2019-2020学年北京市101中学高一(上)期中数学试卷-含详细解析

合集下载

北京市2019-2020学年高一上学期期中考试数学试题含答案

北京市2019-2020学年高一上学期期中考试数学试题含答案

北京市第二中学2019-2020学年第一学期期中试卷高一数学2016年11月本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共100分,考试用时90分钟. 一、选择题1.已知集合{1,3,5,7,9}U =,{1,5,7}A =,则U A =ð( ). A . {1,3}B .{3,9}C .{3,5,9}D .{3,7,9}2.已知21(1)()23(1)x x f x x x ⎧+=⎨-+>⎩≤,则[(2)]f f =( ).A .5B .1-C .7-D .23.为了得到函数133xy ⎛⎫=⨯ ⎪⎝⎭的图像,可以把函数13xy ⎛⎫= ⎪⎝⎭的图像( ).A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度4.若对于任意实数x 总有()()f x f x -=,且()f x 在区间(,1]-∞-上是增函数,则( ). A .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭B .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭C .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭D .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭5.下列函数为奇函数,且在(),0-∞上单调递减的函数是( ).A .2()f x x = B .()1f x x -= C .()12f x x = D .()3f x x =6.设20.3a =,0.32b =,0.3log 4c =,则( ). A .c a b <<B .c b a <<C .b a c <<D .b c a <<7.已知定义在R 上的函数()f x 的图象是连续不断的,且有如下对应值表:x123 ()f x6.12.93.5-那么函数()f x A .(1),-∞ B .(3,)+∞ C .(1,2) D .(2,3) 8.有以下四个命题,(1)奇函数()f x 的图像一定过原点;(2)函数()f x 满足对任意的实数x ,都有(1)(1)0f x f x ++-=,则()f x 的图像关于点(1,0)对称;(3)643log [log (log 81)]1=;(4)函数23()2(0,1)x f x a a a -=->≠的图像恒过定点3,12A ⎛⎫- ⎪⎝⎭.其中正确命题的个数为( ).A .0个B .1个C .2个D .3个 二、填空题9.已知幂函数()y f x =的图像过点14,2⎛⎫⎪⎝⎭,则()8f =__________.10.函数()f x __________.11.已知函数()31x f x a -=+(0a >,且1a ≠).恒过定点P ,那么P 点坐标为__________. 12.已知函数()1af x x a x=++-是奇函数,则常数a =__________. 13.定义域为R 的函数()f x 对于任意实数1x ,2x ,满足1212()()()f x x f x f x +=,则()f x 的解析式可以是__________.(写出一个符合条件的函数即可)14.一次社会实践活动中,数学应用调研小组在某厂办公室看到该厂5年来某种产品的总产量y 与时间t (年).的函数图像(如图).以下给出了关于该产品生产状况的几点判断:t (年)①前三年的年产量逐步增加; ②前三年的年产量逐步减少;③后两年的年产量与第三年的年产量相同; ④后两年均没有生产.其中正确判断的序号是__________. 三、解答题 15.计算: (1))2103227161-+-.(2)7log 2222632log 3loglog 778-+-.16.已知函数()f x =的定义域为集合A ,{|}B x x a =< (1)若全集{4}U x x =≤,求U A ð. (2)若A B ⊆,求a 的取值范围.17. 已知函数()f x 是偶函数,且0x ≤时,1()1xf x x+=-. (1)求(5)f 的值.(2)用定义证明()f x 在(,0)-∞上是增函数. (3)当0x >时,求()f x 的解析式. 18.已知函数22()log (4)f x x =- (1)求函数()f x 的定义域. (2)求函数()f x 的最大值.19.设函数()y f x =(x ∈R 且0x ≠),对任意实数1x ,2x 满足1212()()()f x f x f x x +=. (1)求证:(1)(1)0f f =-=. (2)求证:()y f x =为偶函数.(3)已知()y f x =在(0,)+∞上为增函数,解不等式1()02f x f x ⎛⎫+-< ⎪⎝⎭.高一数学期中考试答案一、选择题910.2,13⎛⎤⎥⎝⎦11.(3,2) 12.113.指数函数或值为1或0的常函数 14.②④ 三、解答题 15.334;1 16.U A =ð{2x x -≤或3<4}x ≤;3a > 17.(1)2(5)3f =-(2)证明略 (3)0x >时,1()1xf x x-=+ 18.(1)(2,2)-(2)当0x =时,()f x 的最大值是2 19.(1)证略 (2)证略(3x <且0x ≠且12x ≠。

北京市101中学2020年秋高一数学上学期期中试卷附答案解析

北京市101中学2020年秋高一数学上学期期中试卷附答案解析

北京市101中学2020年秋高一数学上学期期中试卷一、单选题1.已知集合{(1)0}A x x x =+≤∣,集合{11}B x x =-<<∣,则A B =( )A .{11}x x -≤<∣B .{10}xx -<≤∣C .{11}x x -≤≤∣D .{01}x x <<∣ 2.命题“20,230x x x ∀>+->”的否定是 A .20,230x x x ∃>+-≤ B .20,230x x x ∀>+-≤ C .20,230x x x ∃<+-≤D .20,230x x x ∀<+-≤3.已知,a b ∈R ,则“a b >”是“1ab>”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件4.已知集合{}2230A x x x =--<,{}1B x x m =-<<,若x A ∈是x B ∈的充分不必要条件,则实数m 的取值范围为( ) A .()3,+∞B .()1,3-C .[)3,+∞D .(]1,3-5.方程组2202x y x y +=⎧⎨+=⎩的解集是( ) A .{(1,﹣1),(﹣1,1)} B .{(1,1),(﹣1,﹣1)} C .{(2,﹣2),(﹣2,2)}D .{(2,2),(﹣2,﹣2)}6.已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是 A .2023B .2021C .2020D .20197.下列函数中,在区间(1,+∞)上为增函数的是( ). A .31y x =--B .2y x=C .245y x x =-+ D .12y x =-+8.若不等式|x -3|+|x -4|<a 的解集不为空集,则a 的取值范围是( ) A .a ≤1B .a ≥1C .a <1D .a >19.已知0a >,0b >,若4a b +=,则A .22a b +有最小值BC .11a b+有最大值D 有最大值10.设函数()f x 在(-∞,+∞)上有意义,对任意的x ,y ∈R 且x ≠y ,都有|()f x -()|f y <|x -y |,并且函数(1)f x +的对称中心是(-1,0),若函数()g x -()f x =x ,则不等式g 2(2)x x -+g (2)x -<0的解集是( ) A .(-∞,1)(2,+∞) B .(1,2) C .(-∞,-1)(2,+∞)D .(-1,2)二、填空题 11.若函数()f x =,则()f x 的定义域为_________.12.已知()f x 是定义在R 上的奇函数,且当x >0时,()f x =2x ,则1()2f -=________. 13.写出一个使得命题“x R ∀∈,223ax ax -+>0恒成立”是假命题的实数a 的值________:14.某餐厅经营盒饭生意,每天的房租、人员工资等固定成本为200元,每盒盒饭的成本为15元,销售单价与日均销售量的关系如下表:15.函数()2,,(0),0x x t f x t x x t⎧=>⎨<<⎩,在区间(0,)+∞上的增数,则实数t 的取值范围是________. 16.几位同学在研究函数()()1xf x x R x=∈+时给出了下面几个结论:∈函数()f x 的值域为()1,1-;∈若12x x ≠,则一定有()()12f x f x ≠;∈()f x 在()0,∞+是增函数;∈若规定()()1f x f x =,且对任意正整数n 都有:()()()1n n f x f f x +=,则()1n xf x n x=+对任意*n N ∈恒成立.上述结论中正确结论的序号为__________.三、解答题17.设全集U =R ,集合A =(-∞,-1][4,+∞),B =(-∞,1].求:(1)()UA B ;(2)记()UA B =M ,N ={x |a -1≤x ≤-2a },且MN N =,求a 的取值范围.18.定义在R 上的函数2()(21)1f x x a x =-+-(a ∈R ).(1)若()f x 为偶函数且(1)f m +>(1)f m -,求实数m 的取值范围; (2)若()f x 不是偶函数且在区间[-1,2]上不单调,求实数a 的取值范围.19.记关于x 的方程1(2)a x x-=-在区间(0,3]上的解集为A ,若A 至多有2个不同的子集,求实数a 的取值范围.20.已知不等式()101ax a R x +<∈-. (1)当2a =时,解这个不等式;(2)若111ax x x +≤--对(),0x ∀∈-∞恒成立,求实数a 的最大值.21.已知()f x 是定义在R 上的单调递减函数,对任意实数m ,n 都有()f m n +=()()f m f n +.函数2()2()g x x x =-.定义在R 上的单调递增函数()h x 的图象经过点A (0,0)和点B (2,2).(1)判断函数()f x 的奇偶性并证明;(2)若[1,2]t ∃∈-,使得(()1)(8)f g t f t m -++<0(m 为常实数)成立,求m 的取值范围; (3)设(1)1f =-,1()()F x f x x =-,2()()F x g x =,3()()(2)F x h x h x =--,100i ib =(i =0,1,2…100).若10()()k k k M F b F b =-+21()()k k F b F b -+…+10099()()k k F b F b -(k =1,2,3),比较123,,M M M 的大小并说明理由.解析北京市101中学2020年秋高一数学上学期期中试卷一、单选题1.已知集合{(1)0}A x x x =+≤∣,集合{11}B x x =-<<∣,则A B =( )A .{11}x x -≤<∣B .{10}xx -<≤∣C .{11}x x -≤≤∣D .{01}x x <<∣ 【答案】A【分析】首先求集合A ,再求AB .【详解】由题意集合{10}A xx =-≤≤∣,{11}A B x x ⋃=-≤<∣ 故选:A .2.命题“20,230x x x ∀>+->”的否定是 A .20,230x x x ∃>+-≤ B .20,230x x x ∀>+-≤ C .20,230x x x ∃<+-≤D .20,230x x x ∀<+-≤【答案】A【详解】命题“20,230x x x ∀>+->”的否定是20,230x x x ∃>+-≤,所以选A. 3.已知,a b ∈R ,则“a b >”是“1ab>”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】D【分析】根据充分条件、必要条件的定义,举特例判断可得; 【详解】解:当1a =-,2b =-时,a b >,但112a b =<;当2a =-,1b =-时,1ab >,但a b <;综上,“a b >”是“1ab>”的既不充分也不必要条件,故选:D. 【点睛】本题考查充分条件必要条件的判断,属于基础题.4.已知集合{}2230A x x x =--<,{}1B x x m =-<<,若x A ∈是x B ∈的充分不必要条件,则实数m 的取值范围为( ) A .()3,+∞B .()1,3-C .[)3,+∞D .(]1,3-【答案】A【分析】解一元二次不等式求得集合A ,由充分不必要条件定义可知A B ≠⊂,由此求得m 范围.【详解】由2230x x --<得:13x ,即()13A ,=-;x A ∈是x B ∈的充分不必要条件,A B ≠∴⊂,3m ∴>,即实数m 的取值范围为()3,+∞.故选:A. 【点睛】结论点睛:本题考查根据充分条件和必要条件求解参数范围,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件, 则q 对应的集合与p 对应集合互不包含.5.方程组2202x y x y +=⎧⎨+=⎩的解集是( ) A .{(1,﹣1),(﹣1,1)} B .{(1,1),(﹣1,﹣1)} C .{(2,﹣2),(﹣2,2)} D .{(2,2),(﹣2,﹣2)}【答案】A【分析】求出方程组的解,注意方程组的解是一对有序实数.【详解】方程组2202x y x y +=⎧⎨+=⎩的解为11x y =⎧⎨=-⎩或11x y =-⎧⎨=⎩, 其解集为 {(1,1),(1,1)}--. 故选:A .【点睛】本题考查集合的表示,二元二次方程组的解是一对有序实数,表示时用小括号括起来,表示有序,即代表元可表示为(,)x y ,一个解可表示为(1,1)-.6.已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是 A .2023 B .2021C .2020D .2019【答案】A【分析】根据题意可知23b b =-,1a b +=-,3ab =,所求式子化为222201932019a b a b -+=-++()222016a b ab =+-+即可求解;【详解】a ,b 是方程230x x +-=的两个实数根, ∴23b b =-,1a b +=-,3ab =-,∴222201932019a b a b -+=-++()2220161620162023a b ab =+-+=++=; 故选A .【点睛】本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键.7.下列函数中,在区间(1,+∞)上为增函数的是( ). A .31y x =-- B .2y x=C .245y x x =-+ D .12y x =-+【答案】D【分析】结合一次函数,二次函数及反比例函数的图象及图象变换分别进行判断即可. 【详解】由一次函数的性质可知,y =-3x -1在区间(1,+∞)上为减函数,故A 错误; 由反比例函数的性质可知,y =2x在区间(1,+∞)上为减函数, 由二次函数的性质可知,y =x 2-4x +5在(-∞,2)上单调递减,在(2,+∞)上单调递增,故C 错误; 由一次函数的性质及图象的变换可知,y =|x -1|+2在(1,+∞)上单调递增. 故选D .【点睛】本题主要考查了基本初等函数的单调性的判断,属于基础试题. 8.若不等式|x -3|+|x -4|<a 的解集不为空集,则a 的取值范围是( ) A .a ≤1 B .a ≥1C .a <1D .a >1【答案】D【分析】不等式转化为()min34a x x >-+-,求得函数的最小值后,即得a 的取值范围.【详解】由条件可知,34x R a x x ∃∈>-+-成立,即()min 34a x x >-+-,()()34341x x x x -+-≥---=,即1a >.故选:D9.已知0a >,0b >,若4a b +=,则A .22a b +有最小值 BC .11a b+有最大值 D 有最大值【答案】A【分析】根据基本不等式的性质,即可求解22a b +有最小值,得到答案. 【详解】由题意,可知a 0>,b 0>,且a b 4+=,因为0,0a b >>,则a b +≥,即2()42a b ab +≤=, 所以()222a b a b 2ab 162ab +=+-=-16248≥-⨯=, 当且仅当2a b ==时,等号成立,取得最小值8, 故选A .【点睛】本题主要考查了基本不等式的应用,其中解答中合理应用基本不等式求解是解答的关键,着重考查了运算与求解能力,属于基础题. 10.设函数()f x 在(-∞,+∞)上有意义,对任意的x ,y ∈R 且x ≠y ,都有|()f x -()|f y <|x -y |,并且函数(1)f x +的对称中心是(-1,0),若函数()g x -()f x =x ,则不等式g 2(2)x x -+g (2)x -<0的解集是( ) A .(-∞,1)(2,+∞) B .(1,2) C .(-∞,-1)(2,+∞)D .(-1,2)【答案】A【分析】由已知条件可知()f x 为奇函数,从而可得()g x 也为奇函数,然后结合|()f x -()|f y <|x -y |,可得()g x 在R 上单调递增,结合单调性和奇函数的定义可得222x x x -<-,从而可求出不等式的解集【详解】解:由函数(1)f x +的对称中心是(-1,0),可得函数()f x 的图像关于(0,0)对称,所以()f x 为奇函数,所以()()f x f x -=-,因为()()g x f x x -=,所以()()g x f x x =+,所以()()()()g x f x x f x x g x -=--=--=-,所以()g x 为奇函数,因为对任意的x ,y ∴R 且x ≠y ,都有|()f x -()|f y <|x -y |,所以()()()g x g y x y x y ---<-, 所以()()()1g x g y x y x y---<-,即()()11g x g y x y--<-,所以()()02g x g y x y -<<-, 所以对任意的x ,y ∴R 且x ≠y ,()()0g x g y x y->-,所以()g x 在R 上单调递增,因为g 2(2)x x -+g (2)x -<0,所以2(2)(2)(2)g x x g x g x -<--=-, 所以222x x x -<-,即2320x x -+>,解得1x <或2x > 故选:A【点睛】关键点点睛:此题考查了利用函数奇偶性和单调性求解不等式,解题的关键是由已知条件判断出()g x 的奇偶性和单调性,考查数学转化思想,属于中档题 二、填空题 11.若函数()f x =,则()f x 的定义域为_________.【答案】1(,)2-+∞ 【分析】由于根式在分母上,所以只要被开方数大于零,解不等式可得结果 【详解】解:由题意得,210x +>,解得12x >-,所以函数的定义域为1(,)2-+∞, 故答案为:1(,)2-+∞ 12.已知()f x 是定义在R 上的奇函数,且当x >0时,()f x =2x ,则1()2f -=________. 【答案】14-. 【分析】由于函数是奇函数,所以11()()22f f -=-,再由已知的解析式求出1()2f 的值,可得答案【详解】解:因为当x >0时,()f x =2x ,所以2111()()224f ==, 因为()f x 是定义在R 上的奇函数,所以111()()224f f -=-=-,故答案为:14- 13.写出一个使得命题“x R ∀∈,223ax ax -+>0恒成立”是假命题的实数a 的值________: 【答案】1-(答案不唯一,只需()[),03,a ∈-∞⋃+∞).【分析】求出命题“x R ∀∈,223ax ax -+>0恒成立”是真命题的范围即可. 【详解】若命题“x R ∀∈,223ax ax -+>0恒成立”是真命题 则当0a =时成立,0a ≠时有24120a a a >⎧⎨∆=-<⎩,解得0<<3a , 所以当03a ≤<时命题“x R ∀∈,223ax ax -+>0恒成立”是真命题 所以当()[),03,a ∈-∞⋃+∞时,命题“x R ∀∈,223ax ax -+>0恒成立”为假命题故答案为:1-(答案不唯一,只需()[),03,a ∈-∞⋃+∞)14.某餐厅经营盒饭生意,每天的房租、人员工资等固定成本为200元,每盒盒饭的成本为15元,销售单价与日均销售量的关系如下表:【答案】21.5.【分析】由表格中的信息可知,销售单价为16元时,销售量为480盒,销售单价每增加1元时,销售量则减少40个,设每盒盒饭定价为x 元,则销售量为48040(16)x --,再根据利润=总收入-总成本,即可求出利润y 关于销售单价x 的函数,则二次函数的性质即可求得答案【详解】解:由表格中的信息可知,销售单价为16元时,销售量为480盒,销售单价每增加1元时,销售量则减少40个,设每盒盒饭定价为x 元,利润为y 元,则由题意得(15)[48040(16)]y x x =---(15)(112040)x x =--240172016800x x =-+-所以当172021.580x =-=-时,y 取得最大值,最大值为1690, 即每盒盒饭定价为21.5元时,利润最大,最大为1690元,故答案为:21.515.函数()2,,(0),0x x t f x t x x t⎧=>⎨<<⎩,在区间(0,)+∞上的增数,则实数t 的取值范围是________. 【答案】1t【分析】作出函数2,()(0),0x x tf x t x x t ⎧=>⎨<<⎩的图象,数形结合可得结果. 【详解】解:函数2,()(0),0x x tf x t x x t⎧=>⎨<<⎩的图像如图.由图像可知要使函数2,()(0),0x x tf x t x x t⎧=>⎨<<⎩是区间(0,)+∞上的增函数, 则1t . 故答案为1t【点睛】本题考查函数的单调性,考查函数的图象的应用,考查数形结合思想,属于简单题目. 16.几位同学在研究函数()()1xf x x R x=∈+时给出了下面几个结论:∈函数()f x 的值域为()1,1-;∈若12x x ≠,则一定有()()12f x f x ≠;∈()f x 在()0,∞+是增函数;∈若规定()()1f x f x =,且对任意正整数n 都有:()()()1n n f x f f x +=,则()1n xf x n x=+对任意*n N ∈恒成立.上述结论中正确结论的序号为__________. 【答案】∴∴∴∴【分析】考虑0,0,0x x x ><=时对应函数的值域、单调性、奇偶性即可判断出∴∴∴是否正确,利用归纳推理的思想判断()1n xf x n x=+是否正确.【详解】()f x 的定义域为R ,当0x >时()()110,111x f x x x ==-∈++且()f x 是单调递增的, 当0x <时()()111,011x f x x x==-+∈---且()f x 是单调递增的, 当0x=时()00f =,又因为()()1xf x f x x--==-+-,所以()f x 是奇函数,由此可判断出∴∴∴正确,因为()()()2112x f x f f x x ==+,()()()3213xf x f f x x ==+,......,由归纳推理可得:()1n xf x n x=+,所以∴正确.故答案为∴∴∴∴.【点睛】本题考查函数的值域、单调性、奇偶性的综合运用,难度较难. (1)分段函数的值域可以采用分段求解,最后再取各段值域的并集;(2)分段函数在判断单调性时,除了要考虑每一段函数单调性,还需要考虑到在分段点处各段函数的函数值的大小关系.三、解答题17.设全集U =R ,集合A =(-∞,-1][4,+∞),B =(-∞,1].求:(1)()UA B ;(2)记()UA B =M ,N ={x |a -1≤x ≤-2a },且MN N =,求a 的取值范围.【答案】(1)()UA B =(1,4);(2)(13,+∞). 【分析】(1)先求AB ,再求()UA B ;(2)由条件可知N M ⊆,分N =∅和N ≠∅两种情况,列不等式求参数a 的取值范围. 【详解】(1)由题意知,A B =(-∞,1][4,+∞),又全集U =R ,所以()UA B =(1,4).(2)由(1)得M =(1,4),由M N =N 得N ⊆M .∴当N =∅时,有a -1>-2a ,所以a >13; ∴当N ≠∅时,有12,11,24,a a a a -≤-⎧⎪->⎨⎪-<⎩此不等式组无解.综上,a 的取值范围是(13,+∞).18.定义在R 上的函数2()(21)1f x x a x =-+-(a ∈R ).(1)若()f x 为偶函数且(1)f m +>(1)f m -,求实数m 的取值范围; (2)若()f x 不是偶函数且在区间[-1,2]上不单调,求实数a 的取值范围. 【答案】(1)(0,+∞);(2)3113(,)(,)2222--⋃-. 【分析】(1)利用偶函数定义求得a ,再讨论函数f (x )的单调性,并利用它求解; (2)利用二次函数不单调的充要条件,结合不是偶函数的条件解得. 【详解】(1)因为()f x 为偶函数,所以()f x -=()f x 恒成立, 即22()(21)()1(21)1x a x x a x --+--=-+-恒成立,所以12a =-, 所以()f x =21x -,其图像是开口向上的抛物线且关于y 轴对称, 因为(1)f m +>(1)f m -,所以11m m +>-,所以m >0.所以实数m 的取值范围是(0,+∞).(2)依题意,210,112,2a a +≠⎧⎪⎨-<+<⎪⎩所以3122a -<<-或1322a -<<, 所以实数a 的取值范围是3113(,)(,)2222--⋃-. 【点睛】解含有抽象法则“f”的偶函数不等式,利用偶函数性质()(||)f x f x =变形不等式,再利用单调性去法则求解.19.记关于x 的方程1(2)a x x -=-在区间(0,3]上的解集为A ,若A 至多有2个不同的子集,求实数a 的取值范围.【答案】(],1-∞【分析】原题等价于函数2()(1)1f x a x a =-+-在区间(0,3]上至多有1个零点,分类讨论a 的取值范围即可得结果.【详解】因为A 至多有2个不同的子集,所以A 至多有1个元素. 因为1(2)a x x -=-,所以0,(2)10,x ax x ≠⎧⎨-+=⎩所以2(1)1a x a -+-=0, 所以原题等价于函数2()(1)1f x a x a =-+-在区间(0,3]上至多有1个零点. ∴当a =0时,()f x =1在区间(0,3]上无零点,符合题意;∴当a >0时,抛物线()f x =2(1)1a x a -+-开口向上,对称轴为x =1,(0)f =1,所以(1)f =1-a ≥0,所以0<a ≤1;∴当a <0时,抛物线()f x =2(1)1a x a -+-开口向下,对称轴为x =1,(0)f =1=(2)f ,所以()f x 在(0,3]上至多有一个零点,符合题意.综上,实数a 的取值范围是(],1-∞.【点睛】关键点点睛:本题的解题关键在于判断原题等价于函数2()(1)1f x a x a =-+-在区间(0,3]上至多有1个零点.20.已知不等式()101ax a R x +<∈-. (1)当2a =时,解这个不等式;(2)若111ax x x +≤--对(),0x ∀∈-∞恒成立,求实数a 的最大值. 【答案】(1)1,12⎛⎫- ⎪⎝⎭;(2)2. 【分析】(1)根据分式不等式的求解方法可直接求得结果;(2)将恒成立不等式化为22a x x ≤--+,则min 22a x x ⎛⎫≤--+ ⎪⎝⎭,利用基本不等式可求得min 22x x ⎛⎫--+ ⎪⎝⎭,由此可确定给结果.【详解】(1)当2a =时,原不等式可化为()()2110x x +-<,解得:112x -<<, ∴不等式的解集为1,12⎛⎫- ⎪⎝⎭; (2)当(),0x ∈-∞时,10x -<,()()211121ax x x x x ∴+≥--=-+-, 即22222x x a x x x-+-≤=--+; ()22x x x x --=-+≥=-(当且仅当2x x -=-,即x = min222x x ⎛⎫∴--+=⎪⎝⎭,2a ∴≤,则实数a 的最大值为2. 21.已知()f x 是定义在R 上的单调递减函数,对任意实数m ,n 都有()f m n +=()()f m f n +.函数2()2()g x x x =-.定义在R 上的单调递增函数()h x 的图象经过点A (0,0)和点B (2,2).(1)判断函数()f x 的奇偶性并证明;(2)若[1,2]t ∃∈-,使得(()1)(8)f g t f t m -++<0(m 为常实数)成立,求m 的取值范围;(3)设(1)1f =-,1()()F x f x x =-,2()()F x g x =,3()()(2)F x h x h x =--,100i i b =(i =0,1,2…100).若10()()k k k M F b F b =-+21()()k k F b F b -+…+10099()()k k F b F b -(k =1,2,3),比较123,,M M M 的大小并说明理由.【答案】(1)()f x 为奇函数;证明见解析;(2)(11,)-+∞;(3)132M M M =>;答案见解析.【分析】(1)根据奇函数的定义进行证明即可;(2)根据奇函数将不等式转化为(()1)f g t -<(8)f t m --,再根据单调性将f 脱去,等价为[1,2]t ∃∈-,22101m t t >-+,最后转化为最值问题解题即可;(3)根据函数的单调性及特殊值分别计算123,,M M M ,最后比较大小即可. 【详解】(1)()f x 是R 上的奇函数.证明如下:因为任意实数m ,n 都有()()()f m n f m f n +=+,所以(00)(0)(0)f f f +=+,所以(0)f =0,从而对∀x ∴R ,恒有()f x x -+=()()f x f x -+,所以()()(0)0f x f x f -+==,所以()()f x f x -=-,所以()f x 为奇函数.(2)由(1)知,()f x 为R 上单调递减的奇函数,由(()1)(8)f g t f t m -++<0得(()1)f g t -<(8)f t m -+=(8)f t m --,所以()1g t ->-8t -m ,22()1t t -->8t m --,22101m t t >-+.令2()2101h t t t =-+,则2523()2()22h t t =--. 当[1,2]t ∃∈-时,min ()(2)11h t h ==-.所以[1,2]t ∃∈-,使得(()1)f g t -+(8)f t m +<0成立,等价于[1,2]t ∃∈-,使得()m h t >成立,所以min ()11m h t >=-,所以m 的取值范围是(11,)-+∞.(3)依题意,易证F 1(x )=()f x -x 在R 上单调递减, 所以11110()()M F b F b =-+1121()()F b F b -+…+1100199()()F b F b -0111()()F b F b =-+1112()()F b F b -+…+1991100()()F b F b -001011()()F b F b =-11(0)(1)F F =-((0)0)((1)1)(00)(11)2f f =---=----=.因为()g x =22()x x -=-2211()22x -+在1[0,]2单调递增,在1[1]2,单调递减, 所以22120()()M F b F b =-+2221()()F b F b -+…+2100299()()F b F b -2120()()F b F b =-+2221()()F b F b -+…+250249()()F b F b -+250251()()F b F b -+251252()()F b F b -+…+()()2992100F b F b -202502502100()()()()F b F b F b F b =-++-222211(0)()()(1)22F F F F =-++-1100122=-++-=. 由()h x 在R 上单调递增,易证3()()(2)F x h x h x =--在R 上单调递增, 所以33130()()M F b F b =-+3321()()F b F b -+…+3100399()()F b F b -3130()()F b F b =-+3321()()F b F b -+…+3100399()()F b F b -310030()()F b F b =-33(1)(0)F F =-((1)(21))((0)(2))0(02)2h h h h =----=--=,所以132M M M =>.【点睛】函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.。

北京101中2019-2020学年高一上学期期中考试数学试卷Word版含解析

北京101中2019-2020学年高一上学期期中考试数学试卷Word版含解析

北京101中2019-2020学年高一上学期期中考试数学试卷一、选择题:本大题共8小题,共40分.1.下列四个选项表示的集合中,有一个集合不同于另三个集合,这个集合是()A.{x|x=0} B.{a|a2=0} C.{a=0} D.{0}2.函数y=f(x)的定义域为[1,5],则函数y=f(2x﹣1)的定义域是()A.[1,5] B.[2,10] C.[1,9] D.[1,3]3.下列四组函数,表示同一函数的是()A.f(x)=,g(x)=xB.f(x)=x,g(x)=C.f(x)=,g(x)=D.(x)=|x+1|,g(x)=4.如图是函数y=f(x)的图象,f(f(2))的值为()A.3 B.4 C.5 D.65.已知函数f(x)=3x+x﹣5,用二分法求方程3x+x﹣5=0在x∈(0,2)内近似解的过程中,取区间中点=1,那么下一个有根区间为()xA.(0,1)B.(1,2)C.(1,2)或(0,1)都可以D.不能确定6.函数f(x)=4x2﹣ax﹣8在区间(4,+∞)上是增函数,则实数a的取值范围是()A.a≤32 B.a≥32 C.a≥16 D.a≤167.已知函数f(x)为奇函数,且当x>0时,,则f(﹣1)=()A.﹣2 B.0 C.1 D.28.定义区间(a,b)、[a,b)、(a,b]、[a,b]的长度均为d=b﹣a,用[x]表示不超过x的最大整数,例如[3.2]=3,[﹣2.3]=﹣3.记{x}=x﹣[x],设f(x)=[x]•{x},g(x)=x﹣1,若用d表示不等式f(x)<g (x)解集区间长度,则当0≤x≤3时有()A.d=1 B.d=2 C.d=3 D.d=4二、填空题:本大题共6小题,共30分.9.若f (2x )=3x 2+1,则函数f (4)= .10.求值:2﹣()+lg +(﹣1)lg1= .11.设函数y=f (x+2)是奇函数,且x ∈(0,2)时,f (x )=2x ,则f (3.5)= .12.函数f (x )=3x 的值域是 .13.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x ﹣1)<f (1)的x 的取值范围是 .14.函数f (x )的定义域为A ,若x 1,x 2∈A 且f (x 1)=f (x 2)时总有x 1=x 2,则称f (x ) 为单函数.例如,函数f (x )=2x+1(x ∈R )是单函数.下列命题:①函数f (x )=x 2(x ∈R )是单函数;②若f (x )为单函数,x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2);③若f :A →B 为单函数,则对于任意b ∈B ,A 中至多有一个元素与之对应;④函数f (x )在某区间上具有单调性,则f (x )一定是单函数.其中正确的是 .(写出所有正确的编号)三、解答题:本大题共4小题,共50分.15.已知集合A={x|3≤x <7},B={2<x <10},C={x|5﹣a <x <a}.(1)求A ∪B ,(∁R A )∩B ;(2)若C ⊆(A ∪B ),求a 的取值范围.16.已知函数f (x )是定义在R 上的偶函数,已知x ≥0时,f (x )=x 2﹣2x .(1)画出偶函数f (x )的图象的草图,并求函数f (x )的单调递增区间;(2)当直线y=k (k ∈R )与函数y=f (x )恰有4个交点时,求k 的取值范围.17.已知g (x )=﹣x 2﹣3,f (x )=ax 2+bx+c (a ≠0),函数h (x )=g (x )+f (x )是奇函数.(1)求a ,c 的值;(2)当x ∈[﹣1,2]时,f (x )的最小值是1,求f (x )的解析式.18.已知定义在R 上的函数是奇函数(1)求a ,b 的值;(2)判断f (x )的单调性,并用单调性定义证明;(3)若对任意的t ∈R ,不等式f (t ﹣2t 2)+f (﹣k )>0恒成立,求实数k 的取值范围.北京101中2019-2020学年高一上学期期中考试数学试卷参考答案一、选择题:本大题共8小题,共40分.1.下列四个选项表示的集合中,有一个集合不同于另三个集合,这个集合是()A.{x|x=0} B.{a|a2=0} C.{a=0} D.{0}【考点】集合的表示法.【分析】对于A,B,D的元素都是实数,而C的元素是等式a=0,不是实数,所以选C.【解答】解:通过观察得到:A,B,D中的集合元素都是实数,而C中集合的元素不是实数,是等式a=0;∴C中的集合不同于另外3个集合.故选:C.2.函数y=f(x)的定义域为[1,5],则函数y=f(2x﹣1)的定义域是()A.[1,5] B.[2,10] C.[1,9] D.[1,3]【考点】函数的定义域及其求法.【分析】根据y=f(x)的定义域,得出y=f(2x﹣1)中2x﹣1的取值范围,从而求出x的取值范围即可.【解答】解:∵y=f(x)的定义域为[1,5],∴1≤x≤5,∴1≤2x﹣1≤5,即1≤x≤3,∴y=f(2x﹣1)的定义域是[1,3].故选:D.3.下列四组函数,表示同一函数的是()A.f(x)=,g(x)=xB.f(x)=x,g(x)=C.f(x)=,g(x)=D.(x)=|x+1|,g(x)=【考点】判断两个函数是否为同一函数.【分析】观察A选项两者的定义域相同,但是对应法则不同,B选项两个函数的定义域不同,C选项两个函数的定义域不同,这样只有D选项是同一函数.【解答】解:A选项两者的定义域相同,但是f(x)=|x|,对应法则不同,B选项两个函数的定义域不同,f(x)的定义域是R,g(x)的定义域是{x|x≠0}C选项两个函数的定义域不同,f(x)的定义域是(﹣∞,﹣2)∪(2,+∞)g(x)的定义域是(2,+∞)D选项根据绝对值的意义,把函数f(x)整理成g(x),两个函数的三个要素都相同,故选D.4.如图是函数y=f(x)的图象,f(f(2))的值为()A.3 B.4 C.5 D.6【考点】函数的值.【分析】当0≤x≤3时,根据 y=f(x)=2x求得f(2)=4.当3<x≤9时,根据f(x)=9﹣x,求得 f( f (2))=f(4)的值.【解答】解:由图象可得,当0≤x≤3时,y=f(x)=2x,∴f(2)=4.当3<x≤9时,由 y﹣0=(x﹣9),可得 y=f(x)=9﹣x,故 f( f(2))=f(4)=9﹣4=5,故选C.5.已知函数f(x)=3x+x﹣5,用二分法求方程3x+x﹣5=0在x∈(0,2)内近似解的过程中,取区间中点=1,那么下一个有根区间为()xA.(0,1)B.(1,2)C.(1,2)或(0,1)都可以D.不能确定【考点】二分法的定义.【分析】方程的实根就是对应函数f(x)的零点,由 f(2)>0,f(1)<0 知,f(x)零点所在的区间为(1,2).【解答】解:∵f(x)=3x+x﹣5,∴f(1)=3+1﹣5<0,f(2)=9+2﹣5>0,∴f(x)零点所在的区间为(1,2)∴方程3x+x﹣5=0有根的区间是(1,2),故选:B.6.函数f(x)=4x2﹣ax﹣8在区间(4,+∞)上是增函数,则实数a的取值范围是()A.a≤32 B.a≥32 C.a≥16 D.a≤16【考点】二次函数的性质.【分析】先求出函数的对称轴,结合二次函数的性质得到不等式,解出即可.【解答】解:∵f(x)=4x2﹣ax﹣8在区间(4,+∞)上为增函数,∴对称轴x=≤4,解得:a≤32,故选:A.7.已知函数f(x)为奇函数,且当x>0时,,则f(﹣1)=()A.﹣2 B.0 C.1 D.2【考点】函数的值.【分析】利用奇函数的性质,f(﹣1)=﹣f(1),即可求得答案.【解答】解:∵函数f(x)为奇函数,x>0时,f(x)=x2+,∴f(﹣1)=﹣f(1)=﹣2,故选A.8.定义区间(a,b)、[a,b)、(a,b]、[a,b]的长度均为d=b﹣a,用[x]表示不超过x的最大整数,例如[3.2]=3,[﹣2.3]=﹣3.记{x}=x﹣[x],设f(x)=[x]•{x},g(x)=x﹣1,若用d表示不等式f(x)<g (x)解集区间长度,则当0≤x≤3时有()A.d=1 B.d=2 C.d=3 D.d=4【考点】其他不等式的解法.【分析】先化简f(x)=[x]•{x}=[x]•(x﹣[x])=[x]x﹣[x]2,再化简f(x)<(x),再分类讨论:①当x ∈[0,1)时,②当x∈[1,2)时③当x∈[2,3]时,求出f(x)<g(x)在0≤x≤3时的解集的长度.【解答】解:f(x)=[x]•{x}=[x]•(x﹣[x])=[x]x﹣[x]2,g(x)=x﹣1f(x)<g(x)⇒[x]x﹣[x]2<x﹣1即([x]﹣1)x<[x]2﹣1当x∈[0,1)时,[x]=0,上式可化为x>1,∴x∈∅;当x∈[1,2)时,[x]=1,上式可化为0>0,∴x∈∅;当x∈[2,3]时,[x]﹣1>0,上式可化为x<[x]+1,∴x∈[2,3];∴f(x)<g(x)在0≤x≤3时的解集为[2,3],故d=1,故选:A.二、填空题:本大题共6小题,共30分.9.若f(2x)=3x2+1,则函数f(4)= 13 .【考点】函数的值.【分析】由2x=4得x=2,代入解析式即可得到结论.【解答】解:∵f(2x)=3x2+1,∴由2x=4得x=2,即f(4)=f(2×2)=3×22+1=12+1=13,故答案为:13.10.求值:2﹣()+lg+(﹣1)lg1= ﹣3 .【考点】有理数指数幂的化简求值.【分析】由已知条件利用对数函数、指数函数的性质和运算法则求解.【解答】解:2﹣()+lg+(﹣1)lg1=﹣[()3]﹣2+()0=﹣﹣2+1=﹣3.故答案为:﹣3.11.设函数y=f (x+2)是奇函数,且x ∈(0,2)时,f (x )=2x ,则f (3.5)= ﹣1 .【考点】函数奇偶性的性质.【分析】由x ∈(0,2)时,f (x )=2x ,可得f (0.5)=1.由于函数y=f (x+2)是奇函数,可得f (﹣x+2)=﹣f (x+2),即可得出.【解答】解:∵x ∈(0,2)时,f (x )=2x ,∴f (0.5)=1.∵函数y=f (x+2)是奇函数,∴f (﹣x+2)=﹣f (x+2),∴f (3.5)=﹣f (﹣1.5+2)=﹣f (0.5)=﹣1.故答案为:﹣1.12.函数f (x )=3x 的值域是 [0,+∞) .【考点】函数的值域.【分析】化分数指数幂为根式,再由x 2≥0求得原函数的值域.【解答】解:f (x )=3x=, ∵x 2≥0,∴,则函数f (x )=3x的值域是[0,+∞). 故答案为:[0,+∞).13.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x ﹣1)<f (1)的x 的取值范围是 (0,1) .【考点】奇偶性与单调性的综合.【分析】由f (x )为偶函数且在[0,+∞)上单调递增,便可由f (2x ﹣1)<f (1)得出|2x ﹣1|<1,解该绝对值不等式便可得出x 的取值范围.【解答】解:f (x )为偶函数;∴由f (2x ﹣1)<f (1)得,f (|2x ﹣1|)<f (1);又f (x )在[0,+∞)上单调递增;∴|2x ﹣1|<1;解得0<x <1;∴x 的取值范围是(0,1).故答案为:(0,1).14.函数f (x )的定义域为A ,若x 1,x 2∈A 且f (x 1)=f (x 2)时总有x 1=x 2,则称f (x ) 为单函数.例如,函数f (x )=2x+1(x ∈R )是单函数.下列命题:①函数f (x )=x 2(x ∈R )是单函数;②若f (x )为单函数,x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2);③若f :A →B 为单函数,则对于任意b ∈B ,A 中至多有一个元素与之对应;④函数f (x )在某区间上具有单调性,则f (x )一定是单函数.其中正确的是 ②③ .(写出所有正确的编号)【考点】命题的真假判断与应用;函数的值.【分析】在①中,举出反例得到函数f (x )=x 2(x ∈R )不是单函数;在②中,由互为逆否命题的两个命题等价判断正误;在③中,符合唯一的函数值对应唯一的自变量;在④中,在某一区间单调并不一定在定义域内单调.【解答】解:在①中,函数f (x )=x 2(x ∈R ),由f (﹣1)=f (1),但﹣1≠1,得到函数f (x )=x 2(x ∈R )不是单函数,故①错误;在②中,“x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2)”的逆否命题是“若x 1,x 2∈A 且f (x 1)=f (x 2)时总有x 1=x 2”.互为逆否命题的两个命题等价.故②的逆否命题为真,故②正确;在③中,符合唯一的函数值对应唯一的自变量,∴若f :A →B 为单函数,则对于任意b ∈B ,A 中至多有一个元素与之对应,故③正确;在④中,在某一区间单调并不一定在定义域内单调,∴f (x )不一定是单函数,故④错误.故答案为:②③.三、解答题:本大题共4小题,共50分.15.已知集合A={x|3≤x <7},B={2<x <10},C={x|5﹣a <x <a}.(1)求A ∪B ,(∁R A )∩B ;(2)若C ⊆(A ∪B ),求a 的取值范围.【考点】集合的包含关系判断及应用;交、并、补集的混合运算.【分析】(1)在数轴上表示出集合A ,B ,从而解得;(2)由题意分类讨论,从而求实数a 的取值范围.【解答】解:(1)∵集合A={x|3≤x <7},B={2<x <10}在数轴上表示可得:故A ∪B={x|2<x <10},C R A={x|x <3,或x ≥7}(C R A )∩B={2<x <3,或7≤x <10};(2)依题意可知 ①当C=∅时,有5﹣a ≥a ,得;②当C ≠∅时,有,解得;综上所述,所求实数a 的取值范围为(﹣∞,3].16.已知函数f (x )是定义在R 上的偶函数,已知x ≥0时,f (x )=x 2﹣2x .(1)画出偶函数f (x )的图象的草图,并求函数f (x )的单调递增区间;(2)当直线y=k (k ∈R )与函数y=f (x )恰有4个交点时,求k 的取值范围.【考点】二次函数的性质;函数奇偶性的性质.【分析】(1)根据已知条件画出函数f(x)的图象,根据图象即可得到f(x)的单调递增区间;(2)通过图象即可得到k的取值范围.【解答】解:(1)画出f(x)的图象如下图:由图象知,函数f(x)单调递增区间为[﹣1,0],[1,+∞);(2)由图象可知,当﹣1<k<0时,直线与函数y=f(x)的图象的交点个数为4;∴k的取值范围为(﹣1,0).17.已知g(x)=﹣x2﹣3,f(x)=ax2+bx+c(a≠0),函数h(x)=g(x)+f(x)是奇函数.(1)求a,c的值;(2)当x∈[﹣1,2]时,f(x)的最小值是1,求f(x)的解析式.【考点】函数奇偶性的性质;函数的最值及其几何意义.【分析】(1)法一:化简h(x)=g(x)+f(x)=(a﹣1)x2+bx+c﹣3,由(a﹣1)x2﹣bx+c﹣3=﹣(a﹣1)x2﹣bx﹣c+3对x∈R恒成立得到,从而求解,法二:化简h(x)=g(x)+f(x)=(a﹣1)x2+bx+c﹣3,由奇函数可得a﹣1=0,c﹣3=0,从而求解;(2)根据二次函数的性质,讨论对称轴所在的位置,从而确定f(x)的最小值在何时取得,从而求f(x)的解析式.【解答】解:(1)(法一):f(x)+g(x)=(a﹣1)x2+bx+c﹣3,又f(x)+g(x)为奇函数,∴h(x)=﹣h(﹣x),∴(a﹣1)x2﹣bx+c﹣3=﹣(a﹣1)x2﹣bx﹣c+3对x∈R恒成立,∴,解得;(法二):h(x)=f(x)+g(x)=(a﹣1)x2+bx+c﹣3,∵h(x)为奇函数,∴a﹣1=0,c﹣3=0,∴a=1,c=3.(2)f(x)=x2+bx+3,其图象对称轴为,当,即b≥2时,=f(﹣1)=4﹣b=1,∴b=3;f(x)min当,即﹣4≤b<2时,,解得或(舍);当,即b<﹣4时,=f(2)=7+2b=1,∴b=﹣3(舍),f(x)min∴f(x)=x2+3x+3或∴.18.已知定义在R上的函数是奇函数(1)求a,b的值;(2)判断f(x)的单调性,并用单调性定义证明;(3)若对任意的t∈R,不等式f(t﹣2t2)+f(﹣k)>0恒成立,求实数k的取值范围.【考点】函数恒成立问题;函数单调性的判断与证明;函数奇偶性的性质.【分析】(1)由f(x)是定义在R上的奇函数,知,故b=1,,,由此能求出a=b=1.(2),f (x )在R 上是减函数.证明:设x 1,x 2∈R 且x 1<x 2,=﹣,由此能够证明f (x )在R 上是减函数.(3)不等式f (t ﹣2t 2)+f (﹣k )>0,等价于f (t ﹣2t 2)>f (k ),由f (x )是R 上的减函数,知t ﹣2t 2<k ,由此能求出实数k 的取值范围.【解答】解:(1)∵f (x )是定义在R 上的奇函数,∴,解得b=1,∴,∴∴a •2x +1=a+2x ,即a (2x ﹣1)=2x ﹣1对一切实数x 都成立,∴a=1,故a=b=1.(2)∵a=b=1,∴,f (x )在R 上是减函数.证明:设x 1,x 2∈R 且x 1<x 2则 =﹣, ∵x 1<x 2,∴,,,∴f (x 1)﹣f (x 2)>0即f (x 1)>f (x 2),∴f (x )在R 上是减函数,(3)∵不等式f (t ﹣2t 2)+f (﹣k )>0,∴f (t ﹣2t 2)>﹣f (﹣k ),∴f (t ﹣2t 2)>f (k ),∵f (x )是R 上的减函数,∴t﹣2t2<k∴对t∈R恒成立,∴.。

北京101中学10月高一数学试题

北京101中学10月高一数学试题

北京一零一中 2019-2020 学年度第一学期高一数学统练二 第 2 页(共 2 页)
(D) 既不充分也不必要条件
5. 已知 x1, x2 是关于 x 的方程 x2 + bx − 3 = 0 的两根, 且满足 x1 + x2 − 3x1 x2 = 5, 那么 b 的 值为 ( )
(A) 4
(B) −4
(C) 3
(D) −3
6. 已知集合 A = {x | x2 − 2x − 3 < 0}, B = {x | −1 < x < m}, 若 x ∈ A 是 x ∈ B 的充分不必要条
(A) ab > ac
(B) c(b − a) > 0
(C) cb2 < ab2
(D) ac(a − c) < 0
2.
不等式
x−3 x−1
0 的解集为 ( )
(A) {x | x < 1 或 x 3}
(B) {x | 1 x 3}
(C) {x | 1 < x 3}
(D) {x | 1 < x < 3}
3.
“a,
b

R+”


a
+ 2
b
(A) 充分不必要条件
√ ab”
成立的
( )
(B) 必要不充分条件
(C) 充要条件
(D) 既不充分也不必要条件
4. 设 x ∈ R, 则 “x2 − 5x < 0” 是 “|x − 1| < 1” 的 ( )
(A) 充分而不必要条件
(B) 必要而不充分条件
(C) 充要条件
数 13关4x,系+

2019-2020学年北京一零一中学高三期中数学试题及答案

2019-2020学年北京一零一中学高三期中数学试题及答案

2019 北京一零一中高三(上)统练五数学(理)一、选择题共8 小题。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.若复数为纯虚数,则实数的值为()A. 1B. 0C.D. -12.已知为等差数列,为其前n 项和,若,则()A. 17B. 14C. 13D. 33.“”是“”的()A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件4.将函数的图像向右平移个单位得到函数的图像,则a 的值可以为()A. B. C. D.5.某中学语文老师从《红楼梦》、《平凡的世界》、《红岩》、《老人与海》4 本不同的名著中选出3 本,分给三个同学去读,其中《红楼梦》为必读,则不同的分配方法共有()A. 6 种B. 12 种C. 18 种D. 24 种6.已知△的内角的对边分别为,若,,则△面积的最大值是A. B. C. D.7.如图,已知直线与曲线相切于两点,函数,则函数()A. 有极小值,没有极大值B. 有极大值,没有极小值C. 至少有两个极小值和一个极大值D. 至少有一个极小值和两个极大值8.已知非空集合A,B 满足以下两个条件:①;②A 的元素个数不是A 中的元素,B 的元素个数不是B 中的元素,则有序集合对(A,B)的个数为()A. 10B. 12C. 14D. 16二、填空题共 6 小题。

9.已知集合,则M∩N=.10.在等比数列中,,且,则的值为.11.能够说明“恒成立”是假命题的一个x 的值为.12.已知向量a,b 的夹角为60°,,则=.13.在边长为1 的等边三角形ABC 中,点D、E 分别是边AB,BC 的中点,连接DE 并延长到点F,使得DE=2EF. 设,则14.已知;=.(1)若有两个零点,则a 的取值范围是,(2)当时,则满足的x 的取值范围是.三、解答题共 4 小题。

解答应写出文字说明、演算步骤或证明过程。

15.已知函数的图像与x 轴的相铃两个交点的距离为.(1)求的值;(2)设函数,求在区间上的最大值和最小值.16.如图所示,在△ABC 中,D 是BC 边上的一点,且AB=14,BD=6,,.(1)求;(2)求AD 的长和△ABC 的面积.17.设数列的前n 项和为,且,在正项等比数列中,.(1)求和的通项公式;(2)设,求数列的前n 项和.18.已知函数.(1)求函数的单调区间;(2)当时,求函数在区间上的最大值.2019 北京一零一中高三(上)统练五数学(理)参考答案一、选择题共8 小题。

北京市101中高一数学上学期期中试卷(含解析)

北京市101中高一数学上学期期中试卷(含解析)

2015-2016学年北京101中高一(上)期中数学试卷一、选择题:本大题共8小题,共40分.1.下列四个选项表示的集合中,有一个集合不同于另三个集合,这个集合是()A.{x|x=0} B.{a|a2=0} C.{a=0} D.{0}2.函数y=f(x)的定义域为[1,5],则函数y=f(2x﹣1)的定义域是()A.[1,5] B.[2,10] C.[1,9] D.[1,3]3.下列四组函数,表示同一函数的是()A.f(x)=,g(x)=xB.f(x)=x,g(x)=C.f(x)=,g(x)=D.(x)=|x+1|,g(x)=4.如图是函数y=f(x)的图象,f(f(2))的值为()A.3 B.4 C.5 D.65.已知函数f(x)=3x+x﹣5,用二分法求方程3x+x﹣5=0在x∈(0,2)内近似解的过程中,取区间中点x0=1,那么下一个有根区间为()A.(0,1)B.(1,2)C.(1,2)或(0,1)都可以D.不能确定6.函数f(x)=4x2﹣ax﹣8在区间(4,+∞)上是增函数,则实数a的取值范围是()A.a≤32B.a≥32C.a≥16D.a≤167.已知函数f(x)为奇函数,且当x>0时,,则f(﹣1)=()A.﹣2 B.0 C.1 D.28.定义区间(a,b)、[a,b)、(a,b]、[a,b]的长度均为d=b﹣a,用[x]表示不超过x的最大整数,例如[3.2]=3,[﹣2.3]=﹣3.记{x}=x﹣[x],设f(x)=[x]•{x},g(x)=x﹣1,若用d表示不等式f(x)<g(x)解集区间长度,则当0≤x≤3时有()A.d=1 B.d=2 C.d=3 D.d=4二、填空题:本大题共6小题,共30分.9.若f(2x)=3x2+1,则函数f(4)= .10.求值:2﹣()+lg+(﹣1)lg1= .11.设函数y=f(x+2)是奇函数,且x∈(0,2)时,f(x)=2x,则f(3.5)= .12.函数f(x)=3x的值域是.13.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x﹣1)<f(1)的x的取值范围是.14.函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=2x+1(x∈R)是单函数.下列命题:①函数f(x)=x2(x∈R)是单函数;②若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);③若f:A→B为单函数,则对于任意b∈B,A中至多有一个元素与之对应;④函数f(x)在某区间上具有单调性,则f(x)一定是单函数.其中正确的是.(写出所有正确的编号)三、解答题:本大题共4小题,共50分.15.已知集合A={x|3≤x<7},B={2<x<10},C={x|5﹣a<x<a}.(1)求A∪B,(∁R A)∩B;(2)若C⊆(A∪B),求a的取值范围.16.已知函数f(x)是定义在R上的偶函数,已知x≥0时,f(x)=x2﹣2x.(1)画出偶函数f(x)的图象的草图,并求函数f(x)的单调递增区间;(2)当直线y=k(k∈R)与函数y=f(x)恰有4个交点时,求k的取值范围.17.已知g(x)=﹣x2﹣3,f(x)=ax2+bx+c(a≠0),函数h(x)=g(x)+f(x)是奇函数.(1)求a,c的值;(2)当x∈[﹣1,2]时,f(x)的最小值是1,求f(x)的解析式.18.已知定义在R上的函数是奇函数(1)求a,b的值;(2)判断f(x)的单调性,并用单调性定义证明;(3)若对任意的t∈R,不等式f(t﹣2t2)+f(﹣k)>0恒成立,求实数k的取值范围.2015-2016学年北京101中高一(上)期中数学试卷参考答案与试题解析一、选择题:本大题共8小题,共40分.1.下列四个选项表示的集合中,有一个集合不同于另三个集合,这个集合是()A.{x|x=0} B.{a|a2=0} C.{a=0} D.{0}【考点】集合的表示法.【分析】对于A,B,D的元素都是实数,而C的元素是等式a=0,不是实数,所以选C.【解答】解:通过观察得到:A,B,D中的集合元素都是实数,而C中集合的元素不是实数,是等式a=0;∴C中的集合不同于另外3个集合.故选:C.2.函数y=f(x)的定义域为[1,5],则函数y=f(2x﹣1)的定义域是()A.[1,5] B.[2,10] C.[1,9] D.[1,3]【考点】函数的定义域及其求法.【分析】根据y=f(x)的定义域,得出y=f(2x﹣1)中2x﹣1的取值范围,从而求出x的取值范围即可.【解答】解:∵y=f(x)的定义域为[1,5],∴1≤x≤5,∴1≤2x﹣1≤5,即1≤x≤3,∴y=f(2x﹣1)的定义域是[1,3].故选:D.3.下列四组函数,表示同一函数的是()A.f(x)=,g(x)=xB.f(x)=x,g(x)=C.f(x)=,g(x)=D.(x)=|x+1|,g(x)=【考点】判断两个函数是否为同一函数.【分析】观察A选项两者的定义域相同,但是对应法则不同,B选项两个函数的定义域不同,C选项两个函数的定义域不同,这样只有D选项是同一函数.【解答】解:A选项两者的定义域相同,但是f(x)=|x|,对应法则不同,B选项两个函数的定义域不同,f(x)的定义域是R,g(x)的定义域是{x|x≠0}C选项两个函数的定义域不同,f(x)的定义域是(﹣∞,﹣2)∪(2,+∞)g(x)的定义域是(2,+∞)D选项根据绝对值的意义,把函数f(x)整理成g(x),两个函数的三个要素都相同,故选D.4.如图是函数y=f(x)的图象,f(f(2))的值为()A.3 B.4 C.5 D.6【考点】函数的值.【分析】当0≤x≤3时,根据 y=f(x)=2x求得f(2)=4.当3<x≤9时,根据f(x)=9﹣x,求得 f( f(2))=f(4)的值.【解答】解:由图象可得,当0≤x≤3时,y=f(x)=2x,∴f(2)=4.当3<x≤9时,由 y﹣0=(x﹣9),可得 y=f(x)=9﹣x,故 f( f(2))=f(4)=9﹣4=5,故选C.5.已知函数f(x)=3x+x﹣5,用二分法求方程3x+x﹣5=0在x∈(0,2)内近似解的过程中,取区间中点x0=1,那么下一个有根区间为()A.(0,1)B.(1,2)C.(1,2)或(0,1)都可以D.不能确定【考点】二分法的定义.【分析】方程的实根就是对应函数f(x)的零点,由 f(2)>0,f(1)<0 知,f(x)零点所在的区间为(1,2).【解答】解:∵f(x)=3x+x﹣5,∴f(1)=3+1﹣5<0,f(2)=9+2﹣5>0,∴f(x)零点所在的区间为(1,2)∴方程3x+x﹣5=0有根的区间是(1,2),故选:B.6.函数f(x)=4x2﹣ax﹣8在区间(4,+∞)上是增函数,则实数a的取值范围是()A.a≤32B.a≥32C.a≥16D.a≤16【考点】二次函数的性质.【分析】先求出函数的对称轴,结合二次函数的性质得到不等式,解出即可.【解答】解:∵f(x)=4x2﹣ax﹣8在区间(4,+∞)上为增函数,∴对称轴x=≤4,解得:a≤32,故选:A.7.已知函数f(x)为奇函数,且当x>0时,,则f(﹣1)=()A.﹣2 B.0 C.1 D.2【考点】函数的值.【分析】利用奇函数的性质,f(﹣1)=﹣f(1),即可求得答案.【解答】解:∵函数f(x)为奇函数,x>0时,f(x)=x2+,∴f(﹣1)=﹣f(1)=﹣2,故选A.8.定义区间(a,b)、[a,b)、(a,b]、[a,b]的长度均为d=b﹣a,用[x]表示不超过x的最大整数,例如[3.2]=3,[﹣2.3]=﹣3.记{x}=x﹣[x],设f(x)=[x]•{x},g(x)=x﹣1,若用d表示不等式f(x)<g(x)解集区间长度,则当0≤x≤3时有()A.d=1 B.d=2 C.d=3 D.d=4【考点】其他不等式的解法.【分析】先化简f(x)=[x]•{x}=[x]•(x﹣[x])=[x]x﹣[x]2,再化简f(x)<(x),再分类讨论:①当x∈[0,1)时,②当x∈[1,2)时③当x∈[2,3]时,求出f(x)<g(x)在0≤x≤3时的解集的长度.【解答】解:f(x)=[x]•{x}=[x]•(x﹣[x])=[x]x﹣[x]2,g(x)=x﹣1f(x)<g(x)⇒[x]x﹣[x]2<x﹣1即([x]﹣1)x<[x]2﹣1当x∈[0,1)时,[x]=0,上式可化为x>1,∴x∈∅;当x∈[1,2)时,[x]=1,上式可化为0>0,∴x∈∅;当x∈[2,3]时,[x]﹣1>0,上式可化为x<[x]+1,∴x∈[2,3];∴f(x)<g(x)在0≤x≤3时的解集为[2,3],故d=1,故选:A.二、填空题:本大题共6小题,共30分.9.若f(2x)=3x2+1,则函数f(4)= 13 .【考点】函数的值.【分析】由2x=4得x=2,代入解析式即可得到结论.【解答】解:∵f(2x)=3x2+1,∴由2x=4得x=2,即f(4)=f(2×2)=3×22+1=12+1=13,故答案为:13.10.求值:2﹣()+lg+(﹣1)lg1= ﹣3 .【考点】有理数指数幂的化简求值.【分析】由已知条件利用对数函数、指数函数的性质和运算法则求解.【解答】解:2﹣()+lg+(﹣1)lg1=﹣[()3]﹣2+()0=﹣﹣2+1=﹣3.故答案为:﹣3.11.设函数y=f(x+2)是奇函数,且x∈(0,2)时,f(x)=2x,则f(3.5)= ﹣1 .【考点】函数奇偶性的性质.【分析】由x∈(0,2)时,f(x)=2x,可得f(0.5)=1.由于函数y=f(x+2)是奇函数,可得f(﹣x+2)=﹣f(x+2),即可得出.【解答】解:∵x∈(0,2)时,f(x)=2x,∴f(0.5)=1.∵函数y=f(x+2)是奇函数,∴f(﹣x+2)=﹣f(x+2),∴f(3.5)=﹣f(﹣1.5+2)=﹣f(0.5)=﹣1.故答案为:﹣1.12.函数f(x)=3x的值域是[0,+∞).【考点】函数的值域.【分析】化分数指数幂为根式,再由x2≥0求得原函数的值域.【解答】解:f(x)=3x=,∵x2≥0,∴,则函数f(x)=3x的值域是[0,+∞).故答案为:[0,+∞).13.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x﹣1)<f(1)的x的取值范围是(0,1).【考点】奇偶性与单调性的综合.【分析】由f(x)为偶函数且在[0,+∞)上单调递增,便可由f(2x﹣1)<f(1)得出|2x ﹣1|<1,解该绝对值不等式便可得出x的取值范围.【解答】解:f(x)为偶函数;∴由f(2x﹣1)<f(1)得,f(|2x﹣1|)<f(1);又f(x)在[0,+∞)上单调递增;∴|2x﹣1|<1;解得0<x<1;∴x的取值范围是(0,1).故答案为:(0,1).14.函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=2x+1(x∈R)是单函数.下列命题:①函数f(x)=x2(x∈R)是单函数;②若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);③若f:A→B为单函数,则对于任意b∈B,A中至多有一个元素与之对应;④函数f(x)在某区间上具有单调性,则f(x)一定是单函数.其中正确的是②③.(写出所有正确的编号)【考点】命题的真假判断与应用;函数的值.【分析】在①中,举出反例得到函数f(x)=x2(x∈R)不是单函数;在②中,由互为逆否命题的两个命题等价判断正误;在③中,符合唯一的函数值对应唯一的自变量;在④中,在某一区间单调并不一定在定义域内单调.【解答】解:在①中,函数f(x)=x2(x∈R),由f(﹣1)=f(1),但﹣1≠1,得到函数f(x)=x2(x∈R)不是单函数,故①错误;在②中,“x1,x2∈A且x1≠x2,则f(x1)≠f(x2)”的逆否命题是“若x1,x2∈A且f(x1)=f(x2)时总有x1=x2”.互为逆否命题的两个命题等价.故②的逆否命题为真,故②正确;在③中,符合唯一的函数值对应唯一的自变量,∴若f:A→B为单函数,则对于任意b∈B,A中至多有一个元素与之对应,故③正确;在④中,在某一区间单调并不一定在定义域内单调,∴f(x)不一定是单函数,故④错误.故答案为:②③.三、解答题:本大题共4小题,共50分.15.已知集合A={x|3≤x<7},B={2<x<10},C={x|5﹣a<x<a}.(1)求A∪B,(∁R A)∩B;(2)若C⊆(A∪B),求a的取值范围.【考点】集合的包含关系判断及应用;交、并、补集的混合运算.【分析】(1)在数轴上表示出集合A,B,从而解得;(2)由题意分类讨论,从而求实数a的取值范围.【解答】解:(1)∵集合A={x|3≤x<7},B={2<x<10}在数轴上表示可得:故A∪B={x|2<x<10},C R A={x|x<3,或x≥7}(C R A)∩B={2<x<3,或7≤x<10};(2)依题意可知①当C=∅时,有5﹣a≥a,得;②当C≠∅时,有,解得;综上所述,所求实数a的取值范围为(﹣∞,3].16.已知函数f(x)是定义在R上的偶函数,已知x≥0时,f(x)=x2﹣2x.(1)画出偶函数f(x)的图象的草图,并求函数f(x)的单调递增区间;(2)当直线y=k(k∈R)与函数y=f(x)恰有4个交点时,求k的取值范围.【考点】二次函数的性质;函数奇偶性的性质.【分析】(1)根据已知条件画出函数f(x)的图象,根据图象即可得到f(x)的单调递增区间;(2)通过图象即可得到k的取值范围.【解答】解:(1)画出f(x)的图象如下图:由图象知,函数f(x)单调递增区间为[﹣1,0],[1,+∞);(2)由图象可知,当﹣1<k<0时,直线与函数y=f(x)的图象的交点个数为4;∴k的取值范围为(﹣1,0).17.已知g(x)=﹣x2﹣3,f(x)=ax2+bx+c(a≠0),函数h(x)=g(x)+f(x)是奇函数.(1)求a,c的值;(2)当x∈[﹣1,2]时,f(x)的最小值是1,求f(x)的解析式.【考点】函数奇偶性的性质;函数的最值及其几何意义.【分析】(1)法一:化简h(x)=g(x)+f(x)=(a﹣1)x2+bx+c﹣3,由(a﹣1)x2﹣bx+c ﹣3=﹣(a﹣1)x2﹣bx﹣c+3对x∈R恒成立得到,从而求解,法二:化简h(x)=g(x)+f(x)=(a﹣1)x2+bx+c﹣3,由奇函数可得a﹣1=0,c﹣3=0,从而求解;(2)根据二次函数的性质,讨论对称轴所在的位置,从而确定f(x)的最小值在何时取得,从而求f(x)的解析式.【解答】解:(1)(法一):f(x)+g(x)=(a﹣1)x2+bx+c﹣3,又f(x)+g(x)为奇函数,∴h(x)=﹣h(﹣x),∴(a﹣1)x2﹣bx+c﹣3=﹣(a﹣1)x2﹣bx﹣c+3对x∈R恒成立,∴,解得;(法二):h(x)=f(x)+g(x)=(a﹣1)x2+bx+c﹣3,∵h(x)为奇函数,∴a﹣1=0,c﹣3=0,∴a=1,c=3.(2)f(x)=x2+bx+3,其图象对称轴为,当,即b≥2时,f(x)min=f(﹣1)=4﹣b=1,∴b=3;当,即﹣4≤b<2时,,解得或(舍);当,即b<﹣4时,f(x)min=f(2)=7+2b=1,∴b=﹣3(舍),∴f(x)=x2+3x+3或∴.18.已知定义在R上的函数是奇函数(1)求a,b的值;(2)判断f(x)的单调性,并用单调性定义证明;(3)若对任意的t∈R,不等式f(t﹣2t2)+f(﹣k)>0恒成立,求实数k的取值范围.【考点】函数恒成立问题;函数单调性的判断与证明;函数奇偶性的性质.【分析】(1)由f(x)是定义在R上的奇函数,知,故b=1,,,由此能求出a=b=1.(2),f(x)在R上是减函数.证明:设x1,x2∈R且x1<x2,=﹣,由此能够证明f(x)在R上是减函数.(3)不等式f(t﹣2t2)+f(﹣k)>0,等价于f(t﹣2t2)>f(k),由f(x)是R上的减函数,知t﹣2t2<k,由此能求出实数k的取值范围.【解答】解:(1)∵f(x)是定义在R上的奇函数,∴,解得b=1,∴,∴∴a•2x+1=a+2x,即a(2x﹣1)=2x﹣1对一切实数x都成立,∴a=1,故a=b=1.(2)∵a=b=1,∴,f(x)在R上是减函数.证明:设x1,x2∈R且x1<x2则=﹣,∵x1<x2,∴,,,∴f(x1)﹣f(x2)>0即f(x1)>f(x2),∴f(x)在R上是减函数,(3)∵不等式f(t﹣2t2)+f(﹣k)>0,∴f(t﹣2t2)>﹣f(﹣k),∴f(t﹣2t2)>f(k),∵f(x)是R上的减函数,∴t﹣2t2<k∴对t∈R恒成立,∴.11。

2019北京一零一高一(上)期中数学

2019北京一零一高一(上)期中数学

C. {-1,6}
D. {-2,-3}
2.“a>2”是“������2 > 4”的()
A. 必要不充分条件
B. 充分不必要条件
C. 充要条件
D. 既不充分也不必要条件
3.下列函数中,在区间(0,+∞)上为增函数的是()
A. y=-3x-1
B. ������ = 2
������
C. ������ = ������2 − 4������ + 5 D. ������ = |������ − 1| + 2
.
10.已知方程������������2 + ������������ + 1 = 0的两个根分别为− 1,3,则不等式������������2 + ������������ + 1 > 0的解集为
4
间表示)
(结果用区
11.命题“∀������ > 0, ������2 + 2������ − 3 > 0”的否定是
A. (-∞,1)∪(2,+∞)
B. (1,2)
C. (-∞,-1)∪(2,+∞)
D. (-1,2)
二、填空题共 6 小题,每小题 5 分,共 30 分。
9.已知������1, ������2是方程������2 + 2������ − 5 = 0的两根,则������12 + 2������1 + ������1������2的值为
17.一元二次方程������2 − ������������ + ������2 + ������ − 1 = 0有两实根������1,������2. (1)求 m 的取值范围; (2)求������1 · ������2的最值; (3)如果|������1 − ������2| > √5,求 m 的取值范围.

2019年北京一零一中高一数学期中考试

2019年北京一零一中高一数学期中考试
3
6.若函数 f (x) x a (a R) 在区间 (1, 2) 上恰有一个零点,则 a 的值可以是( ) x
(A)-2
(B)0(C)-1 Nhomakorabea(D)3
7.已知函数
f
(x)

a


3 x
2a , x x
5, x 1

1,

R
上的减函数,则实数 a
的取值范围是(

(A)(0,2)
(2)若 A B 9 ,求 A B .
16.已知函数 f x ax 2 .
x
(1)求定义域,并判断函数 f x 的奇偶性;
(2)若 f 1 f 2 0 ,证明函数 f x 在 0, 上的单调性,并求函数 f x 在区间1, 4上的最值.
2
17.一元二次方程 x2 mx m2 m 1 0 有两实根 x1 , x2 . (1)求 m 的取值范围; (2)求 x1 , x2 的最值; (3)如果 x1 x2 5 ,求 m 的取值范围.
18.某住宅小区为了使居民有一个优雅舒适的生活环境,计划建一个八边形的休
闲小区,它的主体造型的平面图是由两个相同的矩形 ABCD 和 EFGH 构成的 面积为 200 平方米的十字型地域.现计划在正方形 MNPQ 上建花坛,造价为 4200 元/平方米,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价 为 210 元/平方米,再在四个空角上铺草坪,造价为 80 元/平方米. (1)设总造价为 S 元, AD 的边长为 x 米, DQ 的边长为 y 米,试建立 S 关于 x 的函数关系式;
北京一零一中 2019-2020 学年度第一学期期中考试 高一数学
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年北京市101中学高一(上)期中数学试卷副标题一、选择题(本大题共8小题,共40.0分) 1. 方程−x 2−5x +6=0的解集为( )A. {−6,1}B. {2,3}C. {−1,6}D. {−2,−3}2. “x >2”是“x 2>4”的( )A. 必要不充分条件B. 充分不必要条件C. 充分必要条件D. 既不充分也不必要条件3. 下列函数中,在区间(1,+∞)上为增函数的是( )A. y =−3x −1B. y =2xC. y =x 2−4x +5D. y =|x −1|+24. 已知f(x)是定义在R 上的奇函数,且当x >0时,f(x)=x 2,则f(−12)=( )A. −14B. 14C. −94D. 945. 设函数f(x)=4x +1x −1(x <0),则f(x)( )A. 有最大值3B. 有最小值3C. 有最小值−5D. 有最大值−56. 若函数f(x)=x +ax (a ∈R)在区间(1,2)上恰有一个零点,则a 的值可以是( )A. −2B. 0C. −1D. 37. 已知函数f(x)={(a −3)x +5,x ≤12a x,x >1是R 上的减函数,则实数a 的取值范围是( )A. (0,2)B. (0,2]C. (0,3)D. (0,3]8. 设函数f(x)在(−∞,+∞)上有意义,且对于任意的x ,y ∈R ,有|f(x)−f(y)|<|x −y|并且函数f(x +1)的对称中心是(−1,0),若函数g(x)−f(x)=x ,则不等式g(2x −x 2)+g(x −2)<0的解集是( )A. (−∞,1)∪(2,+∞)B. (1,2)C. (−∞,−1]∪(2,+∞)D. (−1,2)二、解答题(本大题共11小题,共80.0分)9.已知x1,x2是方程x2+2x−5=0的两根,则x12+2x1+x1x2的值为______.10.已知方程ax2+bx+1=0的两个根分别为−1,3,则不等式ax2+bx+1>0的解4集为______.(结果用区间表示)11.命题“∀x>0,x2+2x−3>0”的否定是______.12.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)−g(x)=x3+x2+2,则f(1)+g(1)的值等于______.13. 若函数f(x)=x 2−2x +1在区间[a,a +2]上的最小值为4,则实数a 的取值集合为______.14. 已知函数f(x)={−x|x|+2x,x ≥a.x,x <a.(1)若a =0,则函数f(x)的零点有______个;(2)若f(x)≤f(1)对任意的实数x 都成立,则实数a 的取值范围是______.15. 设集合A ={x 2,x −1},B ={x −5,1−x,9}.(1)若x =−3,求A ∩B ; (2)若A ∩B ={9},求A ∪B .16.已知函数f(x)=ax−2.x(1)求定义域,并判断函数f(x)的奇偶性;(2)若f(1)+f(2)=0,证明函数f(x)在(0,+∞)上的单调性,并求函数f(x)在区间[1,4]上的最值.17.一元二次方程x2−mx+m2+m−1=0有两实根x1,x2.(1)求m的取值范围;(2)求x1⋅x2的最值;(3)如果|x1−x2|>√5,求m的取值范围.18.某住宅小区为了使居民有一个优雅舒适的生活环境,计划建一个八边形的休闲小区,它的主体造型的平面图是由两个相同的矩形ABCD和EFGH构成的面积为200平方米的十字型地域.现计划在正方形MNPQ上建花坛,造价为4200元/平方米,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为210元/平方米,再在四个空角上铺草坪,造价为80元/平方米.(1)设总造价为S元,AD的边长为x米,DQ的边长为y米,试建立S关于x的函数关系式;(2)计划至少要投入多少元,才能建造这个休闲小区.19.已知函数f(x)=x2+bx+c,其中b,c∈R.(Ⅰ)当f(x)的图象关于直线x=1对称时,b=______;(Ⅱ)如果f(x)在区间[−1,1]不是单调函数,证明:对任意x∈R,都有f(x)>c−1;(Ⅲ)如果f(x)在区间(0,1)上有两个不同的零点.求c2+(1+b)c的取值范围.答案和解析1.【答案】A【解析】解:∵−x2−5x+6=0,∴x2+5x−6=0,∴(x+6)(x−1)=0,∴x=−6或1,方程−x2−5x+6=0的解集为{−6,1}.故选:A.因式分解法求解一元二次方程.本题属于简单题,解一元二次方程时注意观察方程特征,本题采用因式分解法会快速精准解题.2.【答案】B【解析】解:由x2>4,解得x>2,或x<−2.∴“x>2”是“x2>4”的充分不必要条件.故选:B.由x2>4,解得x>2,或x<−2.即可判断出结论.本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.3.【答案】D【解析】解:由一次函数的性质可知,y=−3x−1在区间(1,+∞)上为减函数,故A错误;在区间(1,+∞)上为减函数,由反比例函数的性质可知,y=2x由二次函数的性质可知,y=x2−4x+5在(−∞,2)上单调递减,在(2,+∞)上单调递增,故C错误;由一次函数的性质及图象的变换可知,y=|x−1|+2在(1,+∞)上单调递增.故选:D.结合一次函数,二次函数及反比例函数的图象及图象变换分别进行判断即可.本题主要考查了基本初等函数的单调性的判断,属于基础试题.4.【答案】A【解析】解:根据题意,f(x)满足x >0时,f(x)=x 2,则f(12)=(12)2=14, 又由函数f(x)为奇函数,则f(−12)=−f(12)=−14; 故选:A .根据题意,由函数的解析式可得f(12)的值,结合函数的奇偶性可得f(−12)=−f(12),即可得答案.本题考查函数奇偶性的性质以及应用,关键是掌握函数奇偶性的定义,属于基础题.5.【答案】D【解析】解:当x <0时,f(x)=4x +1x −1=−[(−4x)+1−x ]−1≤−2√(−4x)⋅1−x −1=−5.当且仅当−4x =−1x ,即x =−12时上式取“=”. ∴f(x)有最大值为−5. 故选:D .直接利用基本不等式求得函数f(x)=4x +1x −1(x <0)的最值得答案. 本题考查利用基本不等式求函数的最值,是基础题.6.【答案】A【解析】解:由f(x)=x +ax =0可得,a =−x 2,由函数f(x)=x +ax (a ∈R)在区间(1,2)上恰有一个零点,可知a =−x 2在(1,2)只有一个零点,当x ∈(1,2)时,y =−x 2∈(−4,−1), ∴−4<a <−1,结合选项可知,A 符合题意. 故选:A .由已知可转化为a =−x 2在(1,2)只有一个零点,然后结合二次函数的性质可求a 的范围. 本题主要考查了函数零点的简单应用,体现了转化思想的应用.7.【答案】B【解析】解:因为f(x)为R上的减函数,所以x≤1时,f(x)递减,即a−3<0①,x>1时,f(x)递减,即a>0②,且(a−3)×1+5≥2a③,联立①②③解得,0<a≤2.故选:B.由f(x)为R上的减函数可知,x≤1及x>1时,f(x)均递减,且(a−3)×1+5≥2a,由此可求a的取值范围.本题考查函数单调性的性质,本题结合图象分析更为容易.8.【答案】A【解析】解:由函数f(x+1)的对称中心是(−1,0),可得f(x)的图象关于(0,0)对称即f(x)为奇函数,∴f(−x)=−f(x),∵g(x)−f(x)=x,∴g(x)=f(x)+x,∴g(−x)=f(−x)−x=−f(x)−x=−g(x),∵对于任意的x,y∈R,有|f(x)−f(y)|<|x−y|,∴|g(x)−g(y)−(x−y)|<|x−y|,<1,∴|g(x)−g(y)−(x−y)||x−y|−1|<1,即|g(x)−g(y)x−y<2,即g′(x)>0,∴0<g(x)−g(y)x−y∴g(x)单调递增,∵g(2x−x2)+g(x−2)<0,∴g(2x−x2)<−g(x−2)=g(2−x),∴2x−x2<2−x,整理可得,x2−3x+2>0,解可得,x>2或x<1,故选:A.由已知可知f(x)为奇函数,从而可得g−x)也为奇函数,然后结合|f(x)−f(y)|<|x−y|,及导数的定义可知g′(x)>0,从而可知g(x)单调递增,结合单调性及奇函数的定义可求.本题主要考查了利用函数的奇偶性及单调性求解不等式,解题的关键是结合导数的定义判断出函数g(x)的单调性.9.【答案】0【解析】解:∵x1,x2是方程x2+2x−5=0的两根,则x12+2x1−5=0,x1x2=−5.∴x12+2x1+x1x2=5−5=0.故答案为:0.x1,x2是方程x2+2x−5=0的两根,可得x12+2x1−5=0,x1x2=−5.即可得出.本题考查了一元二次方程的根与系数的关系、方程的根,考查了推理能力与计算能力,属于基础题.10.【答案】(−14,3)【解析】解:由已知方程ax2+bx+1=0的两个根分别为−14,3,∴−14+3=−ba,(−14)×3=1a;解得:a=−43,b=113.∴不等式ax2+bx+1>0对应的二次函数开口向下,且对应方程的根为:−14和3.∴所求不等式的解集为(−14,3).故答案为:(−14,3).由已知条件以及根与系数的关系求出a,b的值,再根据不等式的解集与对应方程的根之间的关系即可求解.本题主要考查了一元二次不等式的应用,以及根与系数的关系,同时考查了分析求解的能力和计算能力,属于基础题.11.【答案】∃x0>0,x02+2x0−3≤0【解析】解:命题为全称命题,则命题“∀x>0,x2+2x−3>0”的否定是为∃x0>0,x02+2x0−3≤0,故答案为:∃x0>0,x02+2x0−3≤0.根据含有量词的命题的否定即可得到结论.本题主要考查含有量词的命题的否定,比较基础.12.【答案】2【解析】解:f(x),g(x)分别是定义在R上的偶函数和奇函数,∴f(−x)=f(x),g(−x)=−g(x),∵f(x)−g(x)=x3+x2+2,∴f(−x)+g(−x)=x3+x2+2,则f(1)+g(1)=−1+1+2=2.故答案为:2由已知可得f(−x)=f(x),g(−x)=−g(x),结合f(x)−g(x)=x3+x2+2,可得f(−x)+g(−x)=x3+x2+2,代入x=−1即可求解.本题主要考查了利用奇函数及偶函数的定义求解函数值,属于基础试题.13.【答案】{−3,3}【解析】解:因为函数f(x)=x2−2x+1=(x−1)2,所以对称轴为x=1,顶点坐标为(1,0).令x2−2x+1=4得:x2−2x−3=0,解得:x=−1或3,所以a+2=−1或a=3,即:a=−3或3.故答案为:{−3,3}根据函数解析式求出对称轴和顶点坐标,画出函数图象,即可求出a的值.本题主要考察二次函数的图象,以及利用图象求最值问题.14.【答案】2 0<a≤1【解析】解:(1)当a=0时,如图,由图可知,f(x)有2个零点.(2)①当a≥0时,f(x)={−x 2+2x,x≥ax,x<a,如图,A(1,0),当x=a在A点左侧时,总能满足f(x)≤f(1),此时0<a≤1;当x=a在A点右侧时,不满足,②当a<0时,f(x)={x 2+2x,x≥ax,x<a,如图,,此时,无论a取何值均不能满足f(x)≤f(1).综上0<a≤1.故答案为:2;0<a≤1.(1)a=0时,画出图象即可得到有2个零点;(2)分别画出a≥0时和a<0时函数示意图,数形结合可得a取值范围.本题考查函数零点及函数恒成立问题,数形结合数关键,属于中档题.15.【答案】解:(1)x=−3时,A={9,−4},B={−8,4,9},∴A∩B={9};(2)∵A∩B={9},∴9∈A,∴x2=9,或x−1=9,解得x=±3或10,x=3时,不满足集合B中元素的互异性,∴x=−3或10,由(1)知,x=−3时,A∪B={−8,−4,4,9},x=10时,A={100,9},B={5,−9,9},∴A∪B={−9,5,9,100}.【解析】(1)x=−3时,可求出A={9,−4},B={−8,4,9},然后进行交集的运算即可;(2)根据A∩B={9}即可得出x2=9或x−1=9,再根据集合元素的互异性即可求出x=−3或10,从而x=−3时,求出集合A,B,然后求出A∪B;x=10时,求出集合A,B,然后求出A∪B即可.本题考查了列举法的定义,交集、并集的定义及运算,元素与集合的关系,考查了计算能力,属于基础题.16.【答案】解:(1)由题意可得,x≠0,∵f(−x)=−ax+2x=−f(x),∴f(x)为奇函数;(2)由f(1)+f(2)=a−2+2a−1=0,∴a=1,f(x)=x−2x,设0<x1<x2,则f(x1)−f(x2)=x1−x2+2x2−2x1=(x1−x2)(1+2x1x2),∵0<x1<x2,∴x1−x2<0,1+2x1x2>0,∴(x1−x2)(1+2x1x2)<0,即f(x1)<f(x2),∴f(x)在(0,+∞)上的单调递增,∴函数f(x)在区间[1,4]上的最大值f(4)=72,f(1)=−1.【解析】(1)由题意可得,x≠0,然后检验f(−x)与f(x)的关系即可判断;(2)由f(1)+f(2)=a−2+2a−1=0,代入可求a,然后结合单调性的定义即可判断单调性,再由单调性可证函数f(x)在区间[1,4]上的最大值f(4),f(1).即可求解.本题主要考查了函数奇偶性的判断及函数单调性的定义在单调性判断中的应用,属于函数性质的简单应用.17.【答案】解:(1)∵一元二次方程x 2−mx +m 2+m −1=0有两实根x 1,x 2.∴△=(−m)2−4(m 2+m −1)≥0, 从而解得:−2≤m ≤23.(2)∵一元二次方程x 2−mx +m 2+m −1=0有两实根x 1,x 2. ∴由根与系数关系得:x 1⋅x 2=m 2+m −1=(m +12)2−54, 又由(1)得:−2≤m ≤23, ∴−54≤(m +12)2−54≤1,从而,x 1⋅x 2最小值为−54,最大值为1.(3)∵一元二次方程x 2−mx +m 2+m −1=0有两实根x 1,x 2. ∴由根与系数关系得:x 1+x 2=m,x 1⋅x 2=m 2+m −1,∴|x 1−x 2|=√(x 1−x 2)2=√(x 1+x 2)2−4x 1⋅x 2=√m 2−4(m 2+m −1)>√5, 从而解得:−1<m <−13, 又由(1)得:−2≤m ≤23, ∴m ∈(−1,−13).【解析】(1)一元二次方程有两实根,则判别式△≥0; (2)利用根与系数的关系求得两根之积,从而化简求最值;(3)利用公式(x 1+x 2)2−4x 1x 2=(x 1−x 2)2得到|x 1−x 2|的表达式从而解不等式求m . 本题考点是一元二次方程根与系数的关系,考查用根与系数的关系将根的特征转化为不等式组求解参数范围,本题解法是解决元二次方程根与系数的关系一个基本方法,应好好体会其转化技巧.18.【答案】解:(1)由题意,有 AM =200−x24x ,由AM >0,有 0<x <10√2; 则S =4200x 2+210(200−x 2)+80×2×(200−x 24x)2; S =4200x 2+42000−210x 2+400000−4000x 2+10x 4x 2=4000x 2+400000x 2+38000;∴S 关于x 的函数关系式: S =4000x 2+400000x +38000,(0<x <10√2 ); (2)S =4000x 2+400000x 2+38000≥2√4000x 2⋅400000x 2+38000=118000;当且仅当4000x2=400000x2时,即x=√10时,√10∈(0,10√2),S有最小值;∴当x=√10米时,S min=118000元.故计划至少要投入118000元,才能建造这个休闲小区.【解析】(1)根据由两个相同的矩形ABCD和EFGH构成的十字形地域,四个小矩形加一个正方形面积共为200平方米得出AM的函数表达式,最后建立建立S与x的函数关系即得;(2)利用基本不等式求出(1)中函数S的最小值,并求得当x取何值时,函数S的最小值即可.本题主要考查了函数模型的选择与应用、基本不等式等基础知识,考查运算求解能力,属于中档题.19.【答案】−2【解析】解:(Ⅰ)函数f(x)=x2+bx+c的对称轴为x=−b2,由f(x)的图象关于直线x=1对称,可得−b2=1,解得b=−2,故答案为:−2.(Ⅱ)证明:由f(x)在[−1,1]上不单调,可得−1<−b2<1,即−2<b<2,对任意的x∈R,f(x)≥f(−b2)=b24−b22+c=c−b24,由−2<b<2,可得f(x)≥c−b24>c−1;(Ⅲ)f(x)在区间(0,1)上有两个不同的零点,设为r,s,(r≠s),r,s∈(,1),可设f(x)=(x−r)(x−s),由c2+(1+b)c=c(1+b+c)=f(0)f(1)=rs(1−r)(1−s),且0<rs(1−r)(1−s)<[r+(1−r)2]2⋅[s+(1−s)2]2=116,则c2+(1+b)c∈(0,116).(Ⅰ)求得f(x)的对称轴,由题意可得b的方程,解方程可得b;(Ⅱ)由题意可得−1<−b2<1,即−2<b<2,运用f(x)的最小值,结合不等式的性质,即可得证;(Ⅲ)f(x)在区间(0,1)上有两个不同的零点,设为r,s,(r≠s),r,s∈(,1),可设f(x)= (x−r)(x−s),将c2+(1+b)c写为f(0)f(1),再改为r,s的式子,运用基本不等式即可得到所求范围.本题考查二次函数的单调性和对称性的应用,考查函数零点问题的解法,注意运用转化思想,以及基本不等式和不等式的性质,考查运算能力,属于中档题.。

相关文档
最新文档