高分子分离膜与膜分离技术概述

合集下载

高分子分离膜与膜分离技术要点

高分子分离膜与膜分离技术要点

H OH
n_ 2 2
H OH
OH H
H H
H
O OH
CH2OH
31
从结构上看,每个葡萄糖单元上有三个羟基。 在催化剂(如硫酸、高氯酸或氧化锌)存在下,能 与冰醋酸、醋酸酐进行酯化反应,得到二醋酸纤维 素或三醋酸纤维素。
C6H7O2 + (CH3CO)2O = C6H7O2(OCOCH3)2 + H2O C6H7O2 + 3(CH3CO)2O = C6H7O2(OCOCH3)3 + 2 CH2COOH
材料
(0.2 nm)
16
过滤式膜分离
2020/9/30
材料
17
2)渗析式膜分离
料液中的某些溶质或离子在浓度差、电位差的推 动下,透过膜进入接受液中,从而被分离出去。
属于渗析式膜分离的有渗析和电渗析等。 电渗析(electrodialysis)
在电场中交替装配的阴离子和阳离子交换膜,在 电场中形成一个个隔室使溶液中的离子有选择地分 离或富集
2020/9/30
材料
18
电渗析过程
2020/9/30
材料
19
阳极室 浓缩室 淡化室 浓缩室 阴极室
+ Cl-
+
+ Cl- Cl+ Na+ + + 阳极 阳膜
- Cl-

Na+
Na+
Na+ Cl- -
Cl- Cl-
- Na+ -
Na+
Na+

阴膜 阳膜
阴膜
阴极
注意:离子交换膜的作用并不是起离子交换的作用,而是
起离2020子/9/30 选择透过性作用。 材料

膜分离技术综述

膜分离技术综述

膜分离技术综述一膜分离技术是近三十多年来发展起来的高新技术,是多学科交*的产物,亦是化学工程学科发展新的增长点。

它与传统的分离方法比较,具有如下明显的优点:1.高效:由于膜具有选择性,它能有选择性地透过某些物质,而阻挡另一些物质的透过。

选择合适的膜,可以有效地进行物质的分离,提纯和浓缩;2.节能:多数膜分离过程在常温下*作,被分离物质不发生相变, 是一种低能耗,低成本的单元*作;3.过程简单、容易*作和控制;4.不污染环境。

由于这些优点、使膜分离技术在短短的时间迅速发展起来,已广泛有效地应用于石油化工、生化制药、医疗卫生、冶金、电子、能源、轻工、纺织、食品、环保、航天、海运、人民生活等领域,形成了独立的新兴技术产业。

目前,世界膜市场以每年递增14~30%速度发展,它不仅自身形成了每年约百亿美元的产值,而且有力地促进了社会、经济及科技的发展。

特别是,它的应用与节能、环境保护以及水资源的再生有密切的关系,因此在当今世界上能源短缺、水荒和环境污染日益严重的情况下,膜分离技术得到世界各国的普遍重视,欧、美、日等发达国家投巨资立专项进行开发研究,已取得在此领域的领先地位。

我国在“六五”、“七五”、“八五”、“九五”以及863、973计划中均列为重点项目,给予支持。

关于发展膜分离技术的重要性,美国官方的文件说,“18世纪电器改变了整个工业过程,而20世纪膜技术改变了整个面貌”。

1987年日本东京召开的国际膜与膜过程会议上,曾将“21世纪的多数工业中膜过程所扮演的战略角色”列为专题进行深入讨论,与会的专家一致认为,膜技术将是20世纪末到21世纪中期最有发展前途的高技术之一。

世界著名的化工与膜专家,美国国家工程院院士、北美膜学会主席黎念之博士(我校化工系兼职教授)在1994年应邀访问我国时说“要想发展化工就必须发展膜技术”。

国际学术界一致认为“谁掌握了膜技术,谁就掌握了化工的未来”。

可见,发展膜分离技术对于学科建设和经济发展均具有重要而深远的意义。

膜分离技术

膜分离技术

螺旋卷式膜组件2

工作:膜组件装进圆柱形压力容器,构
成一个螺旋卷式膜组件,原料从一端进 入组件,沿轴向流动,在驱动力作用下, 易透过也沿径向渗透通过膜至中心管, 另一端为渗余液。

应用:反渗透、超滤、气体分离。
螺旋卷式膜组件3

特点:

结构紧凑——单位体积内膜的有效面积大; 制作工艺相对简单; 安装、操作比较方便; 适合于低流速、低压操作; 对原料前处理要求高——膜一旦被污染,不 易清洗。
膜分离在制药工业中的应用2

内蒙古中润制药有限公司利用膜分离技 术回收6-APA结晶母液。


采用EA技术于常温常压下回收母液中的溶剂, 脱出溶剂的母液经纳滤膜浓缩,结晶重新获 得6-APA晶体。 通量比反渗透膜提高30%, 6-APA浓缩程度 也可提高一倍,大大降低了投资及运行成本。
膜分离在制药工业中的应用3
主要应用于超滤、微滤、反渗透、渗透 气化和电渗析。

圆管式膜组件1

在圆筒状支撑体的内侧或外侧刮制上半 透膜而得到的圆管形分离膜。
下图所示,为膜刮制在多孔支撑管的内 侧,原料液被泵送至管内,渗透液经半 透膜后,通过多孔支撑管排出,浓缩液 从管子另一端排出。
能使滤液被渗透通过, 则需在支撑管和膜之间安装一层很薄的多孔 纤维网,帮助滤液向支撑管上的孔眼横向传 递,同时对膜提供必要的支撑作用。

特点:流动状态好;容易清洗;设备和
操作费用高;膜装填密度大。

用于:超滤、微滤和单级反渗透。
螺旋卷式膜组件1

由中间是多孔支撑材料,两边是膜的双 层结构装配而成。

其中三个边沿被密封而粘结成膜袋状,另一 个开放的边沿与一根多孔中心透过液收集管 连接,在膜袋外部的原料液侧再垫一层网眼 形间隔材料(隔网),也就是膜-多孔支撑 材料-膜-隔网依次叠合。绕中心透过液收集 管紧密地卷在一起,形成一个膜卷。

第五章 高分子分离膜与膜分离技术

第五章 高分子分离膜与膜分离技术

5.2.1 多孔膜的分离机理
• 多孔膜的分离机理主要是筛分原理, 依膜表面平均孔径的 大小而区分为微滤(0.1-10µm)、超滤(2-100nm)、纳滤 (0.5-5nm),以截留水和非水溶液中不同尺寸的溶质分子。
• 多孔膜表面的孔径有一定的分布,一般来说, 分离膜的平 均孔径要小于被截留的溶质分子的分子尺寸。 这是由于 亲水性的多孔膜表面吸附有活动性、 相对较小的水分子 层而使有数孔径相应变小, 这种效应孔径愈小愈显著。
聚合物
溶剂
添加剂
均质制膜液
流涎法制成平板型、圆管型;纺丝法制成中空纤维
蒸出部分溶剂
凝固液浸渍
水洗
后处理
非对称膜
L—S法制备分离膜工艺流程框图
将制膜材料用溶剂形 成均相制膜液,在模具中 流涎成薄层,然后控制温 度和湿度,使溶液缓缓蒸 发,经过相转化就形成了 由液相转化为固相的膜。
复合制膜工艺:
多孔支持膜 涂覆
• 多孔膜主要用于混合物水溶液的分离,如渗析 (Dialysis,D)、微滤Microfiltration,MF)、超滤 (Ultrafiltration,UF)、纳滤(Nanofiltration,NF)和亲 和膜 (Affinity membrane,AfM)等;
• 致密膜用于电渗析(Electrodialysis, ED)、逆渗透 (Reverse osmosis,RO)、气体分离(Gas separation,GS)、 渗透汽化(Pervaporation, PV)、蒸气渗透(Vapor permeation,VP)等过程。
形成超薄膜的溶液
交联
交联剂
加热
形成超薄膜
亲水性高分子溶液的涂覆
复合膜
复合制膜工艺流程框图

功能高分子化学离子交换膜与分离膜概述

功能高分子化学离子交换膜与分离膜概述
离子交换膜在各个方面的应用
• 脱盐或纯化
• 水解
• 浓缩或分离
• 复分解
• 置换
• 电解、氧化、还原以及电化合成
2020/11/26
功能高分子化学离子交换膜和分离膜概述
11
2020/11/26
功能高分子化学离子交换膜和分离膜概述
12
电渗析器,异相离子交换膜引自2020/11/26功能高分子化学离子交换膜和分离膜概述
N a+ S O 3-N a+
C lS O 3-N a+
N a+
N a+
C lN a+
磺 酸 型 阳 膜 在 N aC l稀 溶 液 中 平 衡 示 意 图 R SO - 固 定 基 团 ; Na+ 解 离 子
功能高分子化学离子交换膜和分离膜概述
9
图例7
2020/11/26
N a+
苯 乙 烯 -二 乙 烯 基 苯 共 聚 物 N a+
_ 3
+
S
O
_ 3
+
磺酸型阳离子交换膜的膜体结构示意图 R SO2 固 定 基 团 ; + 解 离 离 子
功能高分子化学离子交换膜和分离膜概述
5
图例4
2020/11/26
磺 酸 型 阳 离 子 交 换 膜 曲 折 通 道 示 意 图
R S O 2 固 定 基 团 ;+ 解 离 离 子
功能高分子化学离子交换膜和分离膜概述
C l-
C O 3-N a+
C l-
C l-
S O 3-N a+
N a+
C l-
C l-

膜分离技术

膜分离技术

膜分离技术膜分离技术是一种重要的分离技术,通过膜将混合物中不同分子大小、形状、电荷和极性等特性的物质分离出来。

它广泛应用于各种领域,如环境保护、医药制造、食品加工、化学工业和电子行业等。

本文将介绍膜分离技术的工作原理、分类和应用,并探讨其未来的发展前景。

一、膜分离技术的基本原理膜分离技术利用膜作为分离介质,将混合物分离成两个或更多的组分,其中其中至少有一种组分通过膜而另一种组分不直接通过。

根据膜分离的机制可以分为以下三种类型:1、压力驱动膜分离技术压力驱动膜分离技术是指通过施加压力将混合物推动到膜上,以实现分离的技术。

膜的孔径大小、膜的材质和压力差均会影响分离效果。

该技术主要包括超滤、逆渗透和微滤等。

超滤是指利用孔径大小在10-100纳米的超滤膜去除溶液中的高分子物质。

逆渗透是利用高压驱动水通过0.1纳米左右的逆渗透膜,将混合物中的水增量分离出来,这是制取纯水的主要技术之一。

微滤是利用孔径在0.1-10微米的微滤膜去除悬浮物、细菌和微生物等。

2、电力驱动膜分离技术电力驱动膜分离技术是利用电场将混合物推动到膜上,实现分离的技术。

例如电渗析技术是利用电场和离子之间的电荷作用,将含有离子的溶液通过电场驱动到离子交换膜中,使得原来溶液中的阴离子和阳离子在两侧集中,最终通过两个极板分别收集。

3、扩散驱动膜分离技术扩散驱动膜分离技术是指利用分子间的扩散速率的大小差异,将混合物中的混合物分离的技术。

例如气体分离、液体浓缩和溶液析出等。

二、膜分离技术的分类根据膜的性质和分离机制的不同,可以将膜分离技术分为以下几种类型:1、纳滤技术纳滤技术是利用孔径在10-100纳米的纳滤膜,将分子大小在10-100纳米之间的物质分离出来。

纳滤技术主要应用于制备高分子材料、微电子器件制造和水处理等领域中。

2、超滤技术超滤技术是利用孔径在0.01-0.1微米之间的超滤膜,将分子大小在1000道100万道之间的物质分离出来。

超滤技术主要应用于蛋白质提取、水处理、生物制品制备和废水处理等领域中。

膜分离技术概述

膜分离技术概述

质在膜表面附近积累,造成由膜表面到溶液主体之间具有浓
度梯度的边界层,它将引起溶质从膜表面通过边界层向溶液
主体扩散,这种现象称为浓差极化。
浓 差 极 化 可 对 反 渗 透 过 程 产 生 下 列 不 良 影 响 :①由 于 浓
差极化,膜表面处溶质浓度升高,使溶液的渗透压△π 升高,
当 操 作 压 差△p 一 定 时 , 反 渗 透 过 程 的 有 效 推 动 力 (△p—
去,并使其浓度增高,或参加反应等,如从海水中制取氯化
钠;
(2)从 有 机 溶 剂 中 去 除 电 解 质 离 子 , 如 乳 清 脱 盐 、 氨 基 酸
提纯等;
(3)电解质溶液中,同电性但具有不同电 荷的离子的分
离,如从海水提取 1 价盐等。
4 气体分离膜
4.1 基本原理
气体膜分离过程
如图 4 所示。 含有某
(增刊) 5 张洪.污水处理厂的恶臭污染控制技术.污染防治技术,2008,24(1)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
(上接第 89 页)
风机合二为一,直接减少烟风道的长度,减少机组建设工程 会大大降低,具有一定意义的节能效果。
量,相应地减少了相关烟气挡板及其控制系统,也相应取消 参考文献
了增压风机及其系统,能够降低机组的投资建设费用。 (3)有一定的节能效果。 取消脱硫烟气旁路挡板后,将增
压风机与引风机合二为一,缩短了烟道长度,减少了烟道弯 头,减小了增压风机及其挡板的节流损失,因此烟道的阻力
1 刘家钰,等.1000MW 机组引风机与脱硫增压风机合并改造研究,热 力 发 电 ,2010 (8 )
些低分子组分和少量

膜分离技术

膜分离技术

膜分离技术膜分离技术是一种新型高效、精密分离技术,它是材料科学与介质分离技术的交叉结合,具有高效分离、设备简单、节能、常温操作、无污染等优点,广泛应用于工业领域,尤其在食品、医药、生化领域发展迅猛。

据统计,膜销售每年以10%~20%的速度增长,而最大的市场为生物医药市场。

一膜分离技术1.1原理膜分离技术是一种使用半透膜的分离方法,在常温下以膜两侧压力差或电位差为动力,对溶质和溶剂进行分离、浓缩、纯化。

膜分离技术主要是采用天然或人工合成高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。

现已应用的有反渗透、纳滤、超过滤、微孔过滤、透析电渗析、气体分离、渗透蒸发、控制释放、液膜、膜蒸馏膜反应器等技术,其中在食品、药学工业中常用的有微滤、超滤和反渗透种。

1.2特点膜分离技术具有如下特点, (1)膜分离过程不发生相变化,因此膜分离技术是一种节能技术;2)膜分离过程是在压力驱动下,在常温下进行分离,特别适合于对热敏感物质,如酶、果汁、某些药品的分离、浓缩、精制等。

(3)膜分离技术适用分离的范围极广,从微粒级到微生物菌体,甚至离子级都有其用武之地,关键在于选择不同的膜类型;(4)膜分离技术以压力差作为驱动力,因此采用装置简单,操作方便。

1.3分类超滤的截留相对分子质量在1000~10000之间,选择某一截留相对分子质量的膜可以将杂质与目标产物分离。

超滤技术在生化产品分离中应用最早、最为成熟,已广泛应用于各种生物制品的分离、浓缩。

纳滤膜具有纳米级孔径,截留相对分子质量为200~1000,能使溶剂、有机小分子和无机盐通过。

纳滤可以采用两种方式提取抗生素,一是用溶剂萃取抗生素后,萃取液用纳滤浓缩,可改善操作环境;二是对未经萃取的抗生素发酵液进行纳滤浓缩,除去水和无机盐,再用萃取剂萃取,可减少萃取剂用量。

微滤是发展最早、制备技术最成熟的膜形式之一,孔径在0.05~10um 之间,可以将细菌、微粒、亚微粒、胶团等不溶物除去,滤液纯净,国际上通称为绝对过滤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

传递。分离膜对流体可以是完全透过性的,也可以 是半透过性的,但不能是完全不透过性的。膜在生
产和研究中的使用技术被称为膜技术。
高分子分离膜与膜分离技术概述
2
ห้องสมุดไป่ตู้
在化工单元操作中,常见的分离方法有筛分、 过滤、蒸馏、蒸发、重结晶、萃取、离心分离等。 然而,对于高层次的分离,如分子尺寸的分离、生 物体组分的分离等,采用常规的分离方法是难以实 现的,或达不到精度,或需要损耗极大的能源而无 实用价值。
有用的。并且膜技术还可以和常规的分离方法结合
起来使用,使技术投资更为经济。
高分子分离膜与膜分离技术概述
6
膜分离过程没有相的变化(渗透蒸发膜除外), 常温下即可操作;由于避免了高温操作,所浓缩和 富集物质的性质不容易发生变化,因此在膜分离在食
品、医药等行业使用具有独特的优点;膜分离 装置简单、操作容易,对无机物、有机物及生物制 品均可适用,并且不产生二次污染。由于上述优 点,近二三十年来,膜科学和膜技术发展极为迅 速,目前已成为工农业生产、国防、科技和人民日 常生活中不可缺少的分离方法,越来越广泛地应用 于化工、环保、食品、医药、电子、电力、冶金、 轻纺、海水淡化等领域。
高分子分离膜与膜分离技术概述
4
② 过滤式膜分离 利用组分分子的大小和性质差别所表现出透过 膜的速率差别,达到组分的分离。属于过滤式膜分 离的有超滤、微滤、反渗透和气体渗透等; ③ 液膜分离 液膜与料液和接受液互不混溶,液液两相通过 液膜实现渗透,类似于萃取和反萃取的组合。溶质 从料液进入液膜相当于萃取,溶质再从液膜进入接 受液相当于反萃取。
高分子分离膜与膜分离技术概述
8
2. 按膜的分离原理及适用范围分类 根据分离膜的分离原理和推动力的不同,可将
其分为微孔膜、超过滤膜、反渗透膜、纳滤膜、渗 析膜、电渗析膜、渗透蒸发膜等。
3. 按膜断面的物理形态分类 根据分离膜断面的物理形态不同,可将其分为
对称膜,不对称膜、复合膜、平板膜、管式膜、中 空纤维膜等。
高分子分离膜与膜分离技术概述
5
膜分离过程的共同优点是成本低、能耗少、效率高、 无污染并可回收有用物质,特别适合于性质相似组 分、同分异构体组分、热敏性组分、生物物质组分 等混合物的分离,因而在某些应用中能代替蒸馏、 萃取、蒸发、吸附等化工单元操作。
实践证明,当不能经济地用常规的分离方法得到较
好的分离时,膜分离作为一种分离技术往往是非常
高分子分离膜与膜分离技术概述
7
4.1.3 功能膜的分类 1. 按膜的材料分类
表4—1 膜材料的分类
类别
膜材料
纤维素酯类 纤维素衍生物类
聚砜类
聚酰(亚)胺类
非纤维素酯类 聚酯、烯烃类
含氟(硅)类
其他
举例 醋酸纤维素,硝酸纤维素,乙基纤维素等 聚砜,聚醚砜,聚芳醚砜,磺化聚砜等 聚砜酰胺,芳香族聚酰胺,含氟聚酰亚胺等 涤纶,聚碳酸酯,聚乙烯,聚丙烯腈等 聚四氟乙烯,聚偏氟乙烯,聚二甲基硅氧烷等 壳聚糖,聚电解质等
高分子分离膜与膜分离技术概述
9
4. 按功能分类 日本著名高分子学者清水刚夫将膜按功能分为
分离功能膜(包括气体分离膜、液体分离膜、离子 交换膜、化学功能膜)、能量转化功能膜(包括浓 差能量转化膜、光能转化膜、机械能转化膜、电能 转化膜,导电膜)、生物功能膜(包括探感膜、生 物反应器、医用膜)等。
高分子分离膜与膜分离技术概述
12
膜过程 推动力
传递机理
渗析
浓度差 溶质的扩散传递
电渗析
电位差
电解质离子的 选择传递
气体分离 压力差
气体和蒸汽的 扩散渗透
渗透蒸发 压力差 选择传递
液膜分离 浓度差
反应促进和 扩散传递
透过物
截留物
低分子量物、离子 溶剂
电解质离子
非电解质, 大分子物质
气体或蒸汽
难渗透性气 体或蒸汽
易渗溶质或溶剂
难渗透性溶 质或溶剂
10
4.1.4 膜分离过程的类型 分离膜的基本功能是从物质群中有选择地透过
或输送特定的物质,如颗粒、分子、离子等。或者 说,物质的分离是通过膜的选择性透过实现的。几 种主要的膜分离过程及其传递机理如表4—2所示。
高分子分离膜与膜分离技术概述
11
表4—2 几种主要分离膜的分离过程
膜过程 推动力
传递机理
高分子分离膜与膜分离技术概述
高分子分离膜与膜分离技术概述
1
5.1 概述
5.1.1 分离膜与膜分离技术的概念 分离膜是指能以特定形式限制和传递流体物质
的分隔两相或两部分的界面。膜的形式可以是固态
的,也可以是液态的。被膜分割的流体物质可以是 液态的,也可以是气态的。膜至少具有两个界面,
膜通过这两个界面与被分割的两侧流体接触并进行
均可用于制备分离膜。但实际上,真正成为工业化 膜的膜材料并不多。这主要决定于膜的一些特定要 求,如分离效率、分离速度等。此外,也取决于膜 的制备技术。
高分子分离膜与膜分离技术概述
14
目前,实用的有机高分子膜材料有:纤维素酯 类、聚砜类、聚酰胺类及其他材料。从品种来说, 已有成百种以上的膜被制备出来,其中约40多种已 被用于工业和实验室中。以日本为例,纤维素酯类 膜占53%,聚砜膜占33.3%,聚酰胺膜占11.7%,其 他材料的膜占2%,可见纤维素酯类材料在膜材料中 占主要地位。
透过物
截留物
膜类型
微滤 压力差 颗粒大小形状 水、溶剂溶解物 悬浮物颗粒 纤维多孔膜
超滤
压力差 分子特性大小形状 水、溶剂小分子
胶体和超过 截留分子量 的分子
非对称性膜
纳滤 压力差 离子大小及电荷
水、一价离子、 多价离子
有机物
复合膜
反渗透 压力差 溶剂的扩散传递 水、溶剂
溶质、盐
非对称性膜复 合膜
高分子分离膜与膜分离技术概述
杂质
溶剂
续上表
膜类型 非对称性膜
离子交换膜
均相膜、复合 膜,非对称膜
均相膜、复合 膜,非对称膜 乳状液膜、支 撑液膜
高分子分离膜与膜分离技术概述
13
4.2 膜材料及膜的制备
4.2.1 膜材料 用作分离膜的材料包括广泛的天然的和人工合
成的有机高分子材料和无机材料。 原则上讲,凡能成膜的高分子材料和无机材料
高分子分离膜与膜分离技术概述
3
具有选择分离功能的高分子材料的出现,使上 述的分离问题迎刃而解。膜分离过程的主要特点是 以具有选择透过性的膜作为分离的手段,实现物质 分子尺寸的分离和混合物组分的分离。膜分离过程 的推动力有浓度差、压力差和电位差等。膜分离过 程可概述为以下三种形式:
① 渗析式膜分离 料液中的某些溶质或离子在浓度差、电位差的 推动下,透过膜进入接受液中,从而被分离出去。 属于渗析式膜分离的有渗析和电渗析等;
相关文档
最新文档