第11章 分子进化与系统发育
分子进化的推导与系统发育树构建研究

分子进化的推导与系统发育树构建研究分子进化的推导和系统发育树构建研究是现代生物学领域中一项重要的研究课题。
它通过分析生物体内的分子遗传信息,来推导物种间的进化关系,并进一步构建系统发育树。
本文将介绍分子进化的推导过程以及系统发育树的构建方法。
在分子进化的推导过程中,研究者通常会选择一段具有较高变异性的DNA、RNA或蛋白质序列作为研究对象。
这些序列在不同物种之间的差异反映了它们的进化关系。
首先,研究者需要对所选序列进行测序,并通过生物信息学方法对序列进行比对和分析。
比对可以揭示序列中的共有特征与差异,而分析则可以计算序列之间的相似性和进化距离。
为了推导物种之间的进化关系,研究者可以利用不同的进化模型进行分析,例如Jukes-Cantor模型、Kimura两参数模型和最大似然法等。
这些模型基于一系列假设和统计方法,可以估计序列的演化速率和进化关系。
通过计算进化距离矩阵,研究者可以建立物种之间的相似性网络图,并利用聚类算法将物种进行分类和分组。
系统发育树是推导物种间进化关系的重要工具。
它是一种图形化的表示方式,用树状结构展示不同物种之间的演化关系。
构建系统发育树的方法有多种,例如最简原则、最大拟然法和贝叶斯推断等。
最简原则是一种直观且简单的构建方法,它假设进化关系中的分支数目最少。
最大拟然法则基于最大似然估计原理,通过计算相似性矩阵的概率分布来确定最优的拓扑结构。
贝叶斯推断则是一种统计推断方法,它通过考虑先验概率和后验概率来推测系统发育树的结构。
在构建系统发育树的过程中,研究者还需要对结果进行评估和验证。
常用的评估指标包括支持率和置信度。
支持率可以评估进化树的可靠性,它通过重复计算获得统计学意义上的支持度。
而置信度则通过随机重抽样验证树的一致性和稳定性。
综上所述,分子进化的推导和系统发育树构建是研究生物进化关系的重要方法。
通过分析分子遗传信息和构建系统发育树,我们可以更好地了解不同物种之间的进化历程和亲缘关系。
分子进化与生物系统发育

分子进化与生物系统发育分子进化和生物系统发育是生物学领域的两个重要研究方向,它们通过研究分子遗传材料的演化和生物体之间的关系,揭示了生物界多样性的起源和发展。
本文将介绍分子进化和生物系统发育的基本概念、研究方法以及其在生物学研究和应用中的重要性。
一、分子进化的概念和意义分子进化是指从分子水平上研究生物种群和物种之间的遗传关系和演化过程。
它基于遗传物质的变异和传递规律,通过比较生物体内DNA、RNA和蛋白质序列的差异和相似性,推断生物种群的演化关系和进化历史。
分子进化的重要意义在于,它能够提供关于物种形成、进化速率、群体迁移和自然选择等方面的证据和解释。
通过分析不同物种之间的序列差异,可以推断它们的共同祖先、分化时间和进化关系,从而帮助我们理解种群的形成和演化过程。
二、分子进化的研究方法1. 分子演化树的构建分子演化树是表示不同物种或类群之间进化关系的图形化工具。
构建分子演化树的基本方法包括距离法、最大似然法和贝叶斯法等。
其中,距离法基于不同序列之间的差异程度构建演化树,最大似然法则通过计算出现观察到的数据的概率来估计最合理的演化树,而贝叶斯法则则通过概率模型进行演化树的推断。
2. 分子钟模型分子钟模型是一种用于估计物种分化时间的方法。
该模型假设基因的变化速率是恒定的,从而可以通过测量不同物种中特定基因的差异来推算它们的分化时间。
分子钟模型在分子进化研究中被广泛应用,为了更准确地估计物种的分化时间,研究人员通常使用多个基因进行分析。
三、生物系统发育的概念和意义生物系统发育研究的是生物界中不同物种和分类单元之间的系统关系和谱系发展。
它基于生物形态、生理和分子特征的相似性和差异性,通过构建系统发育树来揭示物种分类和多样性的起源和发展。
生物系统发育具有重要的意义,它为我们了解不同物种的亲缘关系和进化历史提供了重要线索。
通过构建系统发育树,可以揭示不同物种之间的共同祖先、演化路径和物种间的近亲关系。
此外,在进化生物学、生态学和保护生物学等应用领域,生物系统发育也为物种保护、进化机制研究等提供了理论和实证基础。
分子进化与系统发育

分子进化
• 1964年,Linus Pauling提出分子进化理论; • 从物种的一些分子特性出发,从而了解物种之间的 生物系统发生的关系。 • 发生在分子层面的进化过程:DNA, RNA和蛋白质分 子 • 基本假设:核苷酸和氨基酸序列中含有生物进化历 史的全部信息。
分子进化的模式
• DNA突变的模式:替代,插入,缺失,倒位;
分子进化与系统发育
——分子系统进化树
动物生态分子研究组
内容介绍
• 分子进化分析介绍 • 系统发育树构建方法
• 构建发育树的相关软件
• 文献——分子系统进化
一、分子进化分析
除非在进化的角度来观察,否则 任何生物学现象都将毫无意义。
—— 杜布赞斯基 (T.Dobzhansky,1900~1975)
研究生物进化历史的途径 • 1. 最确凿证据是:生物化石!—— 零 散、不完整 • 2.比较形态学、比较解剖学和生理学等: 确定大致的进化框架 —— 细节存很多 的争议
• 1. 理论基础为奥卡姆剃刀 (Ockham)原则:计算所需 替代数最小的那个拓扑结构,作为最优树 • 2. 在分析的序列位点上没有回复突变或平行突变, 且被检验的序列位点数很大的时候,最大简约法能够 推导获得一个很好的进化树 • 3. 优点:不需要在处理核苷酸或者氨基酸替代的时 候引入假设 (替代模型) • 4.缺点:分析序列上存在较多的回复突变或平行突变, 而被检验的序列位点数又比较少的时候,可能会给出 一个不合理的或者错误的进化树推导结果
相关软件
软件 说明
ClustalX
GeneDoc
图形化的多序列比对工具;构建N-J系统树 http://bips.u-strasbg.fr/fr/Documentation/ClustalX/
分子进化与系统发育

分子进化与系统发育嘿,朋友们,今儿咱们来聊聊俩高大上的话题——分子进化与系统发育,别怕,我保证让这俩词儿变得跟邻里唠嗑似的亲切。
想象一下,咱们每个人都是地球这本大书里的一个角色,而我们的身体,就是那复杂又精妙的章节。
在这些章节里,藏着无数的小秘密,特别是那些微观世界里跳动的分子们,它们可不光是化学课上的枯燥名词,它们是咱们生命故事的编剧加导演,天天上演着“进化大戏”。
咱们先说说分子进化,这就像是家里老相册里的照片,每一张都记录着祖先的模样。
不过,这些“照片”不是画出来的,而是刻在DNA这条长长的“家族树”上的。
随着时间推移,环境变了,日子过法也不一样了,这些分子们就悄悄地调整自己的排列组合,就像是咱们换新衣服、学新技能一样,让后代能更好地适应这个世界。
这过程,慢得你感觉不到,但几百年、几千年后一看,嘿,整个家族都焕然一新了!再聊聊系统发育,这就像是咱们家族聚会的族谱图,不过它画的可不是人名,而是各种生物之间的“亲戚关系”。
想象一下,你手里拿着一本超级详细的族谱,不仅能找到爷爷奶奶,还能一路追溯到远古时代的“老祖宗”。
在系统发育的世界里,科学家就是那些细心的家族历史研究者,他们通过比较不同生物的DNA、骨骼结构、甚至是一个小小的基因片段,就能绘制出生物界的“家谱图”,告诉我们谁是谁的近亲,谁又是远房亲戚。
记得小时候,我跟爷爷在院子里乘凉,他总爱给我讲些老辈儿的故事,那时候觉得那些故事离我好远好远。
但现在,当我了解到分子进化和系统发育,就像是在读一本活生生的地球生命史,那些遥远的过去,突然就变得亲切而生动起来。
每一个基因的变化,都像是祖先们在历史长河中留下的足迹,告诉我们他们是如何从简单到复杂,从海洋到陆地,一步步走到今天的。
所以啊,朋友们,下次当你看到一朵花、一只鸟,甚至是你自己的时候,不妨多想一步,这些生命背后,藏着多少分子进化的奥秘,它们之间又有着怎样错综复杂的系统发育关系。
咱们的生活,因为有了这些看似微小的分子和它们的故事,才变得如此丰富多彩,如此值得我们去探索和珍惜。
分子进化和系统发育的研究及其应用

分子进化和系统发育的研究及其应用进化是生物学的核心概念之一,分子进化是现代进化生物学的重要组成部分,而分子系统发育则是分子进化研究的一项重要应用。
本文将从分子进化的基本原理出发,介绍分子系统发育的原理、方法与应用,并探讨其在不同领域中的意义。
一、分子进化的基本原理分子进化是基于DNA/RNA序列或蛋白质序列的进化研究分支。
基因等遗传物质包含了生物过去和现在的大部分信息,通过比较彼此的差异,就能推导出它们之间的进化关系。
分子进化的基本原理在于遗传突变的随机性和累积性。
在生物个体复制时,遗传物质会随机地产生突变,这些突变可以累积,最终就会形成差异。
这些差异可以代表生物的基因型和表型的演化历史。
二、分子系统发育的原理分子系统发育是根据生物体DNA/RNA序列或蛋白质序列的变化,推断生物之间的进化关系和亲缘关系的科学。
生物之间的相似性是由共同的祖先所造成的,相似性越大,共同祖先的距离就越近。
分子系统发育利用各个物种之间的序列差异,通过复杂的计算机分析推断各个物种之间的进化关系及其进化时间。
分子系统发育中通常用到的基本原理之一是“钟模型”,即基因变异率(即分子钟)是在所有物种中大致相同的。
换句话说,如果我们确定了一组基因序列的共同祖先时间,我们就可以根据不同物种间的分子差异推定这些物种的进化时间。
三、分子系统发育的方法分子系统发育研究通常使用序列比对、物种树构建、分支支持度评估和模型选择等方法。
下面简要介绍每种方法的基本原理:1. 序列比对序列比对是分子系统发育分析的基础之一,其目的是从一组相关序列中确定基因组中位点、简化不必要的信息,减小计算量。
序列比对中使用的最常用算法是 Needleman-Wunsch(NW)算法和Smith-Waterman(SW)算法。
这些算法旨在寻找两个(或多个)序列之间的最长公共子序列(LCS),并且可以计算序列间的“匹配”和“不匹配”得分。
2. 物种树构建分子系统发育分析的主要目的是构建物种树,物种树是表示生物之间进化关系的分枝图。
分子进化与系统发育

分子进化与系统发育的未来发展方向
研究分子进化与系统 发育的关系,为物种 起源和演化提供新的
视角
利用分子进化与系统 发育的研究成果,为 医学、农业等领域提
供新的技术手段
探索分子进化与系统 发育的关系,为环境 保护和生物多样性保
护提供新的思路
研究分子进化与系统 发育的关系,为理解 生命起源和演化提供
新的理论基础
感谢您的观看
汇报人:XX
物种形成:物种形成是分子进 化的结果,新物种的形成需要 一定的突变和自然选择压力。
分子进化的意义
揭示生物进化 的机制和规律
帮助科学家了 解生物多样性 的起源和演化
过程
为药物研发提 供新的靶点和
思路
指导人类疾病 的预防和治疗
2 系统发育
系统发育的概念
系统发育:研究生物 类群之间的进化关系
和历史
目的:了解生物多样 性的形成和演化过程
分子进化与系统发育
XX,a click to unlimited possibilities
汇报人:XX
目录 /目录
01
分子进化
02
系统发育
03
分子进化与系 统发育的关系
1 分子进化
分子进化的概念
分子进化:指生 物体内分子水平 的进化过程,包 括基因、蛋白质 等分子的变化。
基因突变:基因 在复制过程中发 生的随机变化, 是分子进化的重 要机制之一。
自然选择:环境 对生物体基因突 变的选择,有利 于适应环境的突 变被保留下来。
分子钟:通过比 较不同物种的基 因序列差异,估 算物种之间的进 化关系和进化时 间。
分子进化的证据
基因序列比较:不同物种的基因序列比较,揭示了分子进化的证据
分子进化和系统发育

Tree of Life:
重建所有生物 的进化历史并 以系统树的形 式加以描述。
分子进化研究——系统进化树
16S rDNA
分子进化研究——物种分类
分子进化研究——人类起源(Out of Africa)
线粒体基因组(16,587bp)
当前人类线粒体基因组最 大的差异存在于非洲和非 非洲人之间。
2N - 2
真实树(true tree) ——物种分化事件的顺序在历史上是唯一的,所以 在用给定物种建立的所有可能的树中只有一种能代 表真实的进化历史,这样一种系统树称为真实树。
推测树(inferred tree) ——用某一组数据和某种构树法得到的树称推测树, 推测树可能与真实树等同也可能与真实树不同。
archaea
eukaryote
eukaryote
无根树
eukaryote
通过外类群 通来过确外定类树群根 来确定树根
eukaryote
有有根根树树 根
bacteria outgroup 外外类类群群
archaea archaea archaea
eukaryote eukaryote
eukaryote eukaryote
当前
DNA序列间的差异
• DNA序列间核苷酸的差异越少,分化时间越短; • 同一祖先序列衍生的两条后裔序列间分化的简单
测度就是两条后裔序列不同核苷酸位点的比例。
DNA序列的替换率估计
对于两条长度为N的序列,差异位点数为n, 则两条DNA序列的替换率P(也可以称两条序列之间 的距离或差异):
P=n/N
CACTATGAC… CACTATCAC…
CATTGTCAC… GATTGTCTC… GCTTGTCTT…
分子进化与系统发育分析PPT演示课件

eukaryote
eukaryote
bacteria outgroup 外围支
archaea archaea archaea
eukaryote eukaryote
eukaryote
22
eukaryote
无根树和有根树:潜在的数目
#Taxa
3 4 5 6 7 … 30
无根树
1 3 15 105 945
同一基因,一般具有相同的功能。 并系同源(paralogs):同源基因在同一物种
中,通过至少一次基因复制的
16
paralogs
orthologs
Erik L.L. Sonnhammer Orthology,paralogy and proposed classification for paralog subtypes
19
异源基因或水平转移基因
(xenologous or horizontally transferred genes)
由某一个水平基因转移事件而得到的同源序列
20
2.进化分支图,进化树
Bacterium 1
Bacterium 2
Bacterium 3 Eukaryote 1 Eukaryote 2
TRENDS in Genetics Vol.18 No.12 December 2002
http://tig.trends.co m 0168-9525/02/$ – see front matter © 2002 Elsevier 17 Science Ltd. All rights reserved.
有根树
3 15 105 945 10,395
~3.58X1036 ~2.04X1038
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(四)TREE-PUZZLE
采用最大似然法构建系统发育树
(五)MrBayes
采用贝叶斯方法进行系统发育树构建
(六)PhyML
根据最大似然法原理,采用更加简便的爬山算法来 同时估计树的拓扑结构和树的分枝长。
主讲人:王茂先
三、系统发育分析示例
(一)利用MEGA4构建系统发育树 1、序列获取
主讲人:王茂先
(二)PAUP--phylogenetic analysis using parsimony
(三)MEGA—molecular evolutionary genetics analysis 主要功能模块包括:通过网络进行数据的搜索、 遗传距离的估计、多序列比对、系统发育树的 构建和进化假说检验等。
第二节 分子系统发育树的构建方法
利用生物大分子数据重建系统进化树,目前最常用 的有4种方法,即距离法、最大简约法、最大似然法 和贝叶斯法,其中,最大简约法主要适用于序列相 似性很高的情况;距离法在序列具有比较高的相似 性时适用;最大似然法和贝叶斯法可用于任何相关 的数据序列集合。从计算速度来看,距离法的计算 速度最快,其次是最大简约法和贝叶斯方法,然后 是最大似然法。
1、选择合适的分子序列 2、多序列比对 3、选择合适的建树方法 4、系统发育树的评估
重复抽样检验、内枝检验
主讲人:王茂先
二、常见系统发育树的软件简介 (一)PHYLIP—the phylogeny inference package 主要程序组:
分子序列组:蛋白质序列组,如ptotpars、proml; 核苷酸序列组,如dnapenny、dnapars 距离矩阵组:fitch、kitsch、neighbor 基因频率组:gendist、contrast、contml 离散字符组:pars、mix、penny 进化树绘制组:drawgram、drawtree、consense
2、使用MEGA4进行多序列比对
主讲人:王茂先
3、使用MEGA4进行系统发育树的构建
主讲人:王茂先
主讲人:王茂先
主讲人:王茂先
(二)利用在线分析软件构建系统发育树
Mobyle
主讲人:王茂先
1、利用ClustaLW进行多序列比对
主讲人:王茂先
主讲人:王茂先
2、利用PhyMLS在线分析软件进行系统发育树 的构建
NJ方法构建系统发育树的一般步骤:
2、实例
设有4段序列,分别为A:TAGG;B:TACG;C:AAGC; D:AGCC,利用邻接法构建系统发育树。 1)两两比对,并计算遗传距离。 2)构建一颗星状树,算出总树的树枝长度。
主讲人:王茂先
分枝长分别为: 利用序列间的距离求出星状树的总枝长,即
ቤተ መጻሕፍቲ ባይዱ
3) 筛选出第1对邻居
主讲人:王茂先
(二)分子进化的中性学说
分子进化的中性学说认为多数或绝大多数突变都是 中性或近中性的,即无所谓有利或不利,自然选择 对它们不起作用,因此对于这些中性突变不会发生 自然选择与适者生存的情况。
主讲人:王茂先
(三)基因组计划与分子进化
人类基因组计划(HGP)最主要的目的是测出人类 基因组DNA的30亿碱基对的序列,发现所有人类基 因,找出它们在染色体上的位置,破译人类全部遗 传信息,解码生命,了解生命的起源,了解生命体 生长发育的规律,认识种属之间和个体之间存在差 异的起因,认识疾病产生的机制,以及长寿与衰老 等生命现象,从而为疾病的诊治提供科学依据。
对于系统发育树最直接的计算方式就是沿着各个分 枝累加特征变化的数目,而简约的含义即为代价最 小,所以,利用最大简约法构建系统发育树的过程, 就是一个对给定分类单元所有可能的树进行比较的 过程。
主讲人:王茂先
(二)最大简约树的搜索策略
穷举式搜索、分支界限法、启发式搜索法
3、实例 设有4段序列,分别为d1:TAGG;d2:TACG;d3:AAGC; d4:AGCC
主讲人:王茂先
一、基于距离的系统发育树构建方法 (一)非加权分组平均法
UPGMA主要适用于在基因替代速率恒定时,尤其是 用基因频率数据来构建分子系统发育树时。
主讲人:王茂先
1、算法
主讲人:王茂先
主讲人:王茂先
2、实例
(二)最小二乘法
2、实例
主讲人:王茂先
(三)邻接法
1、算法
主讲人:王茂先
普通高等教育 “十三五”规划教材
生物信息学
Bioinformatics
第十一章:分子进化与系统发育
主讲人:王茂先
第一节 分子进化与系统发育
一、分子水平的进化
分子水平的进化主要是指在生物进化过程中,构成 生物体的大分子物质,如蛋白质、核酸的演变过程。 (一)分子进化的特点
1、生物大分子进化速率相对恒定 2、生物大分子进化的保守性
主讲人:王茂先
主讲人:王茂先
3、系统发育树的展示
主讲人:王茂先
先将序列A和序列B作为邻居与其他序列分离开来
主讲人:王茂先
二、最大简约法
最大简约法(maximum parsimony)是一种常用的系 统发生学分析的方法,根据离散性状【包括形态学 性状和分子序列(DNA和蛋白质等)】的变异程度, 构建生物的系统发育树,并分析生物物种之间的演 化关系。 (一)最大简约法的基本思想
(四)研究分子进化的意义
主讲人:王茂先
二、分子系统发育分析的基本概念 (一)分子系统发育树的基本概念
在研究生物进化和系统分类中,常用一种类似树状 分支的图形来概括各种(类)生物之间的亲缘关系, 这种树状分支的图形称为系统发育树。
主讲人:王茂先
(二)有根树和无根树
主讲人:王茂先
(三)物种树和基因/蛋白树
主讲人:王茂先
4段序列构建的所有可能的树: 4段序列的第一位上3种树的碱基替换数目:
三、最大似然法
利用最大似然法构建系统进化树基于两条基本假设:不同的 性状进化是独立的;物种发生分化后的进化是独立的。
似然函数:
(二)实例
四、贝叶斯推断法
主讲人:王茂先
第三节 系统发育树构建及应用
一、构建系统发育树的步骤