算log(2) (8)。
对数函数的奇偶性
总结词
对数函数的奇偶性判定
详细描述
对于底数为正数的对数函数,它是非奇非偶函数;对于 底数为负数的对数函数,它是奇函数。
高一上学期数学必修课件第章对数函数的概念对数函数y=logx的图像和性质

在金融领域中的应用
复利计算
在金融领域,对数函数被广泛应用于复利计算。通过对数函 数,可以方便地计算出本金在固定利率下经过一段时间后的 累积金额。
风险评估
在金融风险评估中,对数函数可用于描述极端事件(如市场 崩盘)发生的概率分布,帮助投资者更好地管理风险。
在科学研究中的应用
数据分析
在统计学和数据分析中,对数函数常 用于数据转换和处理,以便更好地揭 示数据间的关系和趋势。
单调性的应用
利用对数函数的单调性,可以比较两 个同底数的对数的大小,也可以解决 一些与对数函数相关的不等式问题。
奇偶性判断
对数函数的奇偶性
对于底数为正数且不等于1的对数函数y=logax,其既不是奇函数也不是偶函数 ,即它不具有奇偶性。
奇偶性的应用
虽然对数函数本身不具有奇偶性,但是在解决一些与对数函数相关的问题时,可 以考虑利用其他函数的奇偶性来简化问题。
指数式与对数式的互化
$a^x=N Leftrightarrow x=log_a N$
指数函数与对数函数的关系
指数函数$y=a^x$与对数函数$y=log_a x$互为反函数。这意味着它们的图像 关于直线$y=x$对称。
02
对数函数y=logx图像分些x和对应的y值,然 后在坐标系中描点,最后用平滑 曲线连接各点即可得到对数函数 的图像。
对数函数的底数$b$必须大于0且不等于1,否则函数无意义。同时,对于不同的底数,对 数函数的图像和性质也会有所不同。
对数运算规则
对数运算有特定的运算法则,如$log_b(mn) = log_b(m) + log_b(n)$、$log_b(m/n) = log_b(m) - log_b(n)$等。在解题过程中,需要正确运用这些法则进行化简和计算。
《 对数与对数函数》课件

1 题目1
已知log35≈1.465,求log325的值。
3 题目2
已知log23≈1.585,求log63的值。
2 解答1
log325=log3((5)2)=2log35≈2×1.465≈2.93。
4 解答2
log63=log23/log26≈1.585/1.585≈1。
例题: 求解对数方程
1 题目1
求解方程log2(3x-2)=3。
3 题目2
求解方程log2x-14=log2(x-1)。
2 解答1
化为指数形式得:23=3x-2,解得x=7/3。
4 解答2
化为指数形式得:(2x-1)log42=x-1,解得x=3。
例题: 理解对数运算的应用
1 题目1
已知ab=c,则logac=?
2 解答1
根据对数的定义得:logac=b。
定义域为(0,+∞),值域为(-∞,+∞)。
对数函数的图像特征
随着x的增加而变化
当x>1时,y随x的增加而增加;当x=1时,y=0;当 0<x<1时,y随x的减小而增加;当x<0时,对数函数 无意义。
渐近线
对数函数的图像有两条渐近线,即x轴和y轴的反比 例函数。
对数函数的性质
1
单调性
当a>1时,对数函数单调递增;当0<a<1
3 题目2
已知log23≈1.585,log27≈2.807,求log521 的值。
4 解答2
log221=log2(3×7)=log23+log27≈1.585+2.80 7=4.392。利用换底公式得: log521=log221/log25≈4.392/2.322≈1.892。
对数函数的概念(公开课课件)

抽象概括
对数函数概念: 函数 y log a x (a>0,且 a≠ 1 )叫做对数函数.其中x是自变 量,函数的定义域是( 0 , +∞).
问题:指数函数与对数函数有什么相 同点?不同点?
习题巩固
1.判断下列函数是否为对数函数
1. y log3 x
3. y logx 3
2
2. y log2 x 1
对数函数的概念
引入新课
问题:你吃过兰州拉面吗?
y loga x(a 0且a 1)其中x (0,) 问题: 是函数吗像? x y a (a 0且a 1) 叫做指数函数, 函数 其中x是自变量,函数的定义域是R. 问题2.指数式化为对数式? 问题3.将y看做自变量,x看做函数值上述关系 式是函数关系吗? 问题4.该函数的定义域? 问题5.类比指数函数的概念你能定义对数函 数吗?
4. y log5 x
1 5. y log 2 x 2
习题巩固
2.求下列函数的定义域
(1) y loga x 2
1 x 1
(a>0,且a≠ 1 )
(2) y loga (4 x)
(3) y log 7
1 ( 4) y log3 x
课堂小结
1.对数函数概念 2.对数函数与指数函数的关系
《对数函数及其性质》课件

三、指数函数与对数函数的关系
1
指数函数与对数函数的反函数关系
阐述指数函数和对数函数之间的反函数关系及其重要性。
2
指数函数与对数函数的图像及性质
比较指数函数和对数函数的图像特征和性质。
四、对数方程与指数方程
对数方程及其求解方法
介绍对数方程的形式、求解方法和实际应用。
指数方程及其求解方法
解释指数方程的基本概念、求解技巧和实例演练。
对数方程与指数方程的联系
探究对数方程和指数方程之间的关系及其应用。
五、对数函数的应用
1
对数函数在生活和科学中的应用
展示对数函数在生活和科学领域中的实际应用案例。
2
对数函数在各行各业的应用案例
介绍对数函数在不同行业中的具体应用案例。
六、小结与思考
1 对数函数的基本概念和性质的总结
归纳总结对数函数的基本概念和性质,加深理解。
列举和解释对数函数的常见 记法和符号。
对数函数的图像
展示并分析对数函数的图像及其特性。
对数函数的性质
探讨对数函数的一些基本性质和规
讲解对数函数加法公式的推导 和应用。
对数函数的减法公式
说明对数函数减法公式的用法 和示例。
对数函数的乘法公式
详细介绍对数函数乘法公式的 原理和应用。
2 对数函数和指数函数的联系和应用的思考
思考对数函数和指数函数之间的联系以及更广泛的应用领域。
3 对数函数的拓展知识和深入研究方法的思路
提供对数函数拓展知识和深入研究的思路和方向。
《对数函数及其性质》 PPT课件
本PPT课件将介绍对数函数的定义、基本特点、运算法则,以及与指数函数的 关系,对数方程与指数方程,对数函数的应用等内容。
人教A版必修第一册4.4对数函数的概念(教学课件)

函数的定义域是(0,+)
。
①底数a为大于0且不等于1的常数.
②自变量x在真数的位置上,且x的系数是1.
③logax系数是1.
1. 对数函数的定义域
典例
例1.求下列函数的定义域:
(1)y log 3 x 2
(2)y log a (4 x) (a 0, 且a 1).
解:
(1) x 2 0 x 0
( x 0)得到
2
x = log
5730
1
2
y (0 < y 1)
如图,过y轴正半轴上任意一点
(0,y0) (0< y0 ≤1)作x轴的平行
线,与函数
x
1 5730
y=( )
( x 0)
2
y
1
y0
( x0,y0 )
O
的图象有且只有一个交点(x0 , y0) .
这说明,对于任意一个y∈(0 , 1],通过对应关系
x=loga y(a>0且a≠1),
x也是y的函数. 通常,我们用x表示自变量,y
表示函数.
为此,将x=loga y(a>0且a≠1)中的字母x和y
对调,写成
y=loga x (a>0且a≠1).
定义:一般地,形如 y log a x(a 0, 且a 1) 的函数
叫做对数函数,其中x是自变量,
所以当一条鲑鱼的耗氧量是900个单位时,它的游速是1m/s.
3.大西洋鲑鱼每年都要逆流而上,游回产地产卵,经研究发现鲑鱼的游速可以
1
2
表示为函数 = 3
,单位是/,是表示鱼的耗氧量的单位数.
100
(2)某条鲑鱼想把游速提高1/,那么它的耗氧量的单位数是本来的多少倍?
。
①底数a为大于0且不等于1的常数.
②自变量x在真数的位置上,且x的系数是1.
③logax系数是1.
1. 对数函数的定义域
典例
例1.求下列函数的定义域:
(1)y log 3 x 2
(2)y log a (4 x) (a 0, 且a 1).
解:
(1) x 2 0 x 0
( x 0)得到
2
x = log
5730
1
2
y (0 < y 1)
如图,过y轴正半轴上任意一点
(0,y0) (0< y0 ≤1)作x轴的平行
线,与函数
x
1 5730
y=( )
( x 0)
2
y
1
y0
( x0,y0 )
O
的图象有且只有一个交点(x0 , y0) .
这说明,对于任意一个y∈(0 , 1],通过对应关系
x=loga y(a>0且a≠1),
x也是y的函数. 通常,我们用x表示自变量,y
表示函数.
为此,将x=loga y(a>0且a≠1)中的字母x和y
对调,写成
y=loga x (a>0且a≠1).
定义:一般地,形如 y log a x(a 0, 且a 1) 的函数
叫做对数函数,其中x是自变量,
所以当一条鲑鱼的耗氧量是900个单位时,它的游速是1m/s.
3.大西洋鲑鱼每年都要逆流而上,游回产地产卵,经研究发现鲑鱼的游速可以
1
2
表示为函数 = 3
,单位是/,是表示鱼的耗氧量的单位数.
100
(2)某条鲑鱼想把游速提高1/,那么它的耗氧量的单位数是本来的多少倍?
对数函数上课课件

④中底数是自变量x,而非常数a, ∴不是对数函数; ⑤为对数函数
探究:对数函数:y = loga x (a>0,且a≠ 1) 图象与
性质
在同一坐标系中用描点法画出对数函数
y log
2
x 和 y log
①列表, ②描点,
1 2
x 的图象。
作图步骤:
③用平滑曲线连接。
探究:对数函数:y = loga x (a>0,且a≠ 1) 图象与
x =1
O
(1,0)
X
(1,0)
O
X
x a
y log
(0 a 1)
( 0,+∞) 定义域 : 值 域 : R 过定点: (1 ,0), 即当x =1时,y=0
增函数 在(0,+∞)上是 减函数 在(0,+∞)上是:
函数图像没有对称
对数函数没有奇偶性
讲解范例 例1求下列函数的定义域: 2 y log a x (1) 解 : 由 x2 0 得 x 0 ∴函数 y log (2)
比较对数大小的方法
1.当底数相同真数不相同时,直接利用对数函数 的单调性进行比较,即a>1时,在(0,+∞)上是增 函数;0<a<1时,在(0,+∞)上是减函数; 2.当底数不相同,真数相同时,可根据图象与底 数的关系所反映出的规律进行比较 ; 3.当底数和真数各不相同时,可考虑引进第三个 数(常用“0”或“1”)分别与之比较,通过第三个数 的传递比较出两数的大小;当底数与“1”的大小关 系未明确指出时,要分情况对底数进行讨论来比 较两个对数的大小.
y = a x 和 y = logax 互为反函数。 事实上,
且它们的图像关于直线y=x对称。
4.4.1对数函数的概念课件(人教版)

学习目标
新课讲授
课堂总结
例3 假设某地初始物价为1,每年以5%的增长率递增,经过y年后的物价为x.
(2)填写下表,并根据表中的数据,说明该地物价的变化规律.
物价x 1
2
3
4
5
6
7
8
9
10
年数y 0
(2)根据函数y=log1.05x,x∈[1,+∞),利用计算工具,可得下表
物价x 1 年数y 0
2
3
学习目标
新课讲授
课堂总结
例1 下列函数中,哪些是对数函数?
(1)y=logax2(a>0,且a≠1);(2)y=log2x-1;
(数
学习目标
新课讲授
课堂总结
总结归纳 判断一个函数是对数函数的方法 (1)底数a>0,且为不等于1的常数,也不含有自变量x; (2)真数位置是自变量x,且x的系数是1; (3)logax的系数是1.
4
5
6
7
8
9
10
14 23 28 33 37 40 43 45 47
由表中的数据可以发现,该地区的物价随时间的增长而增长, 但大约每增加1倍所需要的时间在逐渐缩小.
学习目标
新课讲授
课堂总结
练一练 已知f(x)=log3x. (1)作出这个函数的图象; (2)若f(a)<f(2),利用图象求a的取值范围.
4.4.1 对数函数的概念
学习目标
新课讲授
课堂总结
1.理解对数函数的概念 2.会求对数函数的定义域
学习目标
新课讲授
课堂总结
知识点:对数函数的概念
思考:已知死亡生物体内碳14的含量,如何得知它死亡了多长时间呢? 死亡时间x是碳14的含量y的函数吗?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自变量 定义域 值域
指数函y数ax 对数函 xl数 oagy
同一对变量x,y之Байду номын сангаас的关系
x
y
R
(0, )
(0, )
R
2.指数 ya 函 x与数 对y数 loa函 x g 的数 关
自变量 定义域 值域
指数函y数ax
同一对变量x,y之间的关系 x R
(0, )
对数函 xl数 oagy
y
(0, )
y1
xlog2 y x 2 x 1
对于 y的每一个确定 x都 的有 值唯 ,一确定对 的应 值与
对数函数的定义
函数 xloagy叫做对数 a函 0,a数 1 ,
把函y数 loagx(a0,a1)叫做对数 a叫做对数函数的底数
以10为底的对数y函 lgx数 为常用对数函数, 以e为底的对数y函 lnx数 为自然对数函数。
(2) y log 1 x
3
解: (1)对数y函 l数 gx的反函数是指 y数 10x函 ;
(2)对数函 yl数 o13gx的反函数是y指 (13数 )x. 函
例3
写出下列指数函数的反
(1) y 5 x
函数:
(2)
y
2
x
3
解:
( 1)函y 数 5x的反函y数 lo是 5gx;
(2)函y数 (3 2)x的反函 yl数 o3 2gx是 .
例1
计算 (1)计算对数函y数log2 x对应于 x取1,2,4,时的函数值;
(2)计算常用对数y函l数 gx对应于 x取1,10,100,0.1时的 函数值。
log a 1 0 log a a 1
指数函数与对数函数的关系
1 .指数 ya 函 x与 数 对x数 loa函 y g 的数 关
指数函y数ax 互为反函数 对数函 xl数 oagy
练习
2.写出下列对数函数的反函数:
(1) y log 2.5 x (2) y log x (3) y log 1 x
3
3.写出下列指数函数的反 函数:
(1) y 4 x
(2) y 1.4x
(3) y
x
2
小结
1.对数函数的概念 把函 y数 loagx(a0,a1)叫做对数函数
2.指数函数与对数函数的关系 指数 y 函 ax与 数 对y 数 lo函 ax g互 数 为反函
R
指数函y数ax
互为反函数
对数函 yl数 oagx
对数函 xl数 oagy
练习
1.说出下列各组函数之间 的关系: (1) y 10 x 与y lg x (2) y 2x 与y log 2 x (3) y e x与y ln x (4) y 3x 与y log 4 x
例2
写出下列对数函数的反 函数: (1)y lg x
作业
1.求下列函数的定义域:
(1) y log a (4 x)
(2)yloag (9x2)
(3)yloagx2
对数函数的概念
贵溪市实验中学
细胞分裂问题
细胞分裂的 个数y和分裂次 数x的函数关系 是什么?
y 2x xN
反过来,一个这样的细胞经过多少次分裂,大 约可以得到1万个细胞,或10万个细胞?
对数
xlog2 y
能?不能?
对于一般的y指 ax(a数 0函 ,a1数 )中的两个 能不能 y当把 作自变量 x是y, 函使 数得 ?
函数的概念
给定两个非空数集A和B,如果按照某个对应关 系f,对于A中的任意一个数x,在B中都有唯一确 定的数f(x)与之相对应,那么就把对应关系f叫做定 义在集合A上的函数。
对于一般的y指 ax(a数 0函 ,a1数 )中的两个变 能不能 y当把 作自变量 x是y, 函使 数得 ?
y2
yax(0a1)