北师大版九年级数学上册投影2导学案
北师大版九年级上册数学全册导学案

第一章证明(二)单元总览1.1你能证明它们吗(1)目标导航1.了解作为证明基础的几条公理的内容;掌握证明的基本步骤和书写格式.2.能够用综合法证明等腰三角形的有关性质(等边对等角,三线合一).基础过关1.边边边公理的内容是.2.边角边公理的内容是.3.角边角公理的内容是.4.全等三角形的相等,相等.5.角角边推论的内容是.6.三角形ABC中,如果AB=AC,则.7.等腰三角形的、、互相重合.8.等边三角形的各边都,各角都是.能力提升9.下列说法中,正确的是()A.两边及一角对应相等的两个三角形全等B.有一边对应相等的两个等腰三角形全等C.两边及其中一边上的中线对应相等的两个三角形全等D.两边对应相等的两个三角形全等10.若等腰△ABC 的顶角为∠A ,底角为∠B =α,则α的取值范围是( )A. α<45°B. α<90°C.0°<α<90°D.90°<α<180°11.△ABC 中, AB =AC , CD 是△ABC 的角平分线, 延长BA 到E 使DE =DC , 连结EC , 若 ∠E =51°,则∠B 等于( )A.68°B.52°C.51°D.78° 12.等腰三角形的顶角是n °,那么它的一腰上的高与底边的夹角等于( )A.290 n -B.90-2 nC.2n D.90°-n °13.等腰三角形的两边分别是7 cm 和3 cm ,则周长为_________.14.等腰三角形的一边长为23,周长为43+7,则此等腰三角形的腰长为_________. 15.如图,∆ABC 中,AB=AC, ∠BAD=︒30 ,AE=AD,则∠EDC= .EDCBA15题图 16题图16.如图,在△ABC 中,∠A =20°,D 在AB 上,AD =DC ,∠ACD ∶∠BCD =2∶3,求:∠ABC 的度数.17.已知:如图∆ABD 、∆ACE 都是等边三角形,求证:BE=DC.EDCBA18.如图,在∆ABC 中,AB=AC,点D 在AC 上,且BD=BC=AD,求∠ADB 的度数.DCBA聚沙成塔已知:如图,D 是等腰ABC 底边BC 上一点,它到两腰AB 、AC 的距离分别为DE 、DF.当D 点在什么位置时,DE=DF ?并加以证明.1.1你能证明它们吗(2)目标导航1.能够用综合法证明等腰三角形的有关性质.2.了解并能证明等腰三角形的判定定理.3.结合实例体会反证法的含义. 基础过关1.一个等腰三角形有一角是70°,则其余两角分别为_________.2.一个等腰三角形的两边长为5和8,则此三角形的周长为_________.3.等腰三角形两腰上的高相等,这个命题的逆命题是________________,这个逆命题是_________命题.4.在△ABC 中,AB=AC ,∠A=︒36,BD 是的角平分线,图中等腰三角形有( )A.1个B.2个C.3个D.4个5.在下列三角形中,若AB=AC ,则能被一条直线分成两个小等腰三角形的是( ) A.(1)(2)(3) B.(1)(2)(4) C.(2)(3)(4) D.(1)(3)(4)BAC BAC B AC B AP EDCBA(1) (2) (3) (4) 7题图 能力提升6.三角形三边分别为a 、b 、c ,且a 2-bc =a (b -c ),则这个三角形(按边分类)一定是_________三角形.7.如图,在△ABC 中,BC=5cm,BP 、CP 分别是∠ABC 和∠ACB 的角平分线,且PD//AB ,PE//AC ,则△PDE 的周长是 .8.等腰△ABC 中,AC =2BC ,周长为60,则BC 的长为( )A.15B.12C.15或12D.以上都不正确 9.已知:如图,AB =AC ,DE ∥AC ,求证:△DBE 是等腰三角形.10.如图,△ABC 中,AB =AC ,∠1=∠2,求证:AD 平分∠BAC.11.用反证法证明:△ABC 中至少有两个角是锐角.12.如图,小明欲测量河宽,选择河流北岸的一棵树(点A )为目标,然后在这棵树得正南岸(点B )插一小旗作标志,从B 点沿南偏东︒60方向走一段距离到C 处,使∠ACB 为︒30,这时小明测得BC 的长度,认为河宽AB=BC ,他说得对吗?为什么?60︒CBA13.如图,在ABC Rt ∆中,∠CAB=︒90,AD ⊥BC 于D ,∠ACB 的平分线交AD 于E ,交AB 于F.求证:△AEF 为等腰三角形.F EDCBA14.如图,在△ABC 中,AB=AC,P 是BC 上一点,PE ⊥AB, PF ⊥AC,垂足为E 、F,BD 是等腰三 角形腰AC 上的高, ⑴求证:BD=PE +PF.⑵当点P 在BC 边的延长线上时,而其它条件不变,又有什么样的结论呢?请用文字加以说明本题的结论.FEPC A D聚沙成塔如图所示,点O 是等边△ABC 内一点,∠AOB=110。
1投影-初中九年级上册数学(教案)(北师大版)

一、教学内容
《投影》为初中九年级上册数学第四章第四节内容,本节课将涵盖以下知识点:
1.投影的定义:介绍投影的概念,使学生理解点、线、面在光线照射下的影子形成过程。
2.平行投影的性质:探讨平行投影的特点,如投影线平行、投影长度相等、投影角度相等等。
3.中心投影的定义与性质:讲解中心投影的概念,分析中心投影的特点,如投影线会聚于一点、投影大小与物体距离有关等。
举例:通过观察不同角度的投影,推断出物体的三维形状。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《投影》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否注意过物体在阳光下的影子?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索投影于初中生来说,空间观念的培养是一个难点,需要通过直观教具和实例来帮助学生理解。
举例:通过折叠、旋转等操作,让学生观察和体验点、线、面的投影变化。
(2)投影性质的推导:理解并推导投影的性质,如平行投影中投影角度相等、中心投影中相似三角形的性质等,对学生的逻辑思维和几何直观能力要求较高。
举例:通过实际操作和几何图形证明,引导学生发现并理解投影的性质。
(3)解决实际问题时投影角度的确定:在实际问题中,如何确定投影角度是学生容易出错的地方,需要教师着重讲解。
举例:在计算建筑物高度时,如何根据阳光的角度确定投影角度,以及如何根据投影角度计算实际高度。
(4)投影与实际物体的对应关系:学生需要理解投影与实际物体之间的对应关系,能够从投影推断出物体的实际形状和位置。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解投影的基本概念。投影是指光线照射到物体上,在另一平面上形成的影子。它是研究物体在空间中位置关系的重要工具。
北师大版数学九年级上册《投影与中心投影》教案2

北师大版数学九年级上册《投影与中心投影》教案2一. 教材分析《投影与中心投影》是北师大版数学九年级上册的一章内容,主要介绍了中心投影的定义、性质和应用。
本章内容在学生的数学知识体系中起着承前启后的作用,为后续学习解析几何打下基础。
本节课的内容对于学生来说较为抽象,需要通过实例和操作来理解和掌握。
二. 学情分析九年级的学生已经学习了平面几何和立体几何的基础知识,对图形的变换和性质有一定的了解。
但是,对于中心投影的概念和性质还需要通过具体的实例和操作来加深理解。
此外,学生的空间想象能力和抽象思维能力还在发展阶段,需要通过大量的实践和引导来提高。
三. 教学目标1.理解中心投影的定义和性质。
2.能够运用中心投影的性质解决实际问题。
3.培养学生的空间想象能力和抽象思维能力。
四. 教学重难点1.中心投影的定义和性质。
2.中心投影在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考和操作来探索中心投影的性质。
2.利用多媒体和实物模型辅助教学,帮助学生建立直观的空间想象能力。
3.学生进行小组讨论和合作交流,促进学生之间的思维碰撞和知识共享。
六. 教学准备1.多媒体教学设备。
2.实物模型和图片。
3.练习题和作业。
七. 教学过程1.导入(5分钟)通过展示一些生活中的投影现象,如手电筒的光线、太阳的投影等,引导学生关注投影的概念。
提问:你们对这些现象有什么观察和思考?2.呈现(10分钟)呈现中心投影的定义和性质,通过多媒体动画和实物模型的展示,帮助学生建立直观的空间想象能力。
同时,引导学生进行思考和讨论,理解中心投影的本质和特点。
3.操练(10分钟)让学生进行一些中心投影的练习题,巩固对中心投影的理解和应用。
可以设置一些选择题、填空题和解答题,考察学生对中心投影的掌握程度。
4.巩固(5分钟)通过一些实际问题的解决,帮助学生将中心投影的知识应用到实际情境中。
可以设置一些与应用题类似的问题,让学生分组讨论和解答。
北师大版本九年级数学上册第五章投影和视图知识点解析含习题练习

北师大版本九年级数学上册第五章投影和视图知识点解析第01讲_投影与视图知识图谱投影知识精讲投影的定义1.一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影;照射光线叫做投影线;投影所在的平面叫做投影面.2.由平行光线(如太阳光线)形成的投影称为平行投影.3.由同一点发出的光线所形成的投影称为中心投影.4.在物体的平行投影中,投影线垂直于投影面,则该平行投影称为正投影.三点剖析一.考点:投影的定义二.重难点:投影的定义三.易错点:中心投影的光源为点光源,平行投影的光源为阳光;平行投影例题1、平行投影中的光线是()A.平行的B.聚成一点的C.不平行的D.向四面八方发散的【答案】A 【解析】平行投影中的光线是平行的,如阳光等.例题2、下列说法正确的是()A.物体在阳光下的投影只与物体的高度有关B.小明的个子比小亮高,我们可以肯定,不论什么情况,小明的影子一定比小亮的影子长C.物体在阳光照射下,不同时刻,影长可能发生变化,方向也可能发生变化D.物体在阳光照射下,影子的长度和方向都是固定不变的【答案】C【解析】平行投影的特点:在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻的同一物体在太阳光下的影子的大小也在变化.例题3、例已知:如图,AB 和DE 是直立在地面上的两根立柱,5AB m =,某一时刻,AB 在阳光下的投影4BC m =.(1)图中画出此时DE 在阳光下的投影;(2)AB 的投影长时,同时测出DE 在阳光下的投影长为6m ,请你计算DE 的长.【答案】(1)如图所示;(2)7.5m 【解析】(1)根据已知连接AC ,过点D 作DF AC ,即可得出EF 就是DE 的投影;(2)利用ABC DEF ∆∆ AB BC DE EF ∴=5AB m = ,4BC m =,6EF m =7.5DE m ∴=随练1、下列说法错误的是()A.两人在太阳光下行走,同一时刻他们的身高与影长的比相等B.两人在同一灯光下行走,同一时刻他们的身高与其影长不一定相等C.一人在同乙灯光下不同地点的影长不一定相同D.一人在不同时间的阳光下同一地点的影长相等【答案】D【解析】暂无解析随练2、请指出下列小明的影子,平行投影的是__________,中心投影是__________.①一个晴天的上午,小明身后的影子;②一个晴天的中午,小明脚下的影子;③夜晚,小明在路灯下的影子;④小明在幻灯机前经过时投在屏幕上的影子【答案】①②;③④【解析】根据中心投影和平行投影的性质,中心投影的光源为灯光,平行投影的光源为阳光与月亮.随练3、某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB 的影长AC 为12m ,并测出此时太阳光线与地面成30 夹角.(1)求出树高AB ;(2)因水土流失,此时树AB 沿太阳光线方向倒下,在倾倒过程中,树影长度发上了变化,假设太阳光线与地面夹角保持不变,求树的最大影长.【答案】(1);(2)【解析】(1)3tan 3012)3AB AC m ==⨯=(2)如图2,112sin 45)2B N AN AB m ====11tan 60)NC NB m === ,11AC AN NC =+=+当树与地面成60 角时影长最大2AC ,222AC AB ==随练4、如图是两根标杆在地面上的影子,根据这些投影,在灯光下的影子是()A.①和②B.②和④C.③和④D.②和③【答案】D【解析】根据物体的顶端和影子顶端的连线必经过光源从而可判断出答案.随练5、如图,小明和小燕在院子里玩捉迷藏游戏,院子里有三堵墙,现在小明站在O点,小燕如果不想被小明看到,则不应该站的区域是()A.(1)B.(2)C.(3)D.(4)【答案】C【解析】∵(1)、(2)、(4)区域均为视力盲区∴站在(1)、(2)、(4)区域均不会被看见,而(3)区在视力范围内∴只要不站在(3)区就不会被看见.中心投影例题1、物体在光线的照射下,会在地面或墙壁上留下它的影子,这种现象就是__________现象,投影现象中,由阳光形成的影子是__________投影,由灯光形成的影子是__________投影,海滩上游人的影子是__________投影,晚上路旁栏杆的影子是__________投影.【答案】投影;平行;中心;平行;中心【解析】根据平行投影和中心投影的定义作答即可.例题2、四个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图.则在字母L、K、C的投影中,与字母N属同一种投影的有()A.L、KB.CC.KD.L、K、C【答案】A【解析】根据平行投影和中心投影的特点和规律.“L”、“K”与“N”属中心投影.例题3、如图,我们常用“y随x的增大而增大”来表示两个变量之间的变化关系.有这样一个情境:如图,小王从点A经过路灯C的正下方沿直线走到点B,他与路灯C的距离y随他与点A之间的距离x的变化而变化.下列函数中y与x之间的变化关系,最有可能与上述情境类似的是()y x=+A.y x=B.3C.3y x = D.()233y x =-+【答案】D【解析】从A 到路灯的正下方前他与路灯的距离逐渐减少,经过路灯后它与路灯的距离逐渐增加.随练1、如图,夜晚小亮从点A 经过路灯C 的正下方沿直线走到点B ,他的影长y 随他与点A 之间的距离x 的变化而变化,那么表示y 与x 之间的函数关系的图像大致是()A.B.C.D.【答案】A【解析】设身高GE h =,1CF =,AF a=当x a ≤时,OEG OFC∆∆ OE GE OF CF ∴=,即y h a x l =-h hay x l l∴=-+a 、h l 、均为常数∴这个函数图像是一次函数图像影长将随着离灯光越来越近而越来越短,到灯下的时候,将是一个点,进而随着离灯光的越来越远而影长将变大.正投影例题1、Rt ABC ∆斜边在平面α上,则ABC ∆在平面α的正投影()A.一定不是钝角三角形B.一定不是直角三角形C.一定不是锐角三角形D.一定是三角形【答案】C【解析】当三角形所在的平面与平面α垂直时,三角形在平面上的正投影是一条线段;当三角形所在的平面与平面不垂直时,投影形成钝角三角形;当三角形在平面上时,形成投影是直角三角形.例题2、一根笔直的小木棒(记为线段AB ),它的正投影为线段CD ,则下列各式中一定成立的是()A.AB CD =B.AB CD ≤C.AB CD >D.AB CD≥【答案】D【解析】根据正投影的定义,当AB 与投影面平行时,AB CD =;当AB 与投影面不平行时,AB CD >.视图知识精讲一.视图当我们从某一角度观察一个物体时,所看到的图像叫做物体的一个视图.视图也可以看做物体在某一角度的光线下的投影.二.常见立体图的三视图如图,我们用三个互相垂直的平面(例如墙角处的三面墙壁)作为投影面,其中正对着我们的叫做正面,正面下方的叫做水平面,右边的叫做侧面.一个物体在三个投影面内同时进行投影:在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图,叫做左视图.三.三视图的做法:1.主视图与俯视图表示同一物体的长,主视图与左视图表示同一物体的高,左视图与俯视图表示同一物体的宽;主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.2.看得见部分的轮廓线画成实线;3.看不见部分的轮廓线画成虚线.一个投射面水平放置,叫做水平投射面,投射到这个面内的图形叫做俯视图;一个投射面放置在正前方,叫直立投射面,投射到此平面内的图形叫做主视图;和水平投射面、直立投射面都垂直的投射面叫做侧立投射面,通常把这个平面放在直立投射面的右面,投射到这个平面内的图形叫做左视图;三点剖析一.考点:立体图形三视图二.重难点:立体图形三视图及由三视图求解立体图形三.易错点:1.画三视图时看不见的线应该用虚线;2.利用三视图确定小立方体的个数立体图形的三视图例题1、下列几何体的主视图、左视图、俯视图的图形完全相同的是()A.三棱锥B.长方体C.三棱柱D.球体【答案】D【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图.例题2、如图是一个底面为正三角形的直三棱柱,则这个几何体的主视图是()A.B.C.D.【答案】C【解析】从正面看是两个矩形,矩形的公共边是虚线,例题3、下面四个立体图形,从正面、左面、上面观察都不可能看到长方形的是()A. B. C. D.【答案】C【解析】A、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误;B、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;C、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;D、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误.例题4、如图是一个由若干个正方形搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是:________________.【答案】①②③【解析】综合左视图跟主视图:从正面看,第一行第一列有3个正方形,第一行第二列有1个或第二行第2列有一个或都有一个.第二行第1列有2个正方体.随练1、如图①,这是一个正方体毛坯,将其沿一组对面的对角线切去一半,得到一个工件如图②,对于这个工件,左视图、俯视图正确的一组是()①②a b c dA.a,bB.b,dC.a,cD.a,d【答案】D【解析】左视图、俯视图是分别从物体的侧面和上面看所得到的图形.由三视图求解立体图形例题1、若一个几何体的主视图、左视图、俯视图都是正方形,则这个几何体是()A.正方体B.圆锥C.圆柱D.球【答案】A【解析】∵主视图和左视图都是正方形,∴此几何体为柱体,∵俯视图是一个正方形,∴此几何体为正方体.例题2、如图是由一些相同的小正方体构成的立体图形的三种视图.那么构成这个立体图形的正方体有多少个小立方块()A.4个B.5个C.6个D.7个【答案】【解析】根据图形可得:最底层有4个小立方块,第二层有1个小立方块,所以构成这个立体图形的小立方块有5个.例题3、如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()A.60πB.70πC.90πD.160π【答案】B 【解析】观察三视图发现该几何体为空心圆柱,其内圆半径为3,外圆半径为4,高为10,所以其体积为22104370πππ⨯-=(),例题4、由一些大小相同的小正方体组成的简单几何体的主视图和俯视图.(如图)(1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方体的块数为n ,请你写出n 的所有可能值.【答案】(1)见解析;(2)8n =,9,10,11.【解析】(1)左视图有以下5种情形:(2)8n =,9,10,11.随练1、从一个边长为3cm 的大立方体挖去一个边长为1cm 的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()A. B. C. D.【答案】C【解析】如图所示:∵从一个边长为3cm 的大立方体挖去一个边长为1cm 的小立方体,∴该几何体的左视图为:.随练2、如图所示的是某几何体的三视图,则该几何体的形状是()A.长方形B.三棱柱C.圆柱D.正方体【答案】C 【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱.随练3、如图是由一些相同的小正方体组成的几何体的三视图,则组成该几何体的小正方体的个数最少为()A.7个B.8个C.9个D.10个【答案】C 【解析】由俯视图可得底面有一排有6个小正方体;从主视图看,第二层最少有2个正方体,第3层最少有一个小正方体,组成该几何体的小正方体的个数为9个.随练4、如图是一个几何体的三视图,则这个几何体的侧面积是()A.πB.9πC.18πD.27π【答案】C 【解析】根据三视图可得:这个几何体为圆锥,∵直径为6,圆锥母线长为6,∴侧面积66218ππ=⨯⨯÷=;随练5、如右图,是一个由若干个小正方体搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是___________.【答案】①②③【解析】根据几何的主视图和左视图即可判断.拓展1、给下列几种关于投影的说法,正确的是()A.矩形的平行投影一定是矩形B.平行直线的平行投影仍是平行直线C.垂直于投影面的直线或线段的正投影是点D.中心投影的投影线是互相平行的【答案】C【解析】矩形的平行投影可能是平行四边形,也可能是线段;平行直线的平行投影可能是平行直线,也可能重合;垂直于投影面的直线或线段的正投影是点;中心投影的投影线是相交于一点的.2、李华的弟弟拿着一个菱形木框在阳光下玩,李华发现菱形木框在阳光照射下,在地面上形成了各种图形的阴影,但以下一种图形始终没有出现,没有出现的图形是()A.B.C. D.【答案】D【解析】根据平行四边形投影的特点,在同一时刻不同物体的物高和影长成比例,所以不可能是梯形.3、如图,一根直立于水平地面上的木杆AB 在灯光下形成影子,当木杆绕点A 按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB 垂直于地面时的影长为AC (假定AC AB >)的最大值为m ,最小值为n ,那么下列结论:①m AC >;②m AC =;③n AB =;④影子的长度先增大后减小.其中,正确结论的序号是.【答案】①③④【解析】当木杆绕点A 按逆时针方向旋转时,如图所示当AB 与光线BC 垂直时,m 最大,则m AC >,①成立;最小值为AB 与底面重合,故n AB =;由上可知,影子的长度先增大后减小.4、如图,小军、小珠之间的距离为2.7m ,他们在同一盏路灯下的影长分别为1.8m ,1.5m ,已知小军、小珠的身高分别为1.8m ,1.5m ,则路灯的高为_________m .【答案】3【解析】如图,∵CD ∥AB ∥MN ,∴△ABE ∽△CDE ,△ABF ∽△MNF ,∴CD DE =AB BE ,FN MN =FB AB ,即1.8 1.8=AB 1.8+BD , 1.5 1.5=AB 1.5+2.7-BD,解得:AB=3m5、如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向上远移时,圆形阴影的大小的变化情况是()A.越来越小B.越来越大C.大小不变D.不能确定【答案】A【解析】灯光下,涉及中心投影,根据中心投影的特点灯光下影子与物体离灯源距离有关,此距离越大,影子才越小.6、如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5mB.变长2.5mC.变短3.5mD.变短2.5m【答案】C【解析】设小明在A处时影长为x,AO长为a,B处时影长为y.∵AC∥OP,BD∥OP,∴△ACM∽△OPM,△BDN∽△OPN,∴AC MAOP MO=,BD BNOP ON=,则1.68xx a=+,∴14x a=;1.6148yy a= +-,∴1 3.54y a=-,∴ 3.5x y-=,故变短了3.5米.7、如图所示零件的左视图是()A.B.C.D.【答案】D【解析】零件的左视图是两个竖叠的矩形.中间有2条横着的虚线8、如图是由一些相同的小正方体构成的立体图形的三种视图,那么构成这个立体图形的小正方体有()A.4个B.5个C.6个D.7个【答案】B【解析】由俯视图易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5个正方体组成.故选B.9、如图所示的几何体是由五个小正方体组合而成的,它的左视图是()A. B. C. D.【答案】A【解析】从左边看第一层是两个小正方形,第二层左边一个小正方形,10、与如图所示的三视图对应的几何体是()A.B.C.D.【答案】B【解析】根据主视图、左视图、俯视图判断即可得到.11、一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看,其三种视图如图所示,则这张桌子上碟子的总数为()A.11B.12C.13D.14【答案】B【解析】由俯视图可得:碟子共有3摞,由几何体的主视图和左视图,可得每摞碟子的个数,如下图所示:故这张桌子上碟子的个数为3+4+5=12个。
北师大版九年级数学上册投影(第二课时)

实践见真知
固定投影面,改变纸片的位置与方向
固定投影面,改变纸片的位置与方向,它们影子的形 状和大小一般也会产生相应的改变。
平行投影的真帝
固定纸片,改变投影面的方向与位置
固定纸片,改变投影面的方向与位置,它们影子 的形状和大小一般也会产生相应的改变。当纸片 与投影面平行时,纸片与影子全等。
探索与交流
有个幸福温暖的家庭,是大家眼里的好孩子;安生叛逆桀骜,父亲去世母女相爱相杀,是个缺爱的女孩。偏偏两个人好得要命,彼此踩着对方的影子,恨不能一辈子在一起, 一起洗澡,一起翘课……15岁那年,她们都喜欢了一个男孩子家明。家明的出现,让七月和安生之间的情感产生了不可言喻的变化,而家明的摇摆不定,也让两个女孩面对 友谊与爱情,备受煎熬。最终,安生在确认自己也爱上家明以后,选择把家明让给七月,自己离开小镇,去流浪。她说,在七月与家明之间,她选择七月。七月明白安生的 离开,是成全,但还是任由安生的列车徐徐驶离,爱情在某个时刻,会战胜友谊。但是,分开的两个人,仍然彼此牵挂。七月敬慕安生的自由,安生敬慕七月的岁月静好。 再次见面,却又像刺猬一样彼此伤害,然后各自哭泣疗伤。电影结尾,七月难产去世,临终前,将孩子托付给安生。不管我们之间有多少误会和伤害,我还是选择最信任你, 把孩子托付给你。这也许就是最动人的友谊。想起《乱世佳人》里梅兰妮和斯嘉丽。一个相貌平平,但是优雅得体、善解人意的贵族小姐,女人中的女人;一个妩媚动人, 任性倔强热情似火的庄园主女儿,女人中的男人。一开始,斯嘉丽便把梅兰妮当作情敌,认为是梅兰妮夺走了自己暗恋的阿希礼。 所以,她心怀嫉恨,处处刁难,把梅兰妮
这节课有何收获?
物体在光线的照射下,会在地面或墙壁上留下它的 影子,这就是投影现象 太阳光线可以看成平行光线,像这样的光线所 形成的投影称为平行投影。 在一天中,物体影子的指向是:
最新北师大版九年级数学上册《投影二》教学设计

第5章投影与视图5.1.投影(二)设计说明:《新课程标准》的“实践与综合应用”领域,是《标准》的一个特色。
影子是生活中常见的现象,本节课研究平行投影。
目的是让学生体会影子与生活的息息相关,激发学生学习的动机与兴趣,树立正确的数学观。
本课时密切联系实际,涉及到地理、物理等知识,体现了数学与各学科内容间的联系。
丰富了数学课堂,对老师是新的挑战。
教学中以学生探索为主线,借助人文化的词语串联整个的课堂,以丰富的图片吸引学生,借助具体操作观察不同时刻影子的方向与大小的变化特征,尽可能的使学生增强感性认识。
这是本人与学生一次共同发展的过程。
教学内容平行投影教学目标1、知识与技能目标了解平行投影的含义,能够确定物体在太阳光下的影子。
了解不同时刻物体在太阳光下形成的影子的大小和方向是不同的。
2、过程与方法目标经历实践、探索的过程,了解平行投影的含义。
通过观察、想象,了解不同时刻物体在太阳光下形成的影子的大小和方向是不同的。
理解在同一时刻,物体的影子与它们的高度成比例.3、情感与态度目标让学生积极参加数学活动,认识数学与人类的密切联系及对人类历史发展的作用,激发学生探究与创造,加强学生的合作与交流。
教学重点了解平行投影的含义,能够确定物体在太阳光下的影子。
了解不同时刻物体在太阳光下形成的影子的大小和方向是不同的。
理解在同一时刻,物体的影子与它们的高度成比例.教学难点经历操作、观察,由直观到推理,归纳总结到理论的过程。
教学过程教学内容及过程备注一、创设情境、设问导入引言:太阳光下的影子是我们司空见惯的,物体在太阳光下形成的影子与在灯光下形成的影子有什么不同呢?二、操作感知、建立表象做一做实践:取若干长短不等的小棒及三角形、矩形纸片,观察它们在太阳光下的影子。
提问:(1)固定投影面,改变小棒或纸片的摆放位置和方向,它们的影子分别发生了什么变化?(2)固定小棒或纸片,改变投影面的摆放位置和方向,它们的影子分别发生了什么变化?学生操作,观察,探索.概念:太阳光线可以看成平行光线,平行光线所形成的投影称为平行投影。
成安县第五中学九年级数学上册 第五章 投影与视图2 视图第1课时 物体的三视图教案 北师大版

2 视图第1课时物体的三视图【知识与技能】理解并掌握三视图的投影规律——长对正、高平齐、宽相等.【过程与方法】能绘制简单的三视图.【情感态度】通过观察探究等活动使学生知道物体的三视图与正投影的相互关系及三视图的位置关系、大小关系.【教学重点】从投影的角度加深对三视图的理解和会画简单的三视图.【教学难点】简单的三视图的绘制.一、情境导入,初步认识如图,直三棱柱的侧棱与水平投影面垂直.请与同伴一起探讨下面的问题:(1)以水平投影面为投影面,在正投影下这个直三棱柱的三条侧棱的投影是什么图形?(2)画出直三棱柱在水平投影面的正投影,得到的投影是什么图形?它与直三棱柱的底面有什么关系?【教学说明】先让学生自己独立尝试画图,同时每组两名学生在黑板上画图,教师点评.引出三视图的概念.二、思考探究,获取新知上面的这个水平投影能完全反映这个物体的形状和大小吗?如不能,那么还需哪些投影面?物体的正投影从一个方向反映了物体的形状和大小,为了全面地反映一个物体的形状和大小,我们常常还要选择正面和侧面两个投影面,画出物体的正投影.【归纳结论】从正面得到的视图叫做主视图,从上面得到的视图叫做俯视图,从左面得到的视图叫做左视图.主视图、俯视图、左视图三者合在一起叫做三视图.【教学说明】通过活动,让学生成为课堂学习的主人,通过活动,让学生自主学习,合作交流,并能合理清晰地表达自己的思维过程,教师成为真正的组织者、引导者、合作者.三、运用新知,深化理解1.画出下图所示的一些基本几何体的三视图.分析:画这些基本几何体的三视图时,要注意从三个方面观察它们.具体画法为:①确定主视图的位置,画出主视图;②在主视图正下方画出俯视图,注意与主视图“长对正”;③在主视图正右方画出左视图.注意与主视图“高平齐”,与俯视图“宽相等”.解:2.如图,从不同方向看下面左图中的物体,右图中三个平面图形分别是从哪个方向看到的?解答:分别是从上面,正面,侧面看到的.3.如图所示,右面水杯的俯视图是(D)4.图中①表示的是组合在一起的模块,在②③④⑤四个图形中,是这个模块的俯视图的是(A)A.②B.③C.④D.⑤【教学说明】让学生感受从空间物体到平面图形的转换过程,让同学们学会识别三视图.培养学生的画图能力,在巡视过程中遇见问题当场解决.四、师生互动,课堂小结在画三视图时,三个视图不要随意乱放,应做到俯视图在主视图的下方,左视图在主视图的右边,三个视图之间保持:长对正,高平齐,宽相等.1.布置作业:教材“习题5.3”中第1题.2.完成练习册中相应练习.本节课让学生主体参与,探索新知,充分体现了以学生为主体的新理念.让学生感受到数学和生活的联系,感受到数学确实就在我们的身边.第2课时列一元二次方程解决利润问题1.通过分析实际问题中的数量关系,建立方程解决利润问题,认识方程模型的重要性,并总结运用方程解决实际问题的一般过程.2.经历分析和建模的过程,进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型.3.能够利用一元二次方程解决有关实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力.重点列一元二次方程解决利润问题.难点寻找实际问题中的等量关系.一、复习导入1.列方程解决实际问题的一般步骤是什么?审:审清题意,已知什么,求什么,已知与未知之间有什么关系;设:设未知数,语句要完整,有单位(统一)的要注明单位;列:找出等量关系,列方程;解:解所列的方程;验:是否是所列方程的根;是否符合题意;答:答案也必需是完整的语句,注明单位且要贴近生活.2.列方程解决实际问题的关键是什么?3.请同学们回忆并回答与利润相关的知识?进价:有时也称成本价,是商家进货时的价格;标价:商家在出售时,标注的价格;售价:消费者购买时真正花的钱数;利润:商品出售后,商家所赚的部分;打折:商家为了促销所采用的一种销售手段,打折就是以标价为基础,按一定比例降价出售.二、探究新知课件出示:(1)新华商场销售某种冰箱,每台进价为2 500元,销售价为2 900元,那么卖一台冰箱商场能赚多少钱?(2)新华商场销售某种冰箱,每台进价为2 500元.调查发现:当销售价为 2 900元时,平均每天能售出8台;那么商场平均每天能赚多少钱?(3)新华商场销售某种冰箱,每台进价为2 500元.调查发现:当销售价为 2 900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台.商场要想使这种冰箱的销售利润平均每天达到5 000元,每台冰箱的定价应为多少元?(本题在教材的基础上做了改动,降低难度)分析:本例中涉及的数量关系较多,学生在思考时可能会有一定的难度.所以,教学时采用列表的形式分析其中的数量关系.本题的主要等量关系:每台冰箱的销售利润×平均每天销售冰箱的数量=5 000元.如果设每台冰箱降价x元,那么每台冰箱的定价应为(29-x)元.每天的销售量/台每台的销售利润/元总销售利润/元降价前降价后填完上表后,就可以列出一个方程,进而解决问题了.当然,解题思路不应拘泥于这一种,在利用上述方法解完此题后,可以鼓励学生自主探索,找寻其他解题的思路和方法.如求定价为多少,直接设每台冰箱的定价应为x元,应如何解决?三、举例分析例某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查发现,售价在40元至60元范围内,这种台灯的售价每上涨1元,其销售量就将减少10个.为了实现平均每月10 000元的销售利润,这种台灯的售价应定为多少?这时应购进台灯多少个?请你利用方程解决这一问题.解:设这种台灯的售价应定为x元.根据题意得[600-10(x-40)](x-30)=10 000.解这个方程得x1=50,x2=80(舍去).600-10(x-40)=600-10×(50-40)=500(个).答:台灯的售价应定为50元,这时应购进台灯500个.四、练习巩固1.教材第55页“随堂练习”.2.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经试销发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1 200元,每件衬衫应降价多少元?五、小结通过这两节课的学习,你能简要说明利用方程解决实际问题的关键和步骤吗?有哪些收获?解决实际问题的关键:寻找等量关系.步骤:①整体地、系统地审清问题;②寻找问题中的“等量关系”;③正确求解方程并检验根的合理性.六、课外作业教材第55页习题2.10第1~4题.设未知数(未知量成了已知量),带着未知量去“翻译”题目中的有关信息,然后将这些含有的量表示成等量关系,就是实际问题的解题策略.无论是例题的分析还是练习的分析,尽可能地鼓励学生动脑、动手、动口,为学生提供展示自己聪明才智的机会,并且在此过程中更利于教师发现学生分析问题、解决问题的独到见解以及思维的误区,以便指导今后的教学.课堂上要把激发学生学习热情和获得学习能力放在首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度.随机事件与概率一、知识点1.事件的类型及其概率2.概率及公式定义:表示一个事件发生的可能性大小的数.概率公式:P(A)=mn(m表示试验中事件A出现的次数,n表示所有等可能出现的结果的次数).二、标准例题:例1:下列事件中,是必然事件的是()A.从装有10个黑球的不透明袋子中摸出一个球,恰好是红球B.抛掷一枚普通正方体骰子,所得点数小于7C.抛掷一枚一元硬币,正面朝上D.从一副没有大小王的扑克牌中抽出一张,恰好是方块【答案】B【解析】A. 从装有10个黑球的不透明袋子中摸出一个球,恰好是红球的概率为0,故错误;B. 抛掷一枚普通正方体骰子,所得点数小于7的概率为1,故为必然事件,正确;C. 抛掷一枚一元硬币,正面朝上的概率为50%,为随机事件,故错误;D. 从一副没有大小王的扑克牌中抽出一张,恰好是方块,为随机事件,故错误;故选B.总结:此题主要考查事件发生的可能性,解题的关键是熟知概率的定义.例2:下列说法正确的是( ).A.一颗质地均匀的骰子已连续抛掷了2000次.其中,抛掷出5点的次数最多,则第2001次一定抛掷出5点.B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说:明天下雨的概率是50%,所以明天将有一半时间在下雨D .抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等 【答案】D【解析】A. 是随机事件,错误;B. 中奖的概率是1%,买100张该种彩票不一定会中奖,错误;C. 明天下雨的概率是50%,是说明天下雨的可能性是50%,而不是明天将有一半时间在下雨,错误;D. 正确。
九年级数学北师大版上册 第5章《5.1 投影》教学设计 教案

5.1投影【教材分析】本课时主要研究投影、中心投影、平行投影和正投影的概念及性质,投影是图形的一种变化,与前面所学过的轴对称、平移、旋转、中心对称等平面图形的变化不同,投影是将空间图形转化为平面图形,在不同的投影方式下,有不同的投影规律.研究这些规律是数学学科的任务之一,这些规律的探索,对于培养学生的空间观念和转化思想是非常重要的,其中渗透的分类和归纳的数学思想,对学生应用数学知识也有着举足轻重的作用.【教学目标】知识与能力认识生活中的投影现象,了解中心投影、平行投影和正投影的概念和性质.过程与方法学生经历探索中心投影、平行投影和正投影的规律的过程,培养学生的转化能力和分类归纳的数学思想.情感、态度与价值观经过操作、观察、想象、思考、交流等活动,探索中心投影、平行投影和正投影的规律,发展学生的空间观念和推理能力.【重点难点】重点中心投影、平行投影和正投影的概念以及在中心投影下的线段、平面图形与其投影的关系.难点探索中心投影的规律,利用规律画出平面图形的平行投影和正投影.【教学方法】本节课主要内容是研究投影、中心投影的、平行投影和正投影概念以及探索中心投影的规律.本节课主要设置了五个教学环节,首先通过创设情境引出投影、平行投影和正投影的概念,然后又分别让学生探究中心投影、平行投影和正投影的性质,最后通过例题和练习巩固中心投影、平行投影的性质.在教学过程中通过学生动手进行实验得出结论发展了学生的合情推理能力,自学环节培养学生的自学能力,有动有静,有合作也有自主,真正体现了学生是课堂的主人.【教学准备】教师准备:多媒体课件.【教学过程】一、情景引入在日常生活中,我们可以看到各种各样的影子.比如,太阳光照射在窗框、人的身体上时,会在墙壁或地面上留下影子;而皮影和手影都是在灯光照射下形成的影子.如图所示.学生观察、想象、思考,教师进行总结.(设计意图:用多媒体演示相关的图片可让学生更形象直观地观察投影,提高学习的兴趣,促进对知识的理解.)二、新知探究1.观察与思考通过观察,我们不难发现物体和影子有着密切的关系,那么在数学中影子是物体的什么呢?(设计意图:通过生活中的实例引出“投影”两字,加深学生对这两字的认识.)2.投影概念学习物体在光线的照射下,会在地面或其他平面上留下它的影子,这就是投影现象,影子所在的平面称为投影面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)在图5-6中,当乙木杆移动到什么位置时,其影子刚好不落在墙上?
(3)在(2)的情况下,如果测得甲、乙木杆的影子长分别为1.24m和1m,那么你能求出甲木杆的高度吗?
4:组长带领本组成员审题并分析该题的解题思路,达到共同完成的目的。(10分钟)
神木县第五中学导学案
年级
九
班级பைடு நூலகம்
学科
数学
课题
5.1.2 投影(2)
第课时
总课时
编制人
审核人
使用时间
第周
星期
使用者
课堂流程
具体内容
学习
目标
1.知道平行投影的含义,能够确定物体在太阳光下的影子.
2.知道物体形成影子的大小和方向.
学法指导
温故
知新
引言:太阳光下的影子是我们司空见惯的,物体在太阳光下形成的影子与在灯光下形成的影子有什么不同呢?
2.看课本议一议:
1请将它们按拍摄的先后顺序进行排列,并说明你的理由
2在同一时刻,大树和小树的影子与它们的高度之间有什么关系?
③请按照时间的先后顺序排列杆子在太阳光下影子
2:自己阅读课本,把看不明白的用红笔画出来,然后组内交流。(8分钟)
3:自己独立完成,有困难的与组员合作完成。(10分钟)
流
程
3.某校墙边有甲、乙两根木杆。
1:课前独立完成,组长检查。(3分钟)
教
学
一.新课导入:阅读教材P129页的内容
二.本节课的学习目标是:(指定一名学生宣读)
三.新旧知识链接:按要求完成“温故知新”栏中的问题
四.探究新知:
自主探究:
知道平行投影的含义,能够确定物体在太阳光下的影子
1.快速看课本本课时内容,完成:
(1)平行投影。
(2)在平行投影中,所有的光线都是的,光线与物体的位置不同,物体的影子
A.上午12时B.上午10时C.上午9时30分D.上午8时
3、对同一建筑物,相同时刻在太阳光下的影子冬天比夏天【】
A.短B.长C.看具体时间D.无法比较
6:学生独立完成,教师巡查,组长负责批阅。(10分钟)
教后
反思
课堂小结
反思 查漏补缺收获:___________________________________。
2.存在困惑:_______________________________。
5:教师提问,每组抽两名同学回答。(4分钟)
课
堂
检
测
1.将一元硬币放在太阳光下,它在平整的地面上的投影可能是也可能是
2、小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为【】