三角函数的单调性与最值(新)
1.4.2第2课时 正、余弦函数的单调性与最值 课件

第一章 三角函数
(4)确定含有正弦函数或余弦函数的较复杂函数的单调性时, 要注意使用复杂函数的判断方法来判断. 2.解析正弦函数、余弦函数的最值 (1)明确正弦、余弦函数的有界性,即|sin x|≤1,|cos x|≤1. (2)对有些函数,其最值不一定就是1或-1,要依赖函数的定 义域来决定. (3)形如y=Asin(ωx+φ)(A>0,ω>0)的函数求最值时,通常利 用“整体代换”,即令ωx+φ=z,将函数转化为y=Asin z的 形式求最值.
第一章 三角函数
栏目 导引
第一章 三角函数
单调减区间为[34π+2kπ,74π+2kπ](k∈Z). 所以原函数 y=2sin(π4-x)的单调增区间为[34π+2kπ,74π+ 2kπ](k∈Z); 单调减区间为[-π4+2kπ,34π+2kπ](k∈Z).
栏目 导引
第一章 三角函数
【名师点评】 正弦、余弦函数单调区间的求解技巧: (1)结合正弦、余弦函数的图象,熟记它们的单调区间. (2)确定函数y=Asin(ωx+φ)(A>0,ω>0)单调区间的方法:采 用“换元”法整体代换,将ωx+φ看作一个整体,可令“z= ωx+φ”,即通过求y=Asin z的单调区间而求出函数的单调 区间.若ω<0,则可利用诱导公式将x的系数转变为正数.
栏目 导引
第一章 三角函数
跟踪训练
1.求函数 y=sin(π3-12x),x∈[-2π,2π]的单调递增区间. 解:y=sin(π3-12x)=-sin(12x-π3). 由 y=sin x 与 y=-sin x 的图象关于 x 轴对称可知,y=sin x 的递增 区间就是 y=-sin x 的递减区间.因此,要求 y=-sin(12x-π3)的递 增区间,只要求出 y=sin(12x-π3)的递减区间即可.
《三角函数的图象与性质》PPT教学课件(第三课时正、余弦函数的单调性与最值)

栏目导航
12
(1)B
(2)xx≠-4kπ-43π,k∈Z
(3)x-π4+kπ≤x<π4+kπ,k∈Z
[(1)当-π4<x<0时,-1<tan x
<0,∴ta1n x≤-1;
当0<x<π4时,0<tan x<1,∴ta1n x≥1.
即当x∈-π4,0∪0,π4时,函数y=ta1n x的值域是(-∞,-1) ∪(1,+∞).
[提示] 由正切函数图象可知(1)×,(2)√,(3)×,(4)×. [答案] (1)× (2)√ (3)× (4)×
第五章 三角函数
5.4 三角函数的图象与性质 第4课时 正切函数的性质与图象
2
学习目标
核心素养
1.能画出正切函数的图象.(重点)
1.借助正切函数的图象研究问
2.掌握正切函数的性质.(重点、难点) 题,培养直观想象素养.
3.掌握正切函数的定义域及正切曲线的 2.通过正切函数的性质的应
渐近线.(易错点)
28
栏目导航
(2)函数定义域为 xx≠kπ-π4且x≠kπ+π4,k∈Z , 关于原点对称, 又f(-x)=tan-x-π4+tan-x+π4 =-tanx+π4-tanx-π4 =-f(x), 所以函数f(x)是奇函数.
29
栏目导航
30
正切函数单调性的应用 [探究问题] 1.正切函数y=tan x在其定义域内是否为增函数? 提示:不是.正切函数的图象被直线x=kπ+π2(k∈Z)隔开,所以它的 单调区间只在kπ-π2,kπ+π2(k∈Z)内,而不能说它在定义域内是增函 数.假设x1=π4,x2=54π,x1<x2,但tan x1=tan x2.
用,提升逻辑推理素养.
栏目导航
正、余弦函数的单调性与最值

比较三角函数值的大小 比较下列各组数的大小. (1)cos-253π与 cos-147π; (2)sin2 012°和 cos157°.
【思路探索】 利用诱导公式将异名三角函数转化为 同名三角函数,非同一单调区间的角,转化到同一单调区 间上,再利用函数的单调性比较.
【解】 (1)解法一: ∵cos-253π=cos-6π+75π=cos75π, cos-147π=cos-6π+74π=cos74π, ∵π<75π<74π<2π, 又 y=cosx 在[π,2π]上单调递增, ∴cos75π<cos74π,
求函数y=Asin(ωx+φ)(A>0,ω≠0)或y=Acos(ωx+ φ)(A>0,ω≠0)的单调区间,一般将ωx+φ视作整体,代入y =sinx或y=cosx相关的单调区间所对应的不等式,解之即 得.这里实际上采用的是整体的思想,这是研究三角函数 性质的重要数学思想,一般地,ω<0时,y=Asin(ωx+ φ)(Aω≠0)变形为y=-Asin(-ωx-φ),y=Acos(ωx+ φ)(Aω≠0)变形为y=Acos(-ωx-φ),再求函数的单调区 间.所有的这些变形都是为了使x前面的系数为正值.同 时要注意A<0时单调区间的变化.
单调减区间为2kπ+π6,2kπ+76π. (2)函数 y=2sinπ3-2x=-2sin2x-3π,令 2kπ-2π≤2x -π3≤2kπ+2π(k∈Z),得 kπ-1π2≤x≤kπ+152π(k∈Z),∴函数 y=2sin3π-2x的单调减区间为kπ-1π2,kπ+152(k∈Z).令π2 +2kπ≤2x-3π≤32π+2kπ,k∈Z,解得152π+kπ≤x≤1112π+kπ, k∈Z,即原函数的单调递增区间为152π+kπ,1112π+kπ(k∈Z).
正弦函数、余弦函数的单调性与最值

函数名称 图象与性质 性质分类 图象 奇偶性 _________ 奇函数 _________ 偶函数 y=sinx y=cosx
不同处
函数名 称 图象与性质 性质分类 在 不同 处 y=sinx y=cosx
单调性
π π [2kπ-π,2kπ](k∈Z) 上 2kπ- ,2kπ+ (k∈Z) 在 ____________________ 2 2 ________________________ 递增; 上递增; 在 在 π 3 [2kπ,2kπ+π](k∈Z) 2kπ+ ,2kπ+ π(k∈Z) ________________________ 2 2 ________________________ 上递减 上递减
π π π 【解】 (1)由 2kπ-2≤x+3≤2kπ+2(k∈Z), 5 π 得 2kπ-6π≤x≤2kπ+6(k∈Z). π π 3 由 2kπ+2≤x+3≤2kπ+2π(k∈Z), π 7 得 2kπ+6≤x≤2kπ+6π(k∈Z). ∴函数
π y=2sinx+3的单调增区间为
(2)可化为 y=Asin2x+Bsinx+C 或 y=Acos2x+Bcosx+C(A≠0) 的最大、最小值可利用二次函数在区间[-1,1]上的最大、最小值 的求法来求(换元法). Asinx+B Acosx+B 2 (3)形如 y= 或 y= (A +C2≠0)的最大值最 Csinx+D Ccosx+D 小值可解出 sinx 或 cosx 后利用其有界性来求.
2.比较三角函数值大小的方法 先利用诱导公式把要比较的三角函数值转化为同一单调区间 上的同名三角函数值,再利用三角函数的单调性比较大小. 3.求三角函数值域或最值的常用方法 (1)可化为单一函数 y=Asin(ωx+φ)+k 或 y=Acos(ωx+φ)+k 的最大值为|A|+k, 最小值为-|A|+k(其中 A、 ω、 k 为常数, A≠0, ω≠0).
高二数学三角函数的单调性与极值

高二数学三角函数的单调性与极值高二数学三角函数的单调性与极值三角函数是数学中一个非常重要且常见的概念,在数学课程中,我们常常会遇到讨论三角函数的单调性和极值的问题。
本文将针对高二数学课程中三角函数的单调性与极值进行详细的论述和解析。
一、三角函数的定义与基本性质在开始讨论三角函数的单调性与极值之前,我们首先需要了解三角函数的定义和基本性质。
三角函数包括正弦函数、余弦函数和正切函数等。
1. 正弦函数:由一个单位圆周上的某一点P(x, y)引出的线段OP,其中O为圆心,P在单位圆的半径为1的圆上。
正弦函数的定义为sinθ = y。
2. 余弦函数:同样由单位圆上的某一点引出的线段OP,余弦函数的定义为cosθ = x。
3. 正切函数:正切函数的定义为tanθ = sinθ / cosθ。
二、三角函数单调性的判定方法为了讨论三角函数的单调性,我们需要先了解如何判定函数的单调性。
对于区间[a, b]上的函数f(x),我们可以通过其导数的正负来判断函数的单调性。
1. 如果函数f'(x) > 0,那么函数f(x)在[a, b]上单调递增。
2. 如果函数f'(x) < 0,那么函数f(x)在[a, b]上单调递减。
3. 如果函数f'(x) = 0,那么函数f(x)在[a, b]上可能存在极值点。
三、正弦函数的单调性与极值正弦函数的图像为周期性的波浪线,在区间[0, 2π]上,正弦函数的单调性和极值如下:1. 单调递增:在区间[0, π/2]和[3π/2, 2π]上,正弦函数单调递增。
2. 单调递减:在区间[π/2, 3π/2]上,正弦函数单调递减。
3. 极值点:在区间[0, π]和[π, 2π]上,正弦函数存在极值点。
极小值点为π/2的整数倍,极大值点为π的整数倍。
四、余弦函数的单调性与极值余弦函数的图像也是周期性的波浪线,在区间[0, 2π]上,余弦函数的单调性和极值如下:1. 单调递增:在区间[3π/2, 2π]和[0, π/2]上,余弦函数单调递增。
1.4.2 正弦 余弦函数的性质(单调性、最值)

3 5 对称中心: ( ,0),( ,0),( ,0),( ,0) 2 2 2 2
2
k ,0) k Z
1 例5:求函数 y sin( x ) 的单调递增区间: 2 3
解:
2
1 y sin x 3 2
y sin z
2k z
余弦函数的单调性
y
1 -3
5 2
-2
3 2
-
2
o
-1
2
3 2
2
5 2
x
3
7 2
4
x
cosx
-
-1
…
2
…
0
1
…
2
…
-1
0
0
y=cosx (xR) 增区间为 [ +2k, 2k],kZ + ], kZ 减区间为 [2k, 2k, 其值从-1增至1 其值从 1减至-1
y cos x
3 5 2
2
y
1
任意两相邻对称轴 ( 或对称中心 ) 的间距为 3 2 O 5 x 3 半个周期;
2
2
1
2
2
3
2
对称轴与其相邻的对称中心的间距为
对称轴:x
,0, , 2
四分之一个周期.
(
x k , k Z
o
-1
2
3
4
5
6
x
sin(-x)= - sinx (xR) cos(-x)= cosx (xR)
三角函数的图象、定义域、最值(值域)、单调性

[学习要求] 1.能画出 y = sin x , y = cos x , y =tan x 的图象. 2.理解
正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小
值、图象与 x 轴的交点等). 3.理解正切函数在区间
π
π
− ,
2
2
上的性质.
π
π
− <<
2
2
由题意得 y = cos x ·|tan x |=ቐ
的大致图象是(
sin,0 ≤
π
< ,
2
π
−sin, − <
2
所以其图象的大致形状如选项C所示.
< 0,
C )
2. 已知函数 f ( x )= sin x +2| sin x |, x ∈[0,2π],若直线 y = k
与其仅有两个不同的交点,则 k 的取值范围为
, k ∈Z,
2
2
π
π
π
+ ≥ + 2π,
4
2
所以ቐ 2
k ∈Z,
π
3π
π+ ≤ + 2π,
4
2
1
5
解得4 k + ≤ω≤2 k + , k ∈Z.
2
4
1
5
5
又由4 k + - 2+ ≤0, k ∈Z,且2 k + >0, k ∈Z,解得 k =0,
2
4
4
1
5
所以ω∈ , .
2
4
方法总结
A. [-1,1]
令 sin x = t , t ∈[-1,1],
则 y = t 2+ t -1=
1 2
高三总复习数学精品课件 三角函数的单调性与最值

3
1.用五点法作正弦函数和余弦函数的简图 ((1π),正0弦),函_数_32_π_y,_=_-_s_i1n__x_,_,x∈(2[π0, ,20π).]的图象中,五个关键点是:(0,0),π2,1, (2)余弦函数 y=cos x,x∈[0,2π]的图象中,五个关键点是:(0,1),π2,0, ___(π_,__-__1_)___,32π,0,(2π,1).
15
4.函数 y=cos2x-π4的单调递减区间为________. 解析:由 y=cos2x-π4,
得 2kπ≤2x-π4≤2kπ+π(k∈Z),
解得 kπ+π8≤x≤kπ+58π(k∈Z).
所以函数的单调递减区间为kπ+π8,kπ+58π(k∈Z). 答案:kπ+π8,kπ+58π(k∈Z)
16
_k_π_+ __π2__,_0__,__k_∈__Z_
性
对称 轴
__x_=__k_π_+__π2_,__k_∈__Z_
___x_=__k_π_,__k_∈__Z___
零点
kπ,k∈Z
kπ+π2,k∈Z
6
y=tan x 无
____k2_π_,__0_,__k_∈__Z__ 无对称轴 kπ,k∈Z
7
y=cos x __[_-__1_,__1_]___
__2_π___ _偶__函__数_____
__[_-__π_+__2_k_π_,___ __2_k_π_]_,__k_∈__Z___
5
y=tan x R
___π___ 奇函数
(-π2+kπ, ______________ _π2_+__k_π_)_,__k_∈__Z__
三角函数的单调性与最值
1
最新考纲 1.能画出 y=sin x,y=cos x,y=tan x 的图象,了解三角函数的周期性. 2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最 小值以及与 x 轴的交点等),理解正切函数在区间-π2,π2内的单调性.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课堂小结:
正弦函数在 [2k ,2k ], k Z 单调递增 1、 2 2 3 正弦函数在 [2k ,2k ], k Z 单调递减 2 2 2、利用正弦函数单调性比较函数值大小,关 键将自变量放入同一个单调区间中。 3、利用y=sinx的单调区间来求解y=Asin(ωx+φ) 的单调区间,需要注意ω的符号。
正弦函数的单调性
复习回顾:
正弦函数图像
复习回顾:
正弦函数基本性质:
函数 图象 定义域 值域 奇偶性 周期性
y=sin x
R [-1,1] 奇函数 最小正周期
2
新知探究:
y y=f(x) y y=f(x) f(x2) x2 x f(x1) o x1 f(x2) x2 x
f(x1)
o x1
图像呈上升趋势
196° 与 sin256° ; (3)sin851o 与
sin834o
例2.求y sin(2 x)的单调区间 .
1 变1、求 y 2 sin( x )的增区间 . 2 3 1 变2、求 y sin( x )的增区间 . 2 3
方法归纳:
1.求函数 y=Asin(ωx+φ)(A>0)单调区间的方法是: π π 把 ωx+φ 看成一个整体, 由 2kπ- ≤ωx+φ≤2kπ+ (k∈Z) 2 2 π 解出 x 的范围, 所得区间即为增区间, 由 2kπ+ ≤ωx+φ≤2kπ 2 3 + π (k∈Z)解出 x 的范围,所得区间即为减区间.若 ω<0, 2 把 ωx+φ 代入 y=sinx 的增区间中,解得的 x 的范围即为 y= Asin(ωx+φ)的减区间;把 ωx+φ 代入 y=sinx 的减区间中,解 得的 x 的范围即为 y=Asin(ωx+φ)的增区间
图像呈下降趋势
新知探究:
正弦函数单调性:
正弦函数在 [2k
,2k ], k Z 单调递增 2 2
3 正弦函数在 [2k ,2k ], k Z 单调递减 2 2
例题解析:
例 1 利用三角函数的单调性,比较下列各组数的大小.
π (1)sin-18 与 π sin-10 ;(2)sin
பைடு நூலகம்