D触发器原理-D触发器电路图
D触发器工作原理

D触发器工作原理D触发器是数字电路中常用的一种触发器,它具有存储和延迟功能,常用于时序电路和存储器等应用中。
本文将详细介绍D触发器的工作原理,包括其逻辑符号、真值表、输入输出特性以及触发器的时序图。
1. 逻辑符号和真值表D触发器的逻辑符号如下所示:```D┌───┐D │ │ Q└───┘```其中,D表示输入端,Q表示输出端。
D触发器根据输入端D的电平状态,将其存储在触发器内部,并在时钟信号的上升沿或者下降沿时将存储的数据传递到输出端Q。
D触发器的真值表如下所示:```D │ Q(t) │ Q(t+1)─────┼────────┼────────0 │ 0 │ 01 │ 1 │ 1```2. 输入输出特性D触发器有两个输入端:D和时钟信号。
D输入端用于输入待存储的数据,时钟信号用于触发数据的传递。
D触发器的输出端为Q。
D触发器的输入输出特性如下所示:- 当时钟信号为上升沿时,D触发器将输入端D的电平状态传递到输出端Q;- 当时钟信号为下降沿时,D触发器将输入端D的电平状态传递到输出端Q;- 当时钟信号为稳定状态时,D触发器保持上一次时钟信号变化时的输出状态。
3. 触发器的时序图D触发器的时序图如下所示:```______ ______| | | |D | | | |───┘ └─────────┘ └───| | | || Q | | Q |```时钟信号的上升沿或者下降沿触发D触发器,使其将输入端D的电平状态传递到输出端Q。
在时钟信号变化之前和之后,D触发器的输出保持不变。
4. 工作原理D触发器的工作原理是基于存储和延迟功能。
当时钟信号发生变化时,D触发器根据输入端D的电平状态将其存储在触发器内部,并在时钟信号的上升沿或者下降沿时将存储的数据传递到输出端Q。
具体工作原理如下:- 当时钟信号为上升沿时,D触发器将输入端D的电平状态传递到输出端Q。
如果D为高电平,则输出Q也为高电平;如果D为低电平,则输出Q也为低电平。
D触发器工作原理

D触发器工作原理D触发器是数字电路中常用的一种触发器,它具有存储和放大功能,能够在时钟信号的作用下实现数据的稳定传输。
下面将详细介绍D触发器的工作原理。
D触发器由两个互补的锁存器组成,普通用两个互补的MOS管或者BJT管实现。
其中一个锁存器为正相锁存器,另一个为反相锁存器。
D触发器的输入端称为D端,输出端称为Q端。
D触发器的工作原理如下:1. 当时钟信号为低电平时,D触发器处于存储状态,不会对输入信号产生响应。
2. 当时钟信号为上升沿时,D触发器开始工作。
此时,如果D端输入为低电平,那末Q端输出为低电平;如果D端输入为高电平,那末Q端输出为高电平。
3. 在时钟信号的作用下,D触发器根据D端输入信号的状态,在上升沿时将其存储,并在下一个时钟周期内保持输出状态不变。
4. 当时钟信号的下降沿到来时,D触发器继续保持上一个时钟周期内的输出状态,直到下一个时钟信号的上升沿到来。
D触发器的工作原理可以用时序图来表示。
时序图是一种图形化的表示方法,用于描述数字电路中信号的时序关系。
以下是一个简单的D触发器的时序图示例:```______ ______CLK | | | || | | |D | |_______| || Q |Q | | ||________________| |```从时序图中可以看出,当时钟信号上升沿到来时,D触发器会根据D端输入的信号状态,将其存储并保持输出状态不变。
D触发器的应用非常广泛,常用于数字电路中的寄存器、计数器、时序逻辑电路等。
它能够实现数据的稳定传输和存储,并且具有较高的抗干扰能力和稳定性。
总结:D触发器是一种常用的数字电路元件,具有存储和放大功能。
它通过时钟信号的作用,根据D端输入信号的状态,在上升沿时将其存储,并在下一个时钟周期内保持输出状态不变。
D触发器在数字电路中有着广泛的应用,能够实现数据的稳定传输和存储。
d触发器逻辑电路

d触发器逻辑电路介绍d触发器是数字电路中常用的组合逻辑电路。
它具有存储功能,可以通过时钟信号来控制数据的传输和存储。
在本文中,我们将深入探讨d触发器的工作原理和应用场景。
基本原理d触发器是一种双稳态触发器,它可以存储1位的数据。
它由两个与门和两个非门组成。
d触发器有两个输入端:时钟(CLK)和数据(D),以及两个输出端:输出(Q)和非输出(Q’)。
当时钟信号为高电平(正脉冲)时,d触发器的输出Q将根据数据输入D的值进行改变。
如果D为高电平,则Q也为高电平;如果D为低电平,则Q为低电平。
在时钟信号为低电平(负脉冲)时,d触发器的输出将被保持在上一次时钟信号为高电平时的状态。
工作原理下面是d触发器的逻辑电路图:_____D _____| |____ Q| d' |CLK ___|_____|根据上图,我们可以看到当CLK为高电平时,d触发器的输出Q将受到D的值的控制。
具体来说,当CLK为高电平时,两个与门的输出取决于D和d’的值。
如果D 为高电平,d’为低电平,则Q为高电平;如果D为低电平,d’为高电平,则Q为低电平。
当CLK为低电平时,与门的输出被锁存,Q的状态保持不变。
应用场景d触发器在数字电路中有着广泛的应用,特别是在时序电路中。
以下是一些常见的应用场景:1. 时序电路设计d触发器可以用于设计各种时序电路,如计数器、移位寄存器、时钟分频器等。
通过合理使用时钟信号和数据输入D,我们可以实现不同的功能,实现更复杂的计算和控制。
2. 数据存储和同步d触发器可以用作数据存储器件,可以存储和传递数据信号。
通过时钟信号的控制,我们可以实现数据的同步传输,并且确保数据在传输过程中的稳定性。
3. 状态机设计d触发器的状态保持特性使其成为状态机设计中的重要组成部分。
通过合理使用d触发器和其他逻辑门,我们可以实现复杂的状态转换和状态控制逻辑。
4. 内存设计在计算机系统中,d触发器可以被用于构建存储器单元(如SRAM),用于存储和处理数据。
D触发器工作原理

D触发器工作原理D触发器是一种常用的数字电路元件,用于存储和传递二进制信号。
它是由几个逻辑门组成的,常用的有D型正沿触发器和D型负沿触发器。
D型正沿触发器的工作原理如下:1. D触发器由两个输入端(D输入和时钟输入)和两个输出端(Q输出和Q'输出)组成。
2. 当时钟信号为上升沿时,D触发器会根据D输入的电平状态将其传递到Q输出端,即Q输出端的电平与D输入端相同。
3. 当时钟信号为下降沿时,D触发器会保持之前的状态,即Q输出端的电平保持不变。
4. 当时钟信号再次上升沿时,D触发器会根据新的D输入电平更新Q输出端的电平。
5. D触发器的Q'输出端是Q输出端的反相信号。
D型负沿触发器的工作原理与D型正沿触发器类似,只是触发时钟信号为下降沿。
D触发器常用于存储数据、时序控制和状态转换等应用场景。
它可以实现存储和传递单个比特的数据,并且可以通过时钟信号的控制来同步数据的传输。
例如,当D触发器用于存储数据时,可以将需要存储的数据输入到D输入端,然后通过时钟信号的触发,将数据传递到Q输出端。
这样,在时钟信号的作用下,D触发器可以将数据保持在输出端,直到下一次时钟触发更新数据。
D触发器还可以用于时序控制,例如在时序电路中,可以通过D触发器的输出信号来控制其他逻辑门或者触发器的工作状态,实现特定的时序功能。
总结:D触发器是一种常用的数字电路元件,用于存储和传递二进制信号。
D型正沿触发器在时钟信号上升沿时传递D输入到Q输出端,下降沿时保持状态。
D型负沿触发器在时钟信号下降沿时传递D输入到Q输出端,上升沿时保持状态。
D触发器常用于存储数据、时序控制和状态转换等应用场景。
它可以实现数据的存储和传递,并通过时钟信号的控制来同步数据的传输。
同步D触发器电路结构和逻辑符号

同步D触发器电路结构和逻辑符号
同步RS触发器在R、S同时为1且同时失效后,触发器状态不确定,说明其功能仍不完善。
D触发器针对这一问题作出改进,解决了触发器状态不确定的问题。
由于只要令R、S不同时为1,触发器就不会出现状态不稳定,最简单的方法就是令S=/R,此时仅将S作为输入端(用D表示),就得到了D触发器。
仍然是由RS触发器演变而来,是RS 触发器S=/R的特例,其电路结构和逻辑符号如图所示。
图同步D触发器
工作原理如下:
①CP=0期间,与非门G3、G4被封锁,/RD=1,/SD=1。
因此,无论输入信号R、S如何变化,都不会影响触发器的输出Q和/Q,即触发器状态保持不变。
②CP=1期间,与非门G3、G4打开,触发器输出状态随D而变化,完成置0、置1和保持等三种逻辑功能。
d触发器整形电路

d触发器整形电路
d触发器是一种数字电路元件,常用于存储和传输数据。
它有两个输入端和两个输出端,称为D端和Q端。
D端是数据输入端,Q端是数据输出端。
当d触发器的时钟信号上升沿到来时,它会根据D 端的电平状态来改变输出端Q的电平状态。
d触发器的工作原理如下:当时钟信号上升沿到来时,如果D端为高电平,则Q端将保持高电平;如果D端为低电平,则Q端将保持低电平。
换句话说,d触发器会将D端的电平状态存储在自己的内部,然后在时钟信号上升沿到来时将其传输到输出端。
d触发器的作用非常广泛。
它可以用于存储数据,实现数据的暂存和传输功能。
在计算机中,d触发器常常被用作存储单元,用于存储二进制数据。
此外,d触发器还可以用于时序电路的设计,例如计数器和状态机。
除了存储和传输数据的功能外,d触发器还具有一些特殊的性质。
例如,它可以实现边沿检测功能,即在时钟信号的上升沿或下降沿到来时产生输出信号。
这种特性使得d触发器可以用于设计各种触发器、计数器和时序电路。
d触发器是一种非常重要的数字电路元件,它在存储和传输数据、实现边沿检测等方面具有广泛的应用。
通过合理的电路设计和使用d触发器,我们可以实现各种复杂的数字功能,提高电路的性能和
可靠性。
D触发器工作原理

D触发器工作原理D触发器是一种重要的数字电路元件,用于存储和传输二进制数据。
它是由多个逻辑门组成的,其中最常见的是由两个交叉连接的反相器组成。
D触发器可以在时钟信号的控制下,根据输入信号的变化来改变输出信号的状态。
D触发器的工作原理如下:1. 结构D触发器由两个反相器组成,其中一个反相器的输出连接到另一个反相器的输入。
这种交叉连接的结构使得D触发器能够存储和传输数据。
2. 输入信号D触发器有两个输入端:D(数据输入)和CLK(时钟输入)。
D输入端用于接收待存储或者传输的二进制数据,CLK输入端用于控制数据的存储和传输。
3. 工作模式D触发器有两种工作模式:边沿触发和电平触发。
在边沿触发模式下,D触发器只在时钟信号的上升沿或者下降沿发生时才会改变输出状态。
在电平触发模式下,D触发器只在时钟信号保持稳定时才会改变输出状态。
4. 存储功能D触发器可以将D输入端的数据存储在内部的存储单元中,并在时钟信号的控制下将存储的数据传输到输出端。
当时钟信号发生变化时,D触发器会根据D输入端的数据更新内部存储单元的值,并将新的值传输到输出端。
5. 时序关系D触发器的输出信号在时钟信号的延迟后才会改变。
具体延迟时间取决于D触发器的工作频率和内部电路的响应时间。
6. 应用D触发器在数字电路中有广泛的应用,如存储器、寄存器、计数器等。
它可以用来实现时序逻辑功能,如状态机、时序控制等。
总结:D触发器是一种重要的数字电路元件,它可以存储和传输二进制数据。
它由两个反相器组成,具有边沿触发和电平触发两种工作模式。
D触发器可以根据时钟信号的控制来改变输出状态,具有存储功能和时序关系。
它在数字电路中有广泛的应用,是实现时序逻辑功能的重要组成部份。
D触发器原理-D触发器电路图

边沿D 触发器:负跳沿触发的主从触发器工作时,在正跳沿前加入输入信号。
如果在CP 高电平期间输入端出现干扰信号,那么就有可能使触发器的状态出错。
而边沿触发器允许在CP 触发沿来到前一瞬间加入输入信号。
这样,输入端受干扰的时间大大缩短,受干扰的可能性就降低了。
边沿D触发器也称为维持-阻塞边沿D触发器。
电路结构: 该触发器由6个与非门组成,其中G1和G2构成基本RS触发器。
D触发器工作原理:SD 和RD 接至基本RS 触发器的输入端,分别是预置和清零端,低电平有效。
当SD=0且RD=1时,不论输入端D为何种状态,都会使Q=1,Q=0,即触发器置1;当SD=1且RD=0时,触发器的状态为0,SD和RD通常又称为直接置1和置0端。
我们设它们均已加入了高电平,不影响电路的工作。
工作过程如下:1.CP=0时,与非门G3和G4封锁,其输出Q3=Q4=1,触发器的状态不变。
同时,由于Q3至Q5和Q4至Q6的反馈信号将这两个门打开,因此可接收输入信号D,Q5=D,Q6=Q5=D。
2.当CP由0变1时触发器翻转。
这时G3和G4打开,它们的输入Q3和Q4的状态由G5和G6的输出状态决定。
Q3=Q5=D,Q4=Q6=D。
由基本RS触发器的逻辑功能可知,Q=D。
3.触发器翻转后,在CP=1时输入信号被封锁。
这是因为G3和G4打开后,它们的输出Q3和Q4的状态是互补的,即必定有一个是0,若Q3为0,则经G3输出至G5输入的反馈线将G5封锁,即封锁了D通往基本RS 触发器的路径;该反馈线起到了使触发器维持在0状态和阻止触发器变为1状态的作用,故该反馈线称为置0维持线,置1阻塞线。
Q4为0时,将G3和G6封锁,D端通往基本RS触发器的路径也被封锁。
Q4输出端至G6反馈线起到使触发器维持在1状态的作用,称作置1维持线;Q4输出至G3输入的反馈线起到阻止触发器置0的作用,称为置0阻塞线。
因此,该触发器常称为维持-阻塞触发器。
总之,该触发器是在CP正跳沿前接受输入信号,正跳沿时触发翻转,正跳沿后输入即被封锁,三步都是在正跳沿后完成,所以有边沿触发器之称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在实际集成触发器中,每个门传输时间是不同的,并且作了不同形式的简化,因此上面讨论的结果只是一些定性的物理概念。其真实参数由实验测定。
综上所述,对边沿D触发器归纳为以下几点:
1.边沿D触发器具有接收并记忆信号的功能,又称为锁存器;
2.边沿D触发器属于脉冲触发方式;
2.特征方程 Qn+1=D
3状态转移图
脉冲特性:
1.建立时间:由下图维持阻塞触发器的电路可见,CP信号是加到门G3和G4上的,因而在CP上升沿到达之前门G5和G6输出端的状态必须稳定地建立起来。输入信号到达D端以后,要经过一级门电路的传输延迟时间G5的输出状态才能建立起来,而G6的输出状态需要经过两级门电路的传输延迟时间才能建立,因此D端的输入信号必须先于CP的上升沿到达,而且建立时间应满足: tset≥2tpd。
1.CP=0时,与非门G3和G4封锁,其输出Q3=Q4=1,触发器的状态不变。同时,由于Q3至Q5和Q4至Q6的反馈信号将这两个门打开,因此可接收输入信号D,Q5=D,Q6=Q5=D。
2.当CP由0变1时触发器翻转。这时G3和G4打开,它们的输入Q3和Q4的状态由G5和G6的输出状态决定。Q3=Q5=D,Q4=Q6=D。由基本RS触发器的逻辑功能可知,Q=D。
3.传输延迟时间:由图工作波形图不难推算出,从CP上升沿到达时开始计算,输出由高电平变为低电平的传输延迟时间tPHL和由低电平变为高电平的传输延迟时间tPLH分别是:tPHL=3tpd tPLH=2tpd
维持和阻塞D触发器的电路和动态波形
4.最高时钟频率:为保证由门G1~G4组成的同步RS触发器能可靠地翻转,CP高电平的持续时间应大于 tPHL,时钟信号高电平的宽度tWH应大于tPHL。而为了在下一个CP上升沿到达之前确保门G5和G6新的输出 电平得以稳定地建立,CP低电平的持续时间不应小于门G4的传输延迟时间和tset之和,即时钟信号低电平的宽度tWL≥tset+tpd,因此得到:
电路结构: 该触发器由6个与非门组成,其中G1和G2构成基本RS触发器。
D触发器工作原理:
SD 和RD 接至基本RS 触发器的输入端, 分别是预置和清零端,低电平有效。当SD=0且RD=1时,不论输入端D为何种状态,都会使Q=1,Q=0,即触发器置1;当SD=1且RD=0时,触发器的状态为0,SD和RD通常又称为直接置1和置0端。我们设它们均已加入了高电平,不影响电路的工作。工作过程如下:
2.保持时间:由下图可知,为实现边沿触发,应保证CP=1期间门G6的输出状态不变,不受D端状态变化的影响。为此,在D=0的情况下,当CP上升沿到达以后还要等门G4输出的低电平返回到门G6的输入端以后,D端的低电平才允许改变。因此输入低电平信号的保持时间为tHL≥tpd。在 D=1的情况下,由于CP上升沿到达后G3的输出将G4封锁,所以不要求输入信号继续保持不变,故输入高电平信号的保持时间tHH=0。
3.边沿D触发器不存在约束条件和一次变化现象,抗干性能好,工作速度快
边沿D 触发器:
负跳沿触发的主从触发器工作时,在正跳沿前加入输入信号。如果在CP 高电平期间输入端出现干扰信号,那么就有可能使触发器的状态出错。而边沿触发器允许在CP 触发沿来到前一瞬间加入输入信号。这样,输入端受干扰的时间大大缩短,受干扰的可能性就降低了。边沿D触发器也称为维持-阻塞边沿D触发器。