第3章 光的干涉与相干性分解

合集下载

《光学教程》第三章光的干涉解析

《光学教程》第三章光的干涉解析

干涉明暗条纹的位置
k红(k1)紫
将 红 = 7600Å, 紫 = 4000Å代入得K=1.1 因为 k只能取整数, 所以应取k=2
这一结果表明: 在中央白色明纹两侧,只有第一级彩 色光谱是清晰可辨的。
干涉明暗条纹的位置
例2 图示一种利用干涉现象测定气体折射率的原理图。
在缝S1后面放一长为l的透明容器,在待测气体注入容
I I 1 I 2 2 I 1 I 2c os
I
2 I1I2
I1 I2
I max
Imin
6 4 2 0 2 4 6 8
I1I2 I 4 I 1 c2 o /2 s
I
6 4 2 0 2 4 6 8
4. 相干光的获得方法
p
分波面法
S*
S*
分振幅法
·p
薄膜
§3-2 光程与光程差
1. 光 程
相位差在分析光的干涉时十分重要, 为便于计算光通过不同媒质时的相 位差,引入“光程”的概念。
计透明容器的器壁厚度) ?
干涉明暗条纹的位置
解 : 1.讨论干涉条纹的移动,可跟踪屏幕上某一条
纹(如零级亮条纹), 研究它的移动也就能了解干涉条纹的
整体移动情况.
当容器未充气时,测
量装置实际上是杨氏双
l
·P`
缝干涉实验装置。其
s1
零级亮纹出现在屏上与
s
p0
S1 、S2 对称的P0点.从
s2
S1 、S2射出的光在此处
相遇时光程差为零。
容器充气后,S1射出的光线经容器时光程要增加,零 级亮纹应在 P0的上方某处P出现,因而整个条纹要向上 移动。
干涉明暗条纹的位置
2.按题义,条纹上移20条, 20

第三章光的干涉和干涉仪

第三章光的干涉和干涉仪

第三章 光的干涉和干涉仪杨振宇干涉:同频率、同振动方向的两个或两个 以上单色光波叠加,其合成光强在叠加 区域出现稳定的强弱分布现象。

干涉仪:让实际光波产生干涉的装置3-1 产生干涉的条件(相干条件)回顾:什么是干涉现象? 两个或多个光波在某区域叠加时,在叠加 区域内出现的各点强度稳定的强弱分布 现象。

思考:如图的两个独 立的普通光源,能 在观察屏上看到干 涉现象吗?观察屏3-1回顾:同频率、同振动方向两列光波在P 点的合强度I。

I = a + a + 2a1a2 cos δ2 1 2 2从干涉现象的定义出发,这一值应该不随 时间的变化而变化。

δ = const因此,产生干涉的条件是:3-1相干条件: 光波的频率相同 振动方向相同 位相差恒定补充条件:必须使光 程差小于光波的波 列长度。

2 2I = a + a + 2a1a2 cos δ2 1再来解释为什么两独立光源不能产生干涉3-1分光束的方法 要严格满足干涉条件,必须将源于同一波 列光分成几束,然后再令其产生干涉。

3-13-13-2 杨氏干涉实验y S d S1 D x r1 r2 P(x,y,D) zS2分波前干涉,单色点光源S,d<<DI = a + a + 2a1a2 cos δ2 1 2 23-22 I = a12 + a2 + 2a1a2 cos δ → I = I1 + I 2 + 2 I1 I 2 cos δδ=I1=I2, 空气介质2πλn(r2 − r1 )2⎡π ⎤ (r2 − r1 ) → I = 4 I 0 cos ⎢ (r2 − r1 )⎥ I = 2 I 0 + 2 I 0 cos λ ⎣λ ⎦(r2 − r1 ) = mλ ...极大值 = 4 I 02πy S dx(r2 − r1 ) = (m + 1 / 2)λ ...极小值 = 0r1 r2 S1 DP(x,y,D) z如何确定屏幕上极大值、极小值的位置?S23-2r1 = ( x − d / 2) 2 + y 2 + D 2 r2 = ( x + d / 2) 2 + y 2 + D 22 xd r − r = 2 xd → r2 − r1 = r2 + r12 2 2 1Q D >> d xd 2 xd ≈ ∴ r2 + r1 Dy S dxr1 r2 S1 DP(x,y,D) zS23-2干涉级mλD x= d m = 0,±1,±2,...... (m+1 / 2)λD x= d3-2ee = λ / ω, 会聚角ω ≈ d / Dee3-2S1、S2连线垂直3-23-2对于屏幕任意放置的情况,要研究两点光源的等光程差在空间的轨 迹,然后再考虑屏幕与这些等光程差点相交的轨迹。

第三章 干涉

第三章  干涉

两波到达P点的相位差为:
2 1 2 ( n2 r2 n1r1 ) ( 01 02 ) 2 c c ( 2 c , n1 , n2 ) 1 2
( r2 r1 ) ( 01 02 )
1、相位差

2
频率相等,振动方向(光矢量 E )平行、相
位差恒定。
3、波动的特征 “干涉”和“衍射”现象是波动的重要特征。
四、相干叠加与非相干叠加
1、两简谐振动的合成
1 A t 1 ) 1 cos(
2 A2 cos( t 2 )
1 2 A cos( t )
'
dx r2 r1 d sin d tan D
考虑到移动方向相反
D x s R
例1:用白光做光源观察双缝干涉,缝间距为d,试 求能观察到的清晰可见光谱的级次。白光波长范围 390—750nm。
例2:一双缝实验中,两缝间距为0.15mm,在1.0m处 测得第一级和第十级暗纹之间距离为36mm。试求所 用单色光的波长。
——分波阵面法
(3) 劳埃德镜
P'
P
s1
d
s2
M
L
d'
半波损失 :光由光疏介质射向光密介质时, 反射光相位突变π 。
三、干涉条纹的移动
零级条纹在P0 光源移动δs 条纹移动δx
R2 r2 R1 r 1
R1 R2 (r1 r2 )
傍轴, 小角度下:
R1 R2 d sin ' ds d tan R
n2 n

2
Q

2 L 2h n 2 n1 sin 2 i1

《物理光学》第3章 光的干涉和干涉仪

《物理光学》第3章 光的干涉和干涉仪
d d ∆ = r2 − r1 = x + + y 2 + z 2 − x − + y 2 + z 2 2 2
2 2
2
2
消去根号,化简便得到等光程差面方程式 :
x2 ∆ 2
2

y2 + z2 d ∆ − 2 2
条纹对比度主要影响因子: 光源大小 非单色性 振幅比(光强比)
3.4.1 光源大小的影响 (1)光源的临界宽度 :可见度下降到零时光源的临界宽度。 假设光源只包含两个强度相等的发光点S和S’,S和S’在屏幕 E上各自产生一组条纹,两组条纹间距相等,但彼此有位移。
S ′S 2 − S ′S1 =
2 2
=1
将Δ=mλ代入
x2 mλ 2
2

y2 + z2 d mλ − 2 2
2 2
=1
等光程差面是一组以m为参数的回转双曲面族,x轴为回转轴 干涉条纹就是等光程差面与观察屏幕的交线。
结论:
干涉图样是由一系列平行等距的亮带和暗带组成。
1 e= ∝ W W
条纹间距与光波波长有关。波长较短的单色光,条纹较密, 波长较长的单色光,条纹较稀。
λ
§3.1.2 等光程差面和干涉条纹形状 在屏幕上观察到等距的直线干涉条纹条件: d《D,且在Z轴附近观察 设光屏上任意点P的坐标为(x、y、z),则有:
d r1 = S1 P = x − + y 2 + z 2 2 d r2 = S 2 P = x + + y 2 + z 2 2
I0dx为宽度dx的S点元光源的强度,Δ为D点元光源发出的 两束相干光到达P点的光程差。

第三章 光的干涉和干涉系统

第三章 光的干涉和干涉系统
干涉项 I12 与两个光波的振动方向(A1, A2 ) 和位相有关。
5
I1 I 2 A1 A2 cos
干涉条件(必要条件):
(1)频率相同, 1 2 0; (2)振动方向相同, A1 A2 A1 A2 (3)位相差恒定, 1 2 常数
注意:干涉的光强分布只与光程差 k (r1 k 2 ) 有关。
在两个光波叠加的区域形成稳定的光
强分布的现象,称为光的干涉现象
The term Interference refers to the phenomenon that waves, under certain conditions, intensify or weaken each other.
2
observed visually, projected on a screen, or
recorded photoelectrically.
23
Interference fringes
Zeroth-order maximum
First-order minimum
First-order maximum
1)相干波源到接收屏之间的距离D
2)两相干波源之间的距离d 3)波长
14
干涉条纹间隔与波长的关系
条纹间隔 e ,
e 1 。
白光条纹 0 白条纹 白条纹
15
x
二、两个点源在空间形成的干涉场
两点源形成的干涉场是空间分布的; 干涉条纹应是空间位置对点光源等光程差的轨迹。 =r2 r1 ( x d ) 2 y 2 D 2 ( x d ) 2 y 2 D 2 2 2
axial
24
§3-3 干涉条纹的可见度 the visibility (contrast) of interference fringes

光的干涉和光的相干性 (2)

光的干涉和光的相干性 (2)

干涉现象与相干性的区别
干涉现象:光波 叠加后形成的明 暗条纹,是光的 相干性的直接表 现。
相干性:光波之 间的相位差和频 率差,决定了干 涉现象的性质和 强度。
干涉条纹:干涉 现象中形成的明 暗条纹,其宽度 和间距与相干性 有关。
相干性测量:通 过测量干涉条纹 的性质,可以了 解光波的相干性。
干涉与相干性在光学实验中的应用
光的干涉:两束或两束以上的光波在空间相遇时,会发生叠加,形成干涉现象 相干性:光波的相干性是指光波之间的相位差和频率差之间的关系 干涉条件:光的干涉需要满足相干性、频率相同和相位差恒定的条件 干涉图样:干涉现象会产生各种不同的干涉图样,如明暗相间的条纹、彩色的环状等 相干性的影响:相干性的大小会影响干涉图样的清晰度和亮度,相干性越好,干涉图样越清晰,亮度越高
对信息科学的影响
光的干涉和相干性是信息科学的基础理论之一 光的干涉和相干性在光纤通信、激光雷达等领域有广泛应用 光的干涉和相干性研究有助于提高信息传输速度和质量 光的干涉和相干性研究有助于推动量子通信、量子计算等新兴领域的发展
对现代科技发展的贡献
光的干涉和相干性是现代光学技术的基础,如激光、光纤通信等。
干涉现象的应用
光学仪器:如显微镜、望远镜等,利用光的干涉原理提高成像质量
光纤通信:利用光的干涉原理实现高速、大容量的信息传输
激光技术:利用光的干涉原理产生高强度、单色性的激光束 生物医学:利用光的干涉原理进行细胞、组织、器官等的无损检测和治 疗
02 光的相干性
相干性的定义
光的相干性是指两 束光在空间和时间 上的相位差保持恒 定的特性。
两列光波的相位差恒 定
两列光波的振动方向 相同
两列光波的强度相同
干涉现象的分类

光的干涉相干性、分布规律及其计算方式

光的干涉相干性、分布规律及其计算方式
空中的距离,统 一 使用 真空计 算 。
折合原则:在引起光波相位改变上等效。
介质中 x 距离内波数:x
真空中同样波数占据的距离
x
x c
u
x
c u
xn
介质折射率
结论:
光在折射率为n 的介质中前进x 距离引起的相位改 变与在真空中前进nx 距离引起的相位改变相同。
定义: 光 程 几 何 路 介程 质 折 射 率 等效真空程
研究光的干涉现象的产生和基本实验规律。
本章教学内容:
光源和光的相干性 杨氏双缝干涉 薄膜干涉
第十二章 光的干涉
基本要求
1. 掌握光的相干性、光程和光程差的概念 2. 2. 理解获得相干光的分波阵面法和分振幅法 3. 3. 掌握双缝干涉条纹分布规律及相关计算方法 4. 4. 掌握劈尖干涉条纹分布规律及相关计算方法 5. 5. 掌握牛顿环干涉条纹分布规律及相关计算方法 6. 6. 了解迈克尔逊干涉仪的原理和应用
长为 的光照射双缝S1和S2,通过空气后在屏幕E上
形成干涉条纹。已知P点处为第三级明条纹,则S1和 S2到P点的光程差为多少?若将整个装置放于某种透 明液体中,P点变为第四级明条纹,则该液体的折射
率为多少? 解: 由明纹条件
P S1
k(k0,1,2,)
S

3
S2 E
由明纹位置 xkD (k0,1,2,)
d
得 34
所以 n / 4 /3 1 .33
其它分波阵面干涉
菲涅耳双面镜
P
s
M1
s1
d
s2
C
M2
D
洛埃镜
P'
P
s1
d s2
ML

光的干涉现象与空间相干性

光的干涉现象与空间相干性

光的干涉现象与空间相干性光的干涉现象是光学中的一个重要现象,它揭示了光波的波动性质和波动光学的基本原理。

而干涉现象的产生与光的空间相干性密切相关。

本文将从光的干涉现象和空间相干性两个方面进行探讨。

一、光的干涉现象光的干涉现象是指两束或多束光波相互叠加而产生的干涉条纹。

干涉现象的产生需要满足两个条件:一是光源必须是相干光源,即光源发出的光波的频率和相位保持稳定;二是光波必须是相干光波,即光波的相位关系满足一定条件。

在干涉现象的实验中,常用的装置有杨氏双缝干涉装置和迈克尔逊干涉仪。

杨氏双缝干涉装置由一块屏幕上有两个狭缝的光源和一个屏幕组成。

当光通过两个狭缝后,会形成一系列明暗相间的干涉条纹。

迈克尔逊干涉仪则是利用半反射镜和全反射镜的干涉效应来观察干涉条纹。

干涉现象的产生可以解释为光波的叠加效应。

当两束光波相遇时,它们的振幅会相互叠加,形成新的波面。

如果两束光波的相位差为整数倍的波长,它们的振幅将增强,形成明亮的干涉条纹;如果相位差为半波长的奇数倍,它们的振幅将相互抵消,形成暗淡的干涉条纹。

二、空间相干性空间相干性是指光波在空间上保持相位关系的性质。

在光学中,空间相干性是光的相干性的一种表现形式。

相干性是指两个或多个光波的相位关系保持稳定的性质。

空间相干性可以通过干涉实验来验证。

在干涉实验中,如果两束光波的相干时间长,它们的相位关系将保持稳定,干涉条纹将清晰可见;如果相干时间短,光波的相位关系将不稳定,干涉条纹将模糊不清。

空间相干性与光的波长和光源的发散性有关。

光的波长越短,空间相干性越好,干涉条纹越清晰;光源的发散性越小,空间相干性越好,干涉条纹越清晰。

因此,使用单色光源和点光源可以提高干涉实验的分辨率。

三、光的干涉现象与空间相干性的应用光的干涉现象和空间相干性在科学和技术领域有着广泛的应用。

其中最重要的应用之一是干涉测量技术。

干涉测量技术是一种非接触式的测量方法,可以精确测量物体的形状、表面粗糙度和位移等参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 光的干涉与相干性
3.2 波动叠加与光的干涉
3.2.1 波动的独立性、叠加性及相干性
(3) 相干性
两列矢量波U1和U2在空间相遇点P的合振动矢量与强度:
(3.2-1)
(3.2-2)
两矢量波的振动方向正交时,U1(P, t)•U2*(P, t)=0, (3.2-3)
(1) 独立性
几列波在空间相遇时,只要各自的扰动不十分强烈(强度较小), 且所处介质具有线性响应特性,则各波可以保持其原有的传播特性,即 频率、振幅、振动方向等不变,并在离开相遇区后仍按各自原来的行进 方向独立地前进,彼此无影响。
(2) 叠加性
当两列(或多列)波在同一空间传播时,相遇的区域内各点将同时 参与每列波在该点引起的扰动。合扰动等于各列波单独在该点产生的扰 动的线性叠加。
离轴球面波及其同向相位共轭波波前(z=0平面):
3.1.1 波前的概念
(3.1-5a)
(3.1-5b)
说明:以上相位共轭波仅限于空间某个特定平面。严格的相位共轭波应在 空间各点均满足相位共轭条件,即两个波的波面在空间各点均一一 重合,但波矢量方向相反的一对反向传播的波。
3. 光的干涉与相干性
3.1 波前
3. 光的干涉与相干性
3.2 波动叠加与光的干涉
3.2.1 波动的独立性、叠加性及相干性
说明:
① 所谓扰动,对机械波而言,即介质质点的振动;对光波(电磁波)而言, 即电场强度矢量的变化 。
② 所谓线性叠加,对标量波而言,叠加波的波函数(振动状态)等于参与 叠加的各列波波函数(振动状态)的代数和;对矢量波而言,叠加波的 波函数(振动状态)等于各列波波函数(振动状态)的矢量和。
3. 光的干涉与相干性
3.2 波动叠加与光的干涉
主要内容
1. 波动的独立性、叠加性及相干性 2. 光的相干条件 3. 双光束干涉及干涉条件 4. 两束平面波的干涉 5. 多光束干涉及干涉条件 6. 获得相干光波的方法
3. 光的干涉与相干性
3.2 波动叠加与光的干涉
3.2.1 波动的独立性、叠加性及相干性
第3章
光的干涉与相干性
3 光的干涉与相干性
主要内容
§3.1 波前 傍轴条件与远场条件 §3.2 波动叠加与光的干涉 §3.3 分波前干涉 光场的空间相干性 §3.4 分振幅干涉(薄膜干涉) §3.5 迈克耳孙干涉仪 光场的时间相干性 §3.6 法布里-珀罗干涉仪 §3.7 其他干涉仪
3. 光的干涉与相干性
3. 光的干涉与相干性
3.1 波前
(2) 球面波的波前
x
Q1
Q1*
O
z
3.1.1 波前的概念
x
P1
R
R
P1*
O
z
R
R
(a) 轴上源点
(b) 轴外源点
图3.1-3 一对相位共轭球面波的波前
同轴球面波及其同向相位共轭波的波前(z=0平面):
(3.1-4a)
(3.1-4b)
3. 光的干涉与相干性
3.1 波前
3.1.2 同轴球面波的傍轴条件与远场条件
x1
x
Q y1
r
y z
P Oz
图3.1-4 傍轴条件与远场条件下的同轴球面波波前
位于x1y1平面上坐标原点Q处的点源所发出的同轴球面波在xy平面上 场点P的复振幅分布:
(3.1-6)
当场点距离源点相当远时,两者距离:
(3.1-7)
3. 光的干涉与相干性
3.1 波前
引入波前的意义:实际问题中常常无需关心一个波场的实际波面形状或 波线轨迹,而只关心波场在某一个特定波前上的复振 幅分布。
3. 光的干涉与相干性
3.1 波前
3.1.1 波前的概念
(1) 平面波的波前表示
一对沿xz平面传播的平面波P和P*在任意点(x, z)的复振幅分布:
(3.1-1)
x
P
q
O
-q
z
P*
场点的远场条件:
源点的远场条件:
① 源点P1与场点P 均满足傍轴条件:
(3.1-15)
② 场点P 满足傍轴条件,源点P1同时满足傍轴条件和远场条件:
(3.1-16)
2 光学成像的几何学原理
3.1 波前
3.1.3 离轴平面波
③ 源点P1满足傍轴条件,场点P同时满足傍轴条件和远场条件: (3.1-17)
§3.1 波前 傍轴条件与远场条件
3. 光的干涉与相干性
3.1 波前
主要内容
1. 波前的概念 2. 同轴球面波的傍轴条件与远场条件 3. 离轴球面波的傍轴条件与远场条件
3. 光的干涉与相干性 3.1.1 波前的概念
3.1 波前
波前:波场中的任一被考察平面,如物平面、像平面、透镜平面,以及 波场中任意被考察的平面。
③ 线性叠加性质以独立传播性质为前提条件,是波动方程具有线性性质的 必然结果。波动方程是否满足线性条件取决于波的扰动强度和所处介质 的响应特性。波的扰动强度较小或该介质对扰动具有线性响应,则线性 叠加性质及独立传播性质均成立;波的扰动强度较大或介质对扰动具有 非线性响应,则两者将不再成立,随之出现叠加的非线性效应。
离轴点源P1发出的球面波在场点P 的复振幅分布:
(3.1-13)
x1
x
P1
r0
Q1
r r1
P Oz
y1
y
z
图3.1-5 傍轴条件与远场条件下的离轴球面波波前
(3.1-14)
3. 光的干涉与相干性
3.1 波前
3.1.3 离轴平面波
场点P和源点P1的傍轴条件和远场条件:
场点的傍轴条件:
源点的傍轴条件:
图3.1-1 位于xy平面的相位共轭平面波的波前
在z=0平面上——一对相位共轭波:
(3.1-2)
3. 光的干涉与相干性
3.1 波前
3.1.1 波前的概念
一对沿z轴方向相向传播的平面波P和P*的复振幅分布可表示为
(3.1-3)
x
p-q P
O
-qLeabharlann zP*图3.1-2 位于yz平面的相位共轭平面波的波前
在x=0平面——一对相位共轭波:
④ 源点P1和场点P同时满足傍轴条件和远场条件:
(3.1-18)
结论:源点和场点同时满足傍轴条件和远场条件时,离轴球面波的波前也 将过渡到平面波波前。
3. 光的干涉与相干性
3.1 波前
本节重点
1. 波前的概念 2. 相位共轭波的概念 3. 傍轴条件与远场条件及其物理意义
3. 光的干涉与相干性
§ 3.2 波动叠加与光的干涉
傍轴条件:
傍轴条件下: 傍轴条件下同轴球面波波前的复振幅:
3.1.2 同轴平面波
(3.1-8) (3.1-9)
(3.1-10)
远场条件:

远场条件下: 结论:在远场条件下,球面波波前将过渡到平面波波前。
(3.1-11) (3.1-12)
3. 光的干涉与相干性
3.1 波前
3.1.3 离轴球面波的傍轴条件与远场条件
相关文档
最新文档