铝合金型材应用及挤压特点

合集下载

铝挤压成型的工艺特点及其优缺点分析

铝挤压成型的工艺特点及其优缺点分析

发布时间:2017-05-12铝挤压成型定义铝挤压成型是对放在模具型腔(或挤压筒)内的金属坯料施加强大的压力,迫使金属坯料产生定向塑性变形,从挤压模具的模孔中挤出,从而获得所需断面形状、尺寸并具有一定力学性能的零件或半成品的塑性加工方法。

铝挤压成型的分类按金属塑变流动方向,挤压可以分为以下几类:正挤压:生产时,金属流动方向与凸模运动方向相同反挤压:生产时,金属流动方向与凸模运动方向相反复合挤压:生产时,坯料一部分金属流动方向与凸模运动方向相同,另一部分金属流动方向与凸模运动方向相反径向挤压:生产时,金属流动方向与凸模运动方向成90度铝挤压成型的工艺特点1、在挤压过程中,被挤压金属在变形区能获得比轧制锻造更为强烈和均匀的三向压缩应力状态,这就可以充分发挥被加工金属本身的塑性;2、挤压成型不但可以生产截面形状简单的棒、管、型、线产品,还可以生产截面形状复杂的型材和管材;3、挤压成型灵活性大,只需要更换模具等挤压工具,即可在一台设备上生产形状规格和品种不同的制品,更换挤压模具的操作简便快捷、省时、高效;4、挤压制品的精度高,制品表面质量好,还提高了金属材料的利用率和成品率;5、挤压过程对金属的力学性能有良好的影响;6、工艺流程短,生产方便,一次挤压即可或得比热模锻或成型轧制等方法面积更大的整体结构件,设备投资少、模具费用低、经济效益高;7、铝合金具有良好的挤压特性,特别适合于挤压加工,可以通过多种挤压工艺和多种模具结构进行加工。

铝挤压成型的优点1、提高铝的变形能力。

铝在挤压变形区中处于强烈的三向压应力状态,可以充分发挥其塑性,获得大变形量。

2、制品综合质量高。

挤压成型可以改善铝的组织,提高其力学性能,其挤压制品在淬火时效后,纵向(挤压方向)力学性能远高于其他加工方法生产的同类产品。

与轧制、锻造等加工方法相比,挤压制品的尺寸精度高、表面质量好。

3、产品范围广。

挤压成型不但可以生产断面形状简单的管、棒、线材,而且还可以生产断面形状非常复杂的实心和空心型材、制品断面沿长度方向分阶段变化的和逐渐变化的变断面型材,其中许多断面形状的制品是采用其他塑性加工方法所无法成形的。

铝型材料的分类

铝型材料的分类

铝型材料的分类铝型材是一种广泛应用于现代工业和建筑领域的重要材料,以其良好的耐腐蚀性、轻质高强度等特点,在许多领域得到了广泛的应用。

根据不同的生产工艺和生产用途,铝型材可以分为多种不同的类型,下面我们来详细介绍一下铝型材的分类。

1.按制造工艺分类(1)挤压型材:挤压是制造铝型材最常用的方法之一,通过对铝材的加热使其变得柔软,然后用模具进行挤压成型,可以制造出各种不同形状和尺寸的铝型材,如角材、扁材、方管、圆管等。

(2)铸造型材:铸造铝材包括压铸、砂铸、永久模铸等方法,可用于生产较大规模和复杂形状的铝型材,比如汽车发动机缸体等。

(3)轧制型材:轧制铝板是一种常用于制造扁平型和带型铝材的方法,在轧机上不断经过多次轧制,最终将铝材变成所需的形状和尺寸。

2.按硬度分级(1)硬质铝合金:这种类型的铝型材通常都是经过热处理的,具有较高的强度、耐腐蚀性和较好的塑性,常用于制造航空航天、汽车等高端领域的零部件。

(2)半硬铝合金:这种铝型材具有较高的强度和耐腐蚀性,可用于制造建筑门窗、配电柜等组件。

(3)软质铝合金:这种类型的铝型材比较柔软,可加工性好,常用于制造广告牌、宣传杆、电线槽等。

3.按用途分类(1)建筑铝材:这种类型的铝型材通常用于制造建筑门窗、幕墙、顶棚、美化灯箱等,因其具有良好的耐腐蚀性和美观性而广泛使用。

(2)工业铝材:这种类型的铝型材通常用于制造机械设备、输送设备、交通工具、电力设备等,因其具有良好的强度和耐腐蚀性而受到青睐。

(3)交通铝材:这种类型的铝型材通常用于制造高速列车、高速公路护栏、港口码头、桥梁等,因其具有良好的轻质高强度特性而得到广泛应用。

总之,铝型材在现代工业和建筑领域有着广泛的应用,其不同的分类适用于不同的生产需求和用途,我们需要根据具体的情况选择合适的铝型材类型,以确保产品的质量和效率。

铝挤压成型的工艺特点及其优缺点分析

铝挤压成型的工艺特点及其优缺点分析

铝挤压成型的工艺特点及其优缺点分析发布时间:2017-05-12铝挤压成型定义铝挤压成型是对放在模具型腔(或挤压筒)内的金属坯料施加强大的压力,迫使金属坯料产生定向塑性变形,从挤压模具的模孔中挤出,从而获得所需断面形状、尺寸并具有一定力学性能的零件或半成品的塑性加工方法。

铝挤压成型的分类按金属塑变流动方向,挤压可以分为以下几类:正挤压:生产时,金属流动方向与凸模运动方向相同反挤压:生产时,金属流动方向与凸模运动方向相反复合挤压:生产时,坯料一部分金属流动方向与凸模运动方向相同,另一部分金属流动方向与凸模运动方向相反径向挤压:生产时,金属流动方向与凸模运动方向成90度铝挤压成型的工艺特点1、在挤压过程中,被挤压金属在变形区能获得比轧制锻造更为强烈和均匀的三向压缩应力状态,这就可以充分发挥被加工金属本身的塑性;2、挤压成型不但可以生产截面形状简单的棒、管、型、线产品,还可以生产截面形状复杂的型材和管材;3、挤压成型灵活性大,只需要更换模具等挤压工具,即可在一台设备上生产形状规格和品种不同的制品,更换挤压模具的操作简便快捷、省时、高效;4、挤压制品的精度高,制品表面质量好,还提高了金属材料的利用率和成品率;5、挤压过程对金属的力学性能有良好的影响;6、工艺流程短,生产方便,一次挤压即可或得比热模锻或成型轧制等方法面积更大的整体结构件,设备投资少、模具费用低、经济效益高;7、铝合金具有良好的挤压特性,特别适合于挤压加工,可以通过多种挤压工艺和多种模具结构进行加工。

铝挤压成型的优点1、提高铝的变形能力。

铝在挤压变形区中处于强烈的三向压应力状态,可以充分发挥其塑性,获得大变形量。

2、制品综合质量高。

挤压成型可以改善铝的组织,提高其力学性能,其挤压制品在淬火时效后,纵向(挤压方向)力学性能远高于其他加工方法生产的同类产品。

与轧制、锻造等加工方法相比,挤压制品的尺寸精度高、表面质量好。

3、产品范围广。

挤压成型不但可以生产断面形状简单的管、棒、线材,而且还可以生产断面形状非常复杂的实心和空心型材、制品断面沿长度方向分阶段变化的和逐渐变化的变断面型材,其中许多断面形状的制品是采用其他塑性加工方法所无法成形的。

铝型材应用领域及范围

铝型材应用领域及范围

铝型材应用领域及范围铝型材是由铝合金材料经过挤压、拉伸、压花等加工工艺制造而成的一种具有特定形状的铝制材料。

它具有轻质、强度高、耐腐蚀、导热性好等优点,因此在许多不同的领域和范围都有广泛的应用。

首先,铝型材在建筑领域是最常见且最重要的应用领域之一。

它被广泛用于建筑的门窗、幕墙、铝合金门、阳台栏杆、楼梯扶手等。

由于铝型材具有轻质且易于加工的特点,因此能够减轻建筑物的自重,提高建筑物的整体结构强度。

同时,铝型材的耐腐蚀性能能够保证建筑物在长期使用中的稳定性和持久性。

其次,铝型材在交通运输领域也有重要的应用。

例如,在航空航天领域,铝型材通常被用于制造飞机机身、翼梁和发动机外壳等部件。

这是因为铝型材具有良好的强度和刚度,能够满足飞机在高速飞行和复杂环境下的使用要求。

此外,在汽车制造领域,铝型材也用于制造汽车车身和发动机等部件,以减轻车辆的自重,提高燃油经济性和行驶性能。

此外,铝型材还广泛应用于电子、电气和电子设备制造领域。

在电子产品制造过程中,由于铝型材具有良好的导热性能,可以用于制造散热器、散热片、电子组件外壳等部件。

在电气设备制造领域,铝型材也可以用于制造电缆桥架、电缆槽、电力变压器外壳等部件。

此外,在电子设备制造过程中,铝型材也可以用于制造电子设备外壳、边框和支架等部件。

此外,铝型材还广泛应用于工业制造、机械制造、家具制造、舞台灯光和展览等领域。

在工业制造领域,铝型材通常被用于制造传送带、输送线、生产线等设备,以及制造工装夹具和模具。

在机械制造领域,铝型材可以用于制造机床结构部件、工作台、把手等。

在家具制造领域,铝型材被广泛用于制造家具的框架、支架等部件。

在舞台灯光和展览领域,铝型材可以用于制造舞台结构、展览展台等。

总之,铝型材具有轻质、强度高、耐腐蚀、导热性好等优点,能够满足不同行业和领域的需求。

它在建筑、交通运输、电子电气、工业制造、机械制造、家具制造、舞台灯光和展览等领域具有广泛的应用范围。

铝合金型材国标厚度正负差

铝合金型材国标厚度正负差

铝合金型材国标厚度正负差
(原创实用版)
目录
1.铝合金型材的概述
2.铝合金型材的应用领域
3.铝合金型材的国标厚度正负差
4.铝合金型材的优点
5.结论
正文
一、铝合金型材的概述
铝合金型材是以铝为基本原料制作而成的结构材料,属于有色金属材料。

它在工业中具有广泛的应用,如航空、航天、汽车、机械制造、船舶、建筑、装修及化学工业等领域。

二、铝合金型材的应用领域
铝合金型材由于其独特的性质,在各个领域都有广泛的应用。

在航空航天领域,铝合金型材因质量轻、强度高而被大量使用;在汽车行业,铝合金型材也被广泛应用于车身、发动机等部件的制造;在建筑行业中,铝合金型材被用于门窗、幕墙等建筑物的结构和装饰部分。

三、铝合金型材的国标厚度正负差
根据我国的相关标准《铝及铝合金挤压型材尺寸偏差》
GB/T14846-2014,铝合金型材的厚度允许偏差分为几个等级。

一般来说,1.4mm 铝合金窗型材厚度允许偏差为 0.05mm。

在实际应用中,铝合金型材的厚度偏差等级由供需双方商定,但有装配关系的型材壁厚偏差,应选择表 1 的高精级或超高精级。

四、铝合金型材的优点
铝合金型材具有许多优点,如密度低、强度高、塑性好、可加工成各种型材等。

此外,铝合金还具有良好的导电性、导热性和抗蚀性。

在一些特定领域,铝合金还可以通过热处理来提高其机械性能、物理性能和抗腐蚀性能。

五、结论
铝合金型材在工业中具有广泛的应用,其国标厚度正负差根据具体型材和应用领域有所不同。

大型铝合金型材的热挤压方法

大型铝合金型材的热挤压方法

大型铝合金型材的热挤压方法一、概述铝合金型材的热挤压是制作铝型材的一种主要方法,其工艺流程是将金属坯料在高温下挤压成型材,以获得所需尺寸和形状,同时对材料的结构和性能进行优化调整,以满足使用要求。

本文将介绍10种大型铝合金型材的热挤压方法,并详细讲述其工艺特点、优缺点及应用领域。

二、10种热挤压方法1. 直接挤压法直接挤压法是将铝合金坯料加热至较高温度,使其处于轻熔状态,然后在压机的压力下挤压成型。

该方法适用于系列化、重复生产的大型铝型材,是一种生产效率高、成型精度高、工艺稳定的工艺。

但由于坯料在挤压过程中会产生较大的内应力,容易导致型材的变形、开裂等缺陷。

2. 间接挤压法间接挤压法是将铝合金坯料加热至轻熔状态后,先挤压成一定形状的坯料,再经过模具改变其截面形状、尺寸等,最终在挤压机上完成成型。

该方法的优点是能够减少内应力的产生,提高型材的表面质量和耐腐蚀性,缺点则是生产周期较长,成本较高。

3. 反向挤压法反向挤压法是将铝合金坯料先挤压成一定形状,然后将其反转后再在另一端继续挤压成型。

该方法适用于制作T形、L形、U形等具有不对称截面的型材,可获得均匀的毛细管组织及良好的表面质量。

4. 侧向挤压法侧向挤压法是将铝合金坯料按一定角度倾斜后,通过侧向挤压成型,适用于制作具有斜面、斜缘等特殊形状的型材。

5. 串联挤压法串联挤压法是将两个不同截面形状的模具头与挤压筒连接起来,分别在不同的挤压工位将坯料挤压成两个不同形状的部件,再通过装配使其成为一个完整的型材。

该方法适用于制作复杂截面、大尺寸的铝型材。

6. 板材挤压法板材挤压法是将板材加热后,在挤压机中通过辊式挤压成型,该方法适用于制作厚壁型材,具有成型精度高、产品密度均匀、机械性能优良等优点。

7. 双挤压法双挤压法是将两个不同截面形状的模具头安装在同一挤压机内,同时对坯料进行两次挤压成型。

该方法适用于制作较复杂的型材,如圆形、方形、六边形等复杂几何形状的铝型材。

铝合金及型材的生产原理-挤压

铝合金及型材的生产原理-挤压

挤压挤压:就是对放在容器(挤压筒)中的锭坯一端施加压力,使之通过模孔以实现成形的一种压力加工方法。

挤压机的主要部件及辅助机构:模座、供锭机构、挤压垫与压余分离及传送机构、坯锭热切断和热剥皮装置、制品牵引机构。

挤压机的技术特征:挤压力、穿孔力、挤压杆的行程与速度、挤压筒的尺寸等。

挤压机的额定能力(最大挤压力)等于工作缸的总面积与工作液体的额定比压的乘积。

在铝及铝合金半成品中,挤压是主要的成型工艺之一,挤压产品占全部半成品的1/3,尤其是生产建筑型材。

挤压方法的基本特点是:(1)具有有利于金属塑性变形的应力状态,即强烈的三向压缩应力状态。

(2)变形金属与工具间存在着较大的外摩擦力,使变形很不均匀。

(3)对生产许多高合金化的铝合金,可获得挤压效应。

(挤压效应是指某些铝合金挤压制品与其它加工制品如轧制、拉伸和锻造等经相同的热处理后,前者的强度比后者高,而塑性比后者低。

这一效应是挤压制品所特有的特征。

)挤压的三个阶段:1.填充挤压阶段———充填、挤压上升。

2.平流挤压阶段———金属流动平稳而不交错,挤压力随锭坯长度的减少而直线下降。

3.紊流挤压阶段———锭坯外层金属及两个难变形区(靠近挤压垫及模子角落处的金属也向模孔流动,形成“挤压缩尾”。

挤压力又开始上升,此时应结束挤压操作。

)一、铝合金挤压成形的几个主要变形参数计算1.挤压系数λ(挤压比):金属变形量的大小λ=F筒/F制F筒、F制——分别为挤压筒和挤压制品的断面积。

2.填充系数在生产中,把挤压筒断面积F筒与铸锭断面积之比K叫做填充系数或墩粗系数,即K= F筒/F锭一般取K=1.02-1.12要考虑铝棒加热的膨胀性,例:20度铝棒加热到520度,其直径是原来的1.0125倍,即直径增大1.25%。

挤压管材时,K值过大,可能增加制品低倍组织和表面上的缺陷,铸锭的对中性差,影响管材的内表面质量和增大管材的壁厚差。

挤压大截面型材时,K值可增至1.5-1.6,有利于提高制品的力学性能,特别是横向性能。

铝合金挤压型材工艺及在汽车中的应用

铝合金挤压型材工艺及在汽车中的应用

铝合金挤压型材工艺及在汽车中的应用
铝合金挤压型材技术是一种重要的金属加工技术,广泛应用于汽车制造业和航空航天工业中,为实现更好的性能和更低的能耗提供重要技术保障。

本文将从多个角度论述铝合金挤压型材技术的原理、特性和在汽车制造中的应用。

首先,让我们来了解一下铝合金挤压型材技术的原理。

铝合金挤压型材技术将铝合金原料通过挤压的方法加工成所需的结构件,可以实现极高的加工精度和表面质量。

挤压技术分为压延技术和拉伸技术,利用模具压制铝合金材料形成所需的零件,它可以实现对复杂形状、尺寸要求较高的零件的加工,大大提高了加工效率和生产率。

其次,铝合金挤压型材技术具有出色的性能,如低密度、优异的抗腐蚀性和耐磨性、优良的电绝缘性和重量轻。

这些优势使它成为汽车制造业的最佳选择。

第三,铝合金挤压型材技术在汽车制造过程中发挥着重要作用,如车身和内饰,它们可以帮助改善汽车的整体结构和外观,提高效率,节省油耗。

此外,铝合金挤压型材技术还可以用于制造汽车发动机部件,整车悬挂系统,以及车轮、轮辋,减振器等零部件。

最后,铝合金挤压型材技术的优异性能使它在汽车制造业得到了广泛的应用,它不仅可以提高效率,减少能耗,而且可以改善汽车外观和结构,使其具有更好的性能。

所以,铝合金挤压型材技术在汽车制造过程中将起着越来越重要的作用。

综上所述,铝合金挤压型材技术是一种重要的金属加工技术,它
的优异性能使它在汽车制造业得到了广泛的应用,不仅可以提高效率,减少能耗,而且可以改善汽车外观和结构,使其具有更好的性能。

铝合金挤压型材技术在汽车制造过程中将起着越来越重要的作用,为实现更好的性能和更低的能耗提供重要技术保障。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)舰船、兵器用型材:主要用作船舶、舰艇、航空母舰、汽 艇、水翼艇的上层结构和甲板、隔板、地板以及坦克、装甲车、 运兵车等的整体外壳、重要受力部件,火箭和中远程弹的外壳,
(4)电子电气、家用电器、邮电通讯以及空调散热器用型材: 主要用作外壳、散热部件等。
(5)石油、煤炭、电力等能源工业以及机械制造工业用型材, 主要用作管道、支架、矿车架、输电网、汇流排以及电机外壳和 各种机器的受力部件等。
一般来说,反向挤压比正向挤压流动均匀,润滑挤压比不润 滑挤压流动均匀,冷挤压比热挤压流动均匀,有效摩擦挤压比其 他挤压方法流动均匀。
4)挤压工模具的影响
挤压工模具的结构形状、表面状态、模孔排列、加热温度对金 属的流动有很大的影响,设法提高金属流动的均匀性,是设计、 制造挤压工模具的一个十分重要的问题。
靠近挤压垫片和模子角落处的金属不参与流动而形成难变形的阻 滞区或死区,在此阶段中挤压力随着锭坯的长度减少而下降。第 三阶段为终了挤压阶段,或称紊流挤压阶段。在此阶段中,随着 挤压垫片(已进入变形区内)与模子间距离的缩小,迫使变形区 内的金属向着挤压轴线方向由周围向中心发生剧烈的横向流动, 同时,两个死区中的金属也向模孔流动,形成挤压加工所特有的 “挤压缩尾”等缺陷,见图1-4。在此阶段中,挤压力有重新回升 的现象。此时应结束挤压操作过程。图1-5为铝材挤压时不同挤压 阶段金属坐标网格变化示意图。
此外,在挤压管材和空心型材时,穿孔针的结构和形状及锥 度,舌型模和平面分流组合模的结构、分流孔的大小和形状、 焊合室的形状和尺寸、宽展模的宽展角、变断面模子中过渡区 的结构和形状等都对金属的流动有很大的影响。在设计模子时 应特别注意选择合理的结构和形状,以获得较均匀的金属流动 。
2)合金本性的影响
金属及合金的强度与塑性对流动景象也有很大的影响,一般 来说,强度越高,粘性越小;挤压温度越低则金属流动性越均匀 。对于同一种金属或合金来说,其铸锭在挤压前加热条件对金属 流动性也有一定的影响。当锭坯加热不均匀时会影响其横断面上 变形抗力的均匀性,从而导致金属流动不均匀。
3)挤压方法的影响
(1)工模具结构和形状的影响
挤压铝合金时,最常采用的模子主要有平面模不均
为了减少非接触变形,获得精确形状和尺寸的产品,在模 子压缩锥到工作带的过渡处应做成一定的圆角,而且要有一定 长度的工作带。在挤压断面形状复杂和异形材时,为了获得均 匀的流速,调整工作带的形状和长度是有益的,这也是设计型 材模具的关键技术之一。
铝合金型材的应用及挤压特点
绪论 铝合金挤压型材的分类
一、铝合金挤压型材的分类
对铝合金型材进行科学合理的分类,有利于科学合理地选择 生产工艺和设备,正确地设计与制造工模具以及迅速地处理挤压 车间的专业技术问题和生产管理问题。
1)按照用途或使用特性,铝合金型材可分为通用型材和专用型 材。
专用型材按用途可分为:
(6)交通运输、集装箱、冷藏箱以及公路桥梁用型材:主要用 作装箱板、跳板、集装箱框架、冷冻型材以及轿车面板等。
(7)民用建筑及农业机械用型材:如民用建筑门窗型材、装饰 件、围栏以及大型建筑结构件、大型幕墙型材和农用喷灌器械部 件等。
(8)其他用途型材:如文体器材、跳水板、家具构件型材等。
2)按形状与尺寸变化特征,型材可分为恒断面型材和变断面型 材。
二、主要因素对金属流动特征的影响
1)接触摩擦与润滑的影响
挤压时流动的金属与工具间存在接触摩擦力,其中以挤压 筒壁上的摩擦力对金属流动的影响最大。当挤压筒内壁上的摩 擦力很小时,变形区范围小且集中模孔附近,金属流动比较均 匀,而当摩擦力很大时,变形区压缩锥和死区的高度增大,金 属流动则很不均匀,以至促使锭坯外层金属过早地向中心流动 形成较长的缩尾。可见,接触摩擦力对金属的流动均匀性起不 良的影响。但是,在某些情况下,可以有效地利用金属与工具 之间接触摩擦和冷却作用来改善金属的流动,如在挤压管材时 ,由于锭坯中心部分的金属受到穿孔针摩擦作用和冷却作用, 而使其流速减缓,从而使金属流动变得较为均匀,减短产生缩 尾的长度;在挤压断面壁厚变化急剧的复杂异形型材时,在设 计模孔时利用不同的工作带长度对金属产生不同的摩擦作用来 调节型材断面上各部分的流速,从而减少型材的扭拧、弯曲度 、提高产品的精度;近年来发展起来的“有效摩擦挤压”,则
一、挤压时金属流动的基本阶段
挤压时金属的流动情况一般可分为三阶段。第一阶段为开始挤压
阶段,又称为填充挤压阶段。金属受挤压轴的压力后,首先充满挤 压筒和模孔,挤压力直线上升直至最大。在卧式挤压机上采用正挤 压法挤压时,其填充过程如图1-2所示。第二阶段为基本挤压阶段, 也叫平流挤压阶段,见图1-3。当挤压力达到突破压力(高峰压 力),金属开始从模孔流出瞬间即进入此一阶段。一般来说,在此 阶段中金属的流动相当于无数同心薄壁圆管的流动,即铸锭的内外 层金属基本上不发生交错或反向的紊乱流动,锭坯在同一横断面上 的金属质点均以同一速度或保持一定的速度进入变形区压缩锥。
恒断面型材可分为通用实心型材、空心型材、壁板型材和建 筑门窗型材等。变断面型材分为阶段变断面和渐变断面型材。
第一章铝合金挤压的基本
变形条件和特点
第一节铝合金挤压时金属的流动特性
研究金属在挤压时的塑性流动规律是非常重要的, 因为它与挤压制品的组织、性能、表面品质、外形尺 寸和形状精确度以及工模具设计原则、工模具的寿命 等有十分密切的关系。金属的性能、挤压方法、工艺 条件和模具结构等不同,挤压时金属的流动景象有很 大的差异。用坐标网格法、观测塑性法、组合试样法 、低倍组织法、光塑法、“莫尔条纹”法以及硬度法 等来研究挤压时的金属流动景象。铝合金挤压生产一 般用观察制品和未挤压完的铸锭断面的低倍组织变化 和金属流线特点来评定金属的流动景象,图1-1为挤 压时金属流动坐标网格变化图。
(1)航天航空用型材:如整体带筋壁板、工字大梁、机翼大梁 、梳状型材、空心大梁型材等,主要用作飞机、宇宙飞船等航天 航空器的受力结构部件以及直升飞机异形空心旋翼大梁和飞机跑 道等。
(2)车辆用型材:主要用作高速列车、地铁列车、轻轨列车、 双层客车、豪华大巴以及货车等车辆的整体外形结构件和重要受 力部件以及装饰部件。
相关文档
最新文档