方差分析列表计算

合集下载

单因素方差分析公式研究单因素方差分析的公式

单因素方差分析公式研究单因素方差分析的公式

单因素方差分析公式研究单因素方差分析的公式单因素方差分析公式研究在统计学中,单因素方差分析是用于比较两个或多个组之间差异的一种方法。

它可以帮助我们确定因素对观测值的影响程度,并判断这种影响是否具有统计学上的显著性。

本文将对单因素方差分析的公式进行研究和解析,以帮助读者更好地理解和应用该方法。

一、方差的概念和计算公式方差是描述数据分散程度的统计量,用于衡量观测值与其均值之间的偏离程度。

对于一个样本数据集,方差的计算公式如下:\[S^2 = \frac{\sum{(X_i - \bar{X})^2}}{n-1}\]其中,\(S^2\)表示样本方差,\(\sum{(X_i - \bar{X})^2}\)表示所有观测值与均值之差的平方和,\(n\)表示样本容量。

二、单因素方差分析的公式在单因素方差分析中,我们将观测值按照某个因素分成两个或多个组,并比较这些组之间的差异。

单因素方差分析的计算公式如下:\[F = \frac{SSB}{SSW}\]其中,\(F\)表示方差分析的统计量,\(SSB\)表示组间平方和,\(SSW\)表示组内平方和。

三、组间平方和的计算方法组间平方和是一种衡量不同组之间差异的统计量,它的计算方法如下:\[SSB = \sum{\frac{T_i^2}{n_i}} - \frac{T^2}{N}\]其中,\(T_i\)表示第\(i\)组的总和,\(n_i\)表示第\(i\)组的样本容量,\(T\)表示所有观测值的总和,\(N\)表示总样本容量。

四、组内平方和的计算方法组内平方和是一种衡量同一组内观测值之间差异的统计量,它的计算方法如下:\[SSW = \sum{(X_{ij} - \bar{X_i})^2}\]其中,\(X_{ij}\)表示第\(i\)组的第\(j\)个观测值,\(\bar{X_i}\)表示第\(i\)组的均值。

五、方差分析的统计显著性检验通过计算得到方差分析的统计量\(F\)后,需要进行显著性检验来判断因素对观测值的影响是否具有统计学上的显著性。

一年多点试验资料的方差分析

一年多点试验资料的方差分析

区组 2 32.0 16.0 28.5
14.25 0.5
0.25
品种 3 240.0 80.0 278.25 92.75 108.0 26.0
误差 6 166.0 27.67 119.5 19.92 39.5 6.58
总变异 11 438.0
426.25
148.0
变异起源 DF
区组
2
品种
3
误差
6
总变异
II
12
10
12
15
L5
III
7
9
10
7
Tv
24
27
33
33
Tv..
168 132 231
147
Tr.
T L..
35 49 33
117 T=678
(1) L1试验点品种比较试验旳方差分析 • 分别对表10-3早稻多点试验各试验点小区产量成果(kg)
进行方差分析,计算出各试验点相应旳平方和、自由度和 均方。
F值
msr/ mse msl/ mse msv/ mse msvl/ mse
二、品种多点试验成果统计分析示例
• 设有一种早稻品种多点试验,供试品种四个(V=
4),以V1、V2, V3, V4表达,其中V4品种为对照, 三次反复(r=3),以I、II、III表达,随机区 组试验设计,分别在五个试验点(L=5)同步进 行,以L1, L2, L3, L4, L5表达,小区面积为100m2, 试验小区产量成果(kg)列于表10-3。
自由度 10 4 3 12 30 59
均方 10.850 172.275 126.600 29.475 13.783
F
4.295* 2.139*

第九章 方差分析

第九章  方差分析

第九章方差分析方差分析是从方差的角度,研究各有关因素对试验结果影响大小的有效方法.从数理统计的角度来看,方差分析是通过比较总体方差的各种估计量之间的差异,来分析等方差的正态总体是否具有相同的均值.称之为方差分析的原因,是在显著性检验中所用统计量的分子、分母都是总体方差的估计量.试验中,将要考察的指标称为试验指标或响应值,试验指标值的全体构成我们所关注的总体;影响试验指标的条件称为因素,因素所处的状态称为该因素的水平.如果试验仅考虑一个因素,则称为单因素试验,否则称为多因素试验.可能有多个因素影响试验指标,但总是取少数重要因素进行研究.在方差分析中,通常取1-3个因素进行研究.因素的水平可以是数量化的,也可以是定性的.例如要研究几个不同的小麦品种间产量的差异时,考虑的因素是品种,而每个水平便是一个小麦品种,是定性的水平;而在研究氮肥施用量对小麦产量的影响时,水平(氮肥施用量)则是数量化的.方差分析只研究各个水平对试验指标的影响是否显著,并不给出各水平的影响程度.因此,方差分析是定量地估计各因素对试验指标的影响的工具.9.1 单因素方差分析先看一个实例.例1 在饲养条件尽可能相同的条件下,检验某种激素对羊羔增重的效应.选用3个剂量进行试验,加上对照(不用激素)在内,每次试验要用4只羊羔,若进行4次重复试验,则共需要16只羊羔.一种常用的试验方法,是将16只羊羔随机分配到16个试验单元.这种方法被称为完全随机设计,在试验单元间的试验条件很一致的情况下,这种设计最为有效.经过200天的饲养后,各羊羔的增重数量(单位:kg)见表9.1.表9.1 各羊羔的增重数量(kg/每头/每200d)- 204 -- 205 -本例中,试验指标是羊羔的增重数量,只有1个因素——激素,为单因素试验.激素的4个剂量(含对照)构成因素的4个水平.单因素方差分析用于分析单因素试验中,各个水平对试验指标的影响是否显著.为叙述单因素方差分析问题,再看一个实例.例 2 一批由同种原料织成的同一种布,用不同染整工艺处理,然后进行缩水率试验,考察染整工艺对缩水率的影响,在其它条件尽可能相同时,测得缩水率(%)如表9.2所示.的染整工艺处理后,缩水率的全体构成的集合,假定2~(,)X N μσ.所考察的因素是染整工艺A ,5种不同的染整工艺A 1,A 2,…A 5为因素的5个水平,假定水平i A 下的样本来自相互独立且等方差的正态总体2~(,)(1,2,5)i i X N i μσ= ,它们都是总体X 的特款.就该批布中的任意4块分别考察5个水平上的缩水率,看作是4次重复试验.令i i αμμ=-,则αi 反映了水平A i 对缩水率的影响.由于x ij 是来自2~(,)i i X N μσ的样本,于是i j i i j i i j x μεμαε=+=++ (i =1,2,…,5;j =1,2,…,4).这里,εij 表示观测过程中各种随机影响引起的随机误差;εij 相互独立,服从均值为0,方差为σ2(未知)的正态分布.考察五个水平对缩水率的影响是否差异显著,即要检验假设012345:0H ααααα===== (9.1)一般地,设总体2~(,)X N μσ,因素A 有k 个水平A 1,A 2,…,A k .今对第i 个总体进行n i 次重复观测(i =1,2,…,k ),得到表9.3中的观测数据.- 206 - 表9.3 单因素方差分析数据表假定水平i A 下的样本来自相互独立、方差相同的正态总体2~(,)i i X N μσ(1,2,)i k = .令i i αμμ=-,则αi 反映了水平A i 对试验指标的影响.于是有i j i i j i i j x μεμαε=+=++(1,2,,;1,2,,)j i k j n == (9.2)其中,εij 表示试验观测过程中各种随机影响引起的误差;εij 相互独立,服从均值为0,方差为σ2(未知)的正态分布.称(9.2)为单因素方差分析的数学模型.令n = n 1 + n 2 + … + n k , (9.3)表示观测数据总数,不难证明111,0.kki i ii i n n μμα====∑∑单因素方差分析是要考察各个水平对试验指标影响的差异是否显著.因此,要检验的统计假设为012:0k H ααα==== (9.4)即检验观测数据x ij 是否来自k 个相同的总体.记11,in i ij i i j ix x x x n ⋅⋅⋅===∑, (9.5) 1111,in kkij i i j i x x x x x n⋅⋅⋅⋅⋅======∑∑∑, (9.6) 则i x ⋅为总体A i 的样本均值,x 为总样本的均值.(9.5)式与(9.6)式中的圆点表示已经求过和的指标,下同.令211()in k t ij i j S x x ===-∑∑, (9.7)211()in ke ij i i j S x x ⋅===-∑∑, (9.8)- 207 -21()kA i i i S n x x ⋅==-∑. (9.9)称S t 为总离差平方和,它反映了观测数据总的变异程度;显然,i x ⋅是i μ的无偏估计,又ij ij i x εμ=- ,于是ij ij i e x x ⋅=-是误差εij 的无偏估计.因此,称S e 为误差平方和或组内平方和,它反映了随机误差εij 对试验指标影响的总和;S A 是水平i A 的平均i x ⋅与总平均x 的离差平方和,其中系数i n 是对水平i A 上观测次数的体现.因此,A S 反映了因素A 的各水平i A 的均值间的差异程度,称A S 为因素平方和或组间平方和.由于2112112211111122111111()[()()]()2()()()()()2()()(ii ii iiiin kt ij i j n kij i i i j n n n kk k ij i ij i i i i j i j i j n n n kk kij i i i ij i i j i j i j i S x x x x x x x x x x x x x x x x x x x x x x x ==⋅⋅==⋅⋅⋅⋅======⋅⋅⋅⋅=======-=-+-=-+--+-=-+-+--=∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑221111)()iin n kkj i i i j i j x x x ⋅⋅====-+-∑∑∑∑于是有平方和分解公式:S t =S A +S e . (9.10) 其意义在于将因素平方和S A 与误差平方和S e 从总平方和S t 中分解出来.在各ij ε相互独立地服从N (0,σ2)分布的前提下,当假设(9.3)成立时,模型(9.2)变为i j i j x με=+(1,2,,;1,2,,)i i k j n == (9.11)即所有观测数据来自同一正态总体N (μ, σ2) ,于是由第六章(6.10)式知22/~(1)t S n σχ-.令21(),1,2,,in i ij i j S x x i k ⋅==-=∑- 208 -则/(1)i i S n -是来自总体i X 的样本方差,于是2/i S σ服从自由度为1i n -的χ2分布.而S e /σ2 =(S 1 + S 2 + …+S k ) /σ2,由12,,,k X X X 的独立性假定,知S 1,S 2,…,S k 相互独立.由χ2分布的可加性,知22/~()e S n k σχ- (9.12)至于A S 的分布性质,我们不假证明地给出如下定理: 定理1 (1) A S 与e S 相互独立;(2) 当假设(9.4)成立时,22/~(1)A S k σχ-.若用t f ,A f ,e f 分别表示t S ,A S ,e S 的自由度,由上述讨论得到t A e f f f =+ (9.13)称(9.13)为自由度分解公式.为了检验假设(9.4),取)/()1/(k n S k S F e A --=(9.14)当假设(9.4)成立时,由(9.12)及定理1,有~(1,)F F k n k -- (9.15)给定显著性水平α(0<α<1),查F 分布表得到自由度为(k -1, n -k )的F 分布临界值F α(k -1, n -k ),从样本算出F 统计量的值F 0,据F 0的大小作如下推断:若F 0 >F α(k -1, n -k )则拒绝假设(9.4),认为某些水平(并非全部)对试验指标的影响有显著差异;若F 0 ≤F α(k -1, n -k )则接受假设(9.4),认为各水平对试验指标的影响无显著差异.通常将单因素方差分析过程归结为如表9.4所示的单因素方差分析表. 为简化计算,还可以对所有观测数据同时加、减或同时乘、除一个非零常数.不难证明,对所有观测数据x ij 同时加、减一个任意常数不影响各平方和的值,同时乘、除以一个非零常数不影响F 统计量的值.即对原始数据x ij 做变换,0ijij x ax b a '=+≠后再进行方差分析,其结果不变.1 23 4计算得到:S A = =208,S e = 646,S t = S A + S e = 854.S A的自由度为k―1=3,S e的自由度为n―k =12.据此,列方差分析表如表9.5.由(9.13)式算出的F值为1.2879,查表得临界值F0.05(3,12)=3.49,从样本算出的F值1.2879远比5%显著水平要求的F值3.49小,因此认为各个处理间没有显著差异.值得注意的是,这并不证明4个处理间没有差异,可能存在真实的差异,但是在所选取的概率水平上,试验没有足够的灵敏度,未能检测出差异.单因素方差分析可在表(9.3)上计算.现对例2进行表格化计算.为便于计算,将表9.2中的各观测数据同减去5,在表9.6中表格化计算(9.14)和(9.15)式右端各项.注意到k i- 209 -- 210 -55.54,34.37,A e S S ==89.91.t A e S S S =+= 据此得到如表9.7所示的方差分析表.0.01F =6.07>4.89,故拒绝假设(9.1),认为染整工艺对缩水率的影响极显著.在方差分析中,仍用* *表示极显著(a≤0.01时显著),用*表示0.01<a≤0.05时显著.在单因素方差分析中,各水平上观测次数n 1,n 2,…,n k 可以不相等.但在实际问题中,多取n 1 = n 2 =…n k ,因为选择同样大小的样本有如下优点:(1)与方差相等的假设的偏离不会过大,方差相等的检验比较容易;(2)F 检验时出现的第二类错误变小;(3)均值的其它比较(参阅§9.3)较为简单.9.2 双因素方差分析在双因素方差分析中,假定试验指标受两个变异因素A 、B 的影响,并假定行因素A 有m 个水平A 1,A 2,…,A m ,列因素B 有r 个水平B 1,B 2,…,B r .在每对组合水平(A i , B j )上做一次试验,得到m ×r 个试验结果x ij (i =1,2,…,m ; j =1,2,…,r ).所有ij x 独立,实验数据见表9.8.假定总体2~(,)X N μσ,2~(,)ij ij x N μσ,则11m rij i jmr μμ==∑∑ (9.16) 再假定组合水平(A i , B j )下的效应可以用A i 下的效应i α和B j 下的效应j β之和来表示,即ij i j μμαβ=++其中- 211 -110,0mriii j αβ====∑∑(正负效应相互抵消). 表9.8 双因素方差分析观测数据表1111,,r m A Biij j ij j i r m μμμμ====∑∑则A i μ和B j μ分别表示水平i A和j B 上的总体均值,且有 ,A i i αμμ=-.B j j βμμ=-类似于单因素方差分析,可将双因素方差分析的线性模型表示为(1,2,,;1,2,,)ij i j ij x i m j r μαβε=+++== . (9.17)这里,εij 表示其它随机因素引起的随机误差,εij 相互独立,服从均值为0,方差为σ2(未知)的正态分布.双因素方差分析的检验假设为01120212:0(9.18):0(9.19)m r H H αααβββ====⎧⎨====⎩仍用n = m ×r 表示观测数据总数,记11,(1,2,,)ri ij i i j x x x x i m r ⋅⋅⋅====∑ (9.20)11,(1,2,,)mj ij j j i x x x x i r m⋅⋅⋅====∑ (9.21) 111,m rij i j x x x x n⋅⋅⋅⋅====∑∑ (9.22)- 212 - 21()mA i i S r x x ⋅==-∑ (9.23)21()rB j j S m x x ⋅==-∑ (9.24)211()mre ij i j i j S x x x x ⋅⋅===--+∑∑ (9.25)211()mrt ij i j S x x ===-∑∑ (9.26)则i x ⋅为水平A i 上的样本平均,j x ⋅为水平B j 上的样本平均,x 为总体平均.S A 是因素A 的水平A i 上的样本平均i x ⋅与总体平均x 的离差平方和,若因素A 对响应值影响显著,则至少有一个离差平方(i x ⋅-x )2 较大,从而S A 较大;而当因素A 的影响不显著时S A 较小.因此,S A 反映了因素A 对试验结果的影响.同样,S B 反映因素B 对试验结果的影响.将模型(9.17)写成μμμμμμμμε+--=-+-+-=Bj A i ij B j A i ij ij x x )]()([于是,ij ij i j e x x x x ⋅⋅=--+是εij 的估计值.因此,S e 为误差平方和,它反映了其它随机因素对试验结果的影响.通过简单的推导可以证明下列平方和分解公式:S t = S A + S B + S e , (9.27)定理 2 (1) A S ,B S ,e S 相互独立,且()22/~(1)(1)e S m r σχ--,()22/~1t S mr σχ-;(2) 当假设01H 成立时,22/~(1)A S m σχ-; (3) 当假设01H 成立时,22/~(1)A S m σχ-; 证明略.若用t f ,A f ,B f ,e f 分别表示t S ,A S ,B S ,e S 的自由度,则由定理2得到- 213 -t A B e f f f f =++ (9.28)称(9.28)为自由度分解公式.由定理2,有()/(1)~1,(1)(1)/(1)(1)A A e S m F F m m r S m r -=----- (9.29)显然,F A 越大说明因素A 对试验结果的影响越大.对给定的显著性水平α,查F 分布表得自由度为(m ―1, (m ―1)(r ―1))的F 分布临界值F α,若从样本由(9.29)式算出F A >F α,则拒绝假设H 01,认为因素A 对试验结果有显著影响;否则认为因素A 的影响不显著.类似地,可使用统计量()/(1)~1,(1)(1)/(1)(1)B B e S r F F r m r S m r -=----- (9.30)对因素B 进行显著性检验.若从样本由(9.30)式算出F A >F α,则拒绝假设H 02,认为因素B 对试验结果有显著影响;否则认为因素B 的影响不显著.上述讨论可归结为如表9.9所示的方差分析表.表9.9 双因素方差分析表例3 将土质基本相同的一块耕地分成均等的五个地块,每块又分成均等的四个小区.有四个品种的小麦,在每一地块内随机分种在四个区上,每小区的播种量相同,测得收获量如下表(单位:kg ),试以显著性水平α1=0.05, α2=0.01考察品种和地块对收获量的影响是否显著.解 为计算简单起见,每一收获量均减去32,列表计算.- 214 -注意到m =4,r =5,n =20,经计算得到S A = 134.65, S B = 14.10, S t = 175.03, S e = 26.28,查表得临界值F 0.05(4, 12)=3.26,F 0.01(3, 12)=5.95.由于F B <F 0.05(4, 12),故认为地块不同对收获量无显著影响.由于F A >F 0.01(3, 12),故认为品种不同对收获量影响极显著.9.3 多重比较当假设(9.4)被拒绝后,只能表明在显著水平α下,至少有两个子体的均值间差异显著,并不表示k 个均值之间两两的差异都显著.通常要进一步检验该因素在各水平上的均值两两之间的差异是否显著,以确定哪些水平对响应值有重要影响.我们称这种差异性检验为多重比较.多重比较的方法很多,而且每种方法都有各自的优、缺点.这里,我们介绍适用范围较广的两种方法.一种是Scheffe 方法(S 法),另一种是Tukey 方法(T 法).在进行所有两个均值的同时比较时,如果每次比较的冒险率(犯第一类错误的概率)为α,则S 法和T 法全体冒险率均为α.如果用t 检验进行所有两个均值的同时比较,当均值个数大于2时,尽管每拒绝1个假设所犯的错误都是α,但同时拒绝2个假设所犯的错误是221(1).ααααα+-=-->如果对7个均值进行两两比较,要比较2721C =次.给定拒绝每个假设(i j μμ=,- 215 -1≤i <j ≤7)的冒险率0.10α=,要拒绝所有21个假设,即判明7个均值互不相等所犯的错误将是211(1)0.89α--≈!显然,在使用t 检验进行所有两个均值的同时比较时,全体的冒险率随均值个数的增加而增加.因此,t 检验只能适用于随机抽出的两个均值的比较,并不适用于所有的两个均值的同时比较. 9.3.1 S 法仍用e f 表示误差平方和S e 的自由度,/e e e MS S f =表示均方误差,假定观测数据满足方差分析的基本要求.在单因素方差分析中,Scheffe (1953)给出用于检验假设H 0:μi = μj (1≤i <j ≤k )的统计量i j D S α= (9.31)其中),1()1(e f k F k S --=αα.当||i j i j x x D ->时,则拒绝假设H 0 :μi =μj ,认为水平A i 与水平A j 在显著水平α下差异显著;否则认为A i 与A j 差异不显著.对于双因素方差分析,我们可以分别对每个因素作单因素方差分析,进而进行多重比较.也可以按下述步骤进行近似的S 检验:1 若检验假设A j A i H μμ=:0,则使用统计量ij D S = (9.32) 其中),1()1(e a f m F m S --=α.当||i j ij x x D ⋅⋅->时,则拒绝A j A i H μμ=:0,否则接受H 0.2 若检验假设B j B i H μμ=:0,则使用统计量ij D S α= (9.33) 其中),1()1(e f r F r S --=αα.- 216 - 当||i j ij x x D ⋅⋅->时,则拒绝B j B i H μμ=:0,否则接受H 0.比如在例2中,k = 5, n 1 = n 2 = … = n 5 = 4, f e = 15, MS e = 2.29.取α=0.05,查表得F 0.05(4,15)=3.06.于是由(9.32)及(9.33)得24.1206.34205.0=⨯=S ,)51(74.3)4141(29.224.12≤<≤=+⨯⨯=j i D ij .12||0.025 3.74x x -=<,故μ1与μ2差异不显著. 15|| 3.925 3.74x x -=>,故μ1与μ5差异不显著.14|| 3.35 3.74x x -=<,但与临界值3.74较接近,虽在显著水平0.05下认为μ1与μ4差异不显著,却能看出二者间存在真实的差异.类似地,可对其中任二均值进行比较. 9.3.2 T 法在用T 法进行k 个水平上的均值μ1,μ2,…,μk 之间的两两比较时,要求各水平上的重复数相同,即n 1 = n 2 = … = n k ,并且还要求2cov(,),,1,2,,;i j x x b i j k i j σ==≠ .即i x 与j x 的协方差不依赖于i 和j .T 法所使用的统计量是(,e T q k f α= (9.34) 其中(,)e q k f α是自由度为(,)e k f 的t 化极差分布的上侧α分位点.(,)e q k f α可以从“多重比较的q 表”中查到.S 法无论水平重复数是否相同都适用,T 法只适用于水平重复数相同的情况;在进行所有均值间的两两比较时,T 法比S 法灵敏度高,能检出较小的差异.因此,在水平重复数相同时应当用T 法.9.4 双因素等重复试验的方差分析在双因素试验中,除考察因素A 和B 对试验结果的影响外,还应考虑A 、B- 217 -的各水平的搭配情况对试验结果的影响,称此为A 与B 的交互作用,并把它设想为某一因素,记为A B ⨯.为考虑交互作用A B ⨯,对因素A 、B 的各水平的每一搭配(A i ,B j )都进行l (l ≥2)次重复观测,得到表9.10中的观测数据.表9.10 双因素等重复试验数据记n mrl =,1111m r lijk i j k x x n ====∑∑∑11,,1,2,,;1,2,,.lij ijk ij ij k x x x x i m j r l ⋅⋅⋅=====∑111,,1,2,,.r li ijk i i j k x x x x i m rl⋅⋅⋅⋅⋅⋅=====∑∑ 111,,1,2,,.mlj ijk j j i k x x x x j r ml⋅⋅⋅⋅⋅⋅=====∑∑双因素等重复试验的方差分析计算量较大.其基本原理也是将总的偏差平方和作如下分解:- 218 - 211122111122111()()()()()m r lt ijk i j k mrlmijk ij i i j k i rm rj ij i j j i j e A B A BS x x x x rl x x ml x x k x x x x S S S S ===⋅⋅⋅====⋅⋅⋅⋅⋅⋅⋅===⨯=-=-+-+-+--+=+++∑∑∑∑∑∑∑∑∑∑ (9.35)其中各偏差平方和的表达式如下:2111()m r le ijk ij i j k S x x ⋅====-∑∑∑21()mA i i S rl x x ⋅⋅==-∑21()rB j j S ml x x ⋅⋅==-∑211()m rA B ij i j i j S k x x x x ⨯⋅⋅⋅⋅⋅===--+∑∑e S 为误差平方和,反映了随机误差对试验指标的影响;A S 和B S 分别为因素A 和B 的偏差平方和,分别反映了因素A 和B 对试验结果的影响程度,A B S ⨯为A 与B 的交互作用A B ⨯的偏差平方和.当假设“H A :因素A 对试验结果无显著影响”成立时()/(1)~1,(1)/[(1)]A A e S m F F m mr l S mr l -=---当假设“H B :因素B 对试验结果无显著影响”成立时()/(1)~1,(1)/[(1)]B B e S r F F r mr l S mr l -=---当假设“H AB :交互因素AB 对试验结果无显著影响”成立时()/[(1)(1)]~(1)(1),(1)/[(1)]A B B e S m r F F m r mr l S mr l ⨯--=----检验过程可归纳在如表9.11所示的方差分析表中.立性和等方差性.从理论上讲对上述假定都要通过样本进行统计检验.有关独立性问题,通常是通过试验设计来解决.至于正态性和等方差性,可以根据第八章进行拟合优度检验和Bartlett 检验,还可以对原始数据进行适当的变换,使之满足正态性和等方差性.习 题 九1. 某灯泡厂用四种不同配料方案制成的灯丝,生产了四批灯泡.在每批灯泡中随机地其中(1,2,3,4)i t i =表示第i 批灯泡的寿命.试问(1) 四种灯丝生产的灯泡的使用寿命有无显著差异(0.05α=)? (2) 用S 法比较任意两批灯泡平均寿命之间的差异性(0.05α=).2. 设有三种型号的设备制造同一产品,对每种型号的设备各观测其5天的日产量,数x i 表示第i种型号的设备的日产量.问不同型号的设备生产能力之间是否其中(1,2,3)i有显著差异?3. 为了解3种不同饲料对猪生长影响的差异,用3个品种的猪进行全面搭配试验,3个月后测得9头猪的体重增加量(单位:kg)如下表:试分析饲料之间及猪的品种之间对猪的体重增加有无显著差异.4. 一种火箭使用了四种燃料、三种推进器作射程试验,对于燃料与推进器的每一种搭试检验燃料和推进器对火箭射程是否有显著影响,以及两个因素的交互作用对火箭射程是否有显著影响.- 220 -。

方差分析公式范文

方差分析公式范文

方差分析公式范文方差分析是一种用于分析两个或两个以上样本均值之间差异的统计方法。

它可以帮助我们确定不同样本之间的显著性差异,并判断这些差异是否由于随机因素所致。

方差分析公式如下所示:总平方和(Total Sum of Squares, SST)是对所有样本数据的离差进行求和的统计量,它表示了所有观测值与总体均值之间的总偏离程度。

计算公式如下:SST = Σ (X - X_mean)^2其中,Σ表示求和操作,X表示观测值,X_mean表示所有观测值的平均值。

处理组平方和(Between-group Sum of Squares, SSB)是对不同处理组均值与总体均值之间的偏差进行求和的统计量,它度量了不同处理组之间的差异大小。

计算公式如下:SSB = Σ (X_group_mean - X_mean)^2其中,X_group_mean表示其中一组样本的平均值。

误差平方和(Error Sum of Squares, SSE)是对每个处理组内部的个体与该组样本均值之间的偏离进行求和的统计量,它度量了组内误差的大小。

计算公式如下:SSE = Σ( X - X_group_mean)^2其中,X表示样本观测值。

根据这些统计量,我们可以计算出方差分析的主要统计量:均方(Mean Squares, MS)及F统计量(F-statistic)。

处理组均方(Between-group Mean Squares, MSB)可以通过处理组平方和除以处理组的自由度(dfB)计算得出:MSB = SSB / dfB其中,dfB = k - 1,k表示处理组数。

误差均方(Error Mean Squares, MSE)可以通过误差平方和除以误差的自由度(dfE)计算得出:MSE = SSE / dfE其中,dfE = N - k,N表示总样本量。

F统计量则可以通过处理组均方除以误差均方得到:F=MSB/MSE最后,我们可以通过查阅F分布的临界值表,根据给定的显著性水平确定F统计量的P值,从而判断不同处理组均值之间差异的显著性。

第九章 方差分析506312261

第九章 方差分析506312261

第九章 方差分析第一节 方差分析的基本原理及步骤一、方差分析的基本原理假设从一个实验中抽取了9名被试的学习成绩,如表9-1所示。

随后又抽取了9名被试的学习成绩,如表9-2所示。

你能从这些数据发现什么问题吗?首先,从数据可知,不仅组与组之间存在不同,而且同一组内部也存在着不同。

前者称组间变异,后者称组内变异。

其次,从组间变异看,表9-1组间变异大于表9-2。

表9-1 第1次抽取结果表9-2 第2次抽取结果 方法 学生实验成绩 Xt X方法 学生实验成绩 Xt XA 6 5 7 6A 1 7 4 4B 11 9 10 10 7B 6 2 8 6 5C5465C3655再次,从看组内变异看,表9-1比 9-2差异小。

综上所述,表10-1组间变异较大而组内变异较小,表10-2组间变异较小而组内变异较大,组间变异大小与组内变异大小并非正比关系。

这表明,若组间变异与组内变异的比率越大,各组平均数的差异越大。

因此,通过组间变异和组内变异比率大小来推论几个相应平均数差异显著性的思想就是方差分析的逻辑依据或基本原理。

所以说,方差分析是将实验中的总变异分解为组间变异和组内变异,并通过组间变异和组内变异比率的比较来确定影响实验结果因素的数学方法,其实质是以方差来表示变异的程度。

总变异组间变异实验条件随机误差组内变异个体差异随机误差实验误差图10-1 总变异的分解图二、方差分析的基本过程(一)综合虚无假设与部分虚无假设方差分析主要处理多于两个的平均数之间的差异检验问题,需要检验的虚无假设就是“任何一对平均数”之间是否有显著性差异。

综合虚无假设:样本所归属的所有总体的平均数都相等 备择假设:至少有两个总体的平均数不相等(二)方差的可分解性总变异 = 组间变异 + 组内变异变异(V ariance ,用V 表示)即方差(S 2),又称均方差或均方(M ean S quare ,MS ),其公式为()df SS n X X MS V S =--=∑1),(22或或其中,分子为离均差平方和,简称平方和,记为SS ;分母为自由度,记为df ,所以总变异及各变异源记为w b t MS MS MS +=总变异的数学意义是每一原始分数(X )与总平均数(t X )的离差,记为()tX X -组间变异的数学意义是每一组的平均数(i X )与总平均数的离差,记为()t iX X-组内变异的数学意义是每一组内部的原始分数与其组平均数(i X )的离差,记为()iX X -(二)总变异的分解及各部分的计算 1.平方和的分解与计算 1)平方和的定义式根据变异的可加性,任何一个原始分数都有()()()i t itX X X XX X -+-=-对容量为n 的某一小组而言,则有()()()[]∑∑-+-=-i t it X X X XX X为了使平方和不为0,须做代数的处理,即有()()()[]22∑∑-+-=-i t itX X X XX X对k 组页言,则有()()()[]∑∑∑∑-+-=-22ititX X X X X X()()()()∑∑∑∑∑∑-+--+-=222iititiX X X X X X X X ∵ ()()0=--∑∑i t iX X X X∴ ()∑∑-2tX X ()()∑∑∑∑-+-=22itiX X X X即 总平方和 = 组间平方和 + 组内平方和 或 w b t SS SS SS += 2)平方和的计算式()()nX XX X 222∑∑∑-=-总平方和:()()∑∑∑∑∑∑∑-=-=nX X X X SS t t 222组间平方和:()()()∑∑∑∑∑∑∑-=-=n X n X X X SS tib222组内平方和:()∑∑-=2i wX X SS ()∑∑-=2i w X X SS b tSS SS-=例9-1:要探讨噪音对解决数学问题的影响。

方差分析

方差分析

第九章方差分析第一节方差分析的一般问题一、方差分析的意义在工农业生产和科学研究中,经常要搞一些试验活动。

比如,为了解某个新品种的种植效果,需要在土壤条件、温度、湿度、施肥、灌溉等因素相同的情况下,将新品种与其他同类品种的种植结果作比较。

商品的包装方式和在商场里的摆放位置,对吸引顾客是有帮助的,那么为确定某商品合适的包装和销售位置,也可以进行观察试验。

在化工生产中,原料的成分、反应温度、压力、时间、催化剂、设备水平、操作规程等,对产品的得率和质量有很大的影响,通过实验研究,可以帮助我们找到一个最优的生产方案。

在试验基础上取得的数据,称为试验数据。

方差分析技术是对试验数据进行分析的一种比较有效的统计方法。

方差分析是费暄在马铃薯种植试验中首先提出来的,当初他采用的处理方法是,把观察数据看作是马铃薯品种与试验误差共同影响的总和,然后把条件(马铃薯品种)变异和随机试验误差进行比较,以此分析马铃薯品种之间是否存在显著的差异。

后来费暄给出的总结性意见是,方差分析是在若干个能够互相比较的资料组中,把产生变异的原因(主要是条件因素和随机因素)加以明确区分的方法和技术。

二十世纪二十年代,费暄又对方差分析作了系统的研究,并把他的研究成果写在《供研究人员用统计方法》等著作中。

关于单个总体均值和两总体均值差的检验内容,我们在前面已作了比较系统的介绍。

从形式上看,方差分析把这一类检验问题向前拓展了一步,它能够同时对若干个总体均值是否相等的假设进行检验,从而大大提高了统计分析的效率。

另外,方差分析对样本的大小没有更多的限制。

无论是大样本还是小样本,均可以使用方差分析方法。

方差分析方法的最大好处在于,在资料分析过程中所带来的种种便利性,其一,它能够使资料的层次结构清晰有序,其二,它能把一切需要进行的假设检验归结成一种共同格式。

有鉴于此,方差分析的思想逐渐渗透到统计学的许多方法之中。

比如,我们在相关与回归分析一章中所述的总离差平方和的分解,实际上就是方差分析思想的应用。

方差分析(ANOVA)1

方差分析(ANOVA)1
Duncan 检验方法,探索性研究
Dunnet 检验方法,证实性检验,常用于多 个试验组与一个对照组间的比较。
单因素方差分析
例1 在肾缺血再灌注过程的研究中,将36只雄性大鼠随机等 分成三组,分别为正常对照组、肾缺血60分组和肾缺血60 分再灌注组,测得各个体的NO数据见数据文件no.sav,试 问各组的NO平均水平是否相同?
P2,45=3.20-3.21<8.87,本次F值处于F界值之 外,说明组间均方组内均方比值属于小概率 事件,因此拒绝H0,接受H1,三个总体均 数不等或不全相等
方差分析的关键条件
第一、各组服从正态分布! 第二、各组符合方差齐性! 第三、独立性
方差齐性检验
Bartlett检验法 Levene F 检验 最大方差与最小方差之比<3,初步认为方
H0:三个总体均数相等,即三组工作人员 的体重指数总体均数相等
H1:三个总体均数不等或不全相等 a=0.05
(2)计算检验统计量F值
变异来源
组间 组内 总变异
SS 自由度(df)
MS
143.406 363.86 507.36
2
71.703
45
8.09
47
F 8.87
(3)确定p值,作出统计推断
18~岁 21.65 20.66
… … 18.82 16 22.07 8.97
30~岁 27.15 28.58
… … 23.93 16 25.94 8.11
45~60岁 20.28 22.88 … … 26.49 16 25.49 7.19
一、方差分析的基本思想
思想来源: 观察值总变异可以分解为组间变异和组内变异
变异程度除与离均差平方和的大小有关外, 还与其自由度有关,由于各部分自由度不相等, 因此各部分离均差平方和不能直接比较,须将 各部分离均差平方和除以相应自由度,其比值

方差分析

方差分析

方差分析一.方差分析的概念及意义方差分析,又称“变异数分析”或“F检验”,用于两个及两个以上样本均数差别的显著检验。

由于各种因素的影响,研究所得的数据呈现波动状。

造成波动的原因可分成两类,一是不可控的随机因素,另一是研究种施加的对结果形成影响的可控因素。

方差分析的意义,工业生产中产品质量优劣,农业生产中产量高低,由诸多因素造成。

如农业生产中,肥料,浇灌,良种,管理等;化工生产中,原料成分,催化剂,剂量,反应温度,压力,溶液,机器设备与操作人员水平。

每种因素的改变,可影响产品质量与数量,那么在诸因素中找出对质量的某种指标有显著影响的因素,还要弄清这些显著因素在什么状态下(水平)起的作用大。

方差分析就是根据试验结果进行分析,鉴别各个因素对试验结果影响的有效方法。

二.方差分析的基本思想根据实验设计的类型及研究目的,将全部观察值之间所表现出来的总变异,分解为两个或多个部分。

除随机误差作用外,其余每个部分的变异均可由某个因素的作用加以解释。

通过比较不同变异来源的均方(MS),借助F分布做出统计推断,从而推断研究因素对试验结果有无影响三.方差分析的假定条件及假设检验3.1方差分析的假定条件为:(1)各处理条件下的样本是随机的。

(2)各处理条件下的样本是相互独立的,否则可能出现无法解析的输出结果。

(3)各处理条件下的样本分别来自正态分布总体,否则使用非参数分析。

(4)各处理条件下的样本方差相同,即具有齐效性。

3.2方差分析的假设检验假设有K个样本,如果原假设H0样本均数都相同,K个样本有共同的方差σ,则K 个样本来自具有共同方差σ和相同均值的总体。

如果经过计算,组间均方远远大于组内均方,则推翻原假设,说明样本来自不同的正态总体,说明处理造成均值的差异有统计意义。

否则承认原假设,样本来自相同总体,处理间无差异。

四.方差分析中的常用术语4.1 因素(Factor)因素是指所要研究的变量,它可能对因变量产生影响。

如果方差分析只针对一个因素进行,称为单因素方差分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方差来源 平方和 自由度 平均平方和 F 值 临 界 值
组内
62820
3
20940
4.06

组间
61880
12
5157
总和
124700 15
因为 F 4.06 3.49 F0.05 ,所以由不同工艺生产的电灯泡的寿命有显着差 异.
方差分析列表计算(总 2 页)
-CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除
方差分析列表计算
列出数据计算表与方差分析表
试验 试验
结果 序号 因素水平
1 2 … ni
Q
R
方差来源
方差分析表 平方和 自由度 均方和
F值
临界值
组内 组间
1800
1580
1600
1640
1720
1460
1540
1620
1500
1550
1610
1680
试检验四种工艺生产的电灯泡是否有显着差异?

数 试验 据号
工艺
为了简化计算,将表中数据都减去 1500.,列表计算如下:
1
2345
120 170 200 250 300 1040 1081600 216320 235800
80 100 140 220
540 291600 72900 84400
40 120
120 14400 4800 17600
0
50 110 180
130 115600 28900 47000
SE 124700 62820 61880 , n 16
2040
322920 384800
得方差分析表如下:
F S A (m 1) =?
S E (n m)
总和
由上表提供的 F 与 Fa 的值,即得对 H 0 的检验.
例8.1 (同§8.1 例 8.2)用四种不同的工艺生产电灯泡,从各种工艺生产的电灯 泡中分别取样品,并测得样品的寿命(小时)如下:
数 试验
据号
1
2
3
4
5
工艺
1620
1670
1700
1750
相关文档
最新文档