重组dna技术的三大基本元件
高二生物选修三1-1_DNA重组技术的基本工具

作用:
恢复被 键。
限制酶
切开的两个 核苷是一回事吗? 比较相同点和不同点。
3、基因进入受体细胞的载体 ——“分子运输车”
条 件
(重组DNA的鉴定和选择)
作用结果:产生黏性末端和平末端
图1-3
EcoRⅠ
(在G与A之间切割)
GAA T T C C T T AAG
G
AAT T C
C T TAA
G
SmaⅠ
(在G与C之间切割)
CCC GGG GGG CCC
CCC
GGG
GGG
CCC
Hind Ⅲ
(在A与A之间切割)
AAG C T T
T T C GAA
A
AGCTT A
1-1 DNA重组技术的基本工具
1、限制性 核酸内切酶
2、DNA连接酶 3、基因进入 受体细胞的载体 来源: 作用特点: 作用结果:
分类: 作用:
种类: 必备条件:
1、限制性核酸内切酶 ——“分子手术刀” 来源:
主要在原核生物中
识别双链DNA分子的特定核苷酸序列; 作用特点:使特定部位的两个核苷酸之间的磷酸二酯键断开。
选修3 现代生物科技专题
本模块知识内容的构建顺序:
基因工程
分子水平
细胞工程
细胞水平
胚胎工程
个体水平
生态工程
群体水平
微观
中观
宏观
专题1 基因工程
基因工程是指按照人们的愿望,进行严格的设
计,并通过体外DNA重组和转基因等技术,赋予生 物以新的遗传性状,从而创造出更符合人们需要 的新的生物类型和生物产品。由于基因工程是在 DNA分子水平上进行设计和施工的,因此又叫做 DNA重组技术。
基因工程育种技术

基因工程育种技术基因工程又称重组DNA技术,是指将一种或多种生物的基因与载体在体外进行拼接重组,然后转入另一种生物(受体),使受体按人们的愿望表现出新的性状。
基因工程诞生于1972年,在其后几年中由于担心重组生物对环境安全的影响,基因工程技术的发展曾一度受挫。
但随着人们对DNA重组所涉及的载体和受体系统进行有效的安全性改造,以及相应的DNA重组实验室设计和操作规范的建立,再加上重组DNA技术的巨大应用潜力的诱惑,重组DNA技术迅速发展,现在,基因工程已成为生物学实验室的一项常规技术,并广泛应用于医药、农业、食品、环保等许多领域。
第一节基因工程的基本过程和原理基因工程最典型的操作如图6-1所示一般包括以下三个步骤:1.外源DNA的获得与酶切;2.外源DNA与经同样酶切的载体的连接;3.连接产物转化受体细胞及阳性转化子的筛选;分离D NA酶切酶切供体细胞重组转化子图6-1 基因工程的基本过程由图6-1可见,基因工程操作过程需要以下基本材料:外源DNA(基因)、载体、DNA 体外重组用的酶以及宿主细胞。
一、 载体外源基因导入受体细胞一般都要借助于载体,基因工程中最常用的载体是质粒载体。
图6-2所示pUC19就是最常用的载体之一。
图6-2 载体pUC19及其多克隆位点载体一般含有以下几个基本元件:(一) 复制原点载体在宿主细胞中要独立存在则应具有独立复制的能力,复制原点又称为复制起始位点(Origin,简称ori),控制载体复制。
不同生物的载体复制原点不同,同一种生物的不同载体拷贝数和稳定性有很大差别,这主要决定于载体的复制原点的性质。
图6-2所示的pUC 系列载体的复制原点是pAM1的一个突变体,在合适的大肠杆菌宿主细胞中(如大肠杆菌JM109)其拷贝数可达500。
整合型载体的复制原点被整合位点的同源序列替代。
(二) 筛选标记一般是载体上的一段编码酶的基因,能赋予转化子新的性状,便于转化子的筛选。
载体pUC19的筛选标记是β-内酰氨酶基因(常简写为bla或Amp r),能分解氨苄青霉素中的β-内酰氨环使其失活,因此在含氨苄青霉素的平板上,只有含质粒的转化子能生长而不含质粒的宿主细胞不能生长。
高考生物三轮复习回归教材 :选择性必修3之基因工程

高考生物三轮复习回归教材:选择性必修3之基因工程基因工程是指按照人们的愿望,通过转基因等技术,赋予生物新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。
从技术操作层面看,由于基因工程是在DNA分子水平上进行设计和施工的,因此又叫作重组DNA技术。
第1节重组DNA技术的基本工具一、有关核酸的方向性问题①核苷酸:1’碳连碱基;2’碳(脱氧核糖连无氧;核糖有氧);3’碳连羟基(-OH);5’碳连磷酸②一条脱氧核苷酸链(DNA单链):一端的3’碳上有游离的羟基(-OH),叫3’端;另一端的5’碳上有游离的磷酸基团,叫5’端。
一条核糖核苷酸链(RNA链)也是如此。
③DNA是由两条脱氧核苷酸链,按反向平行的方式构成④DNA聚合酶:总是从引物的3’端连接脱氧核苷酸(沿着模板链的5’-3’方向合成子链)⑤RNA聚合酶:总是从引物的3’端连接核糖核苷酸(沿着模板链的5’-3’方向合成子链)⑥tRNA的3’端结合氨基酸⑦翻译时核糖体的移动方向:沿着mRNA的5’-3’方向移动⑧限制性内切核酸酶识别的序列:沿5’-3’方向读取二、重组DNA技术的基本工具(一)限制性内切核酸酶——“分子手术刀”1、来源:主要是原核生物2、对原核生物的作用:防止外来病原物的侵害,将外源DNA切割保证自身安全3、作用:识别双链DNA分子的特定核苷酸序列,并且使每一条链中特定部位的磷酸二酯键断开。
结果:切割DNA成为两个DNA片段识别的序列:①沿5’-3’方向读取;②大多数限制酶的识别序列由6个核苷酸组成,少数4个、8个。
;③多数为回文序列(因此,切割形成的黏性末端碱基序列:既相同,又互补)黏性末端:当限制酶在它识别序列的中心轴线(图中虚线)两侧将DNA分子的两条链分别切开时,产生的是黏性末端;平末端:当限制酶在它识别序列的中心轴线处切开时,产生的是平末端。
(二)DNA连接酶——“分子缝合针”1、E.coli DNA连接酶:①从大肠杆菌中分离得到;②只能连接黏性末端,不能连接平末端③恢复磷酸二酯键2、T4 DNA连接酶:①从T4噬菌体中分离出来;②既能连接黏性末端,又能连接平末端,但连接平末端的效率相对较低;③恢复磷酸二酯键(三)基因进入受体细胞的载体——“分子运输车”1、最常用的载体:质粒质粒是一种裸露的、结构简单、独立于真核细胞细胞核或原核细胞拟核DNA之外,并具有自我复制能力的环状双链DNA分子。
重组DNA技术

(二)表达载体
表达载体是指用来在宿主细胞中表达外源基因
的载体。
根据宿主细胞分为:
原核表达载体 真核表达载体
目录
1. 原核表达载体
原核表达载体的基本组成
R:调节序列;P:启动子;SD:SD序列;TT:转录终止序列
目录
2. 真核表达载体
真核表达载体的基本组成
OriPro:原核复制起始序列;P:启动子;MCS:多克隆位点; TT:转录终止序列;orieuk:真核复制起始序列。
设计的载体称为克隆载体。
表达载体(expression vector) 为使插入的外源DNA序列可转录翻译成 多肽链而特意设计的载体称为表达载体。
目录
(一)克隆载体
1. 克隆载体应具备的基本特点
至少有一个复制起点使载体在宿主细胞中进行自主复制; 至少有一个选择标志(selection marker):选择标志是 区分含与不含载体的细胞所必需的,如抗生素抗性基因。 有适宜的RE的单一切点:载体中一般都构建有一段特异
AATTC G A TCTAG
AATTC G GATCT A
Eco RⅠ+ Bg lⅡ 双酶切
+
AATTC G
A TCTAG
T4 DNA连接酶 15º C
GAATTC CTTAAG AGATCT TCTAGA
目录
2.
从基因组DNA文 库获取目的基因
组织或细胞染色体DNA
限带的所 有基因组DNA的集合
克隆载体 重组DNA分子 受体菌录酶 cDNA
AAAA
逆转录酶
AAAA TTTT
性核苷酸序列,在这段序列中包含了多个 RE的单一切点,
可 供 外 源 基 因 插 入 时 选 择 , 叫 多 克 隆 位 点 ( multiple cloning sites,MCS)。
第二十三章 DNA重组和重组DNA技术【生物化学与分子生物学 9版原版】

第二节
重组DNA技术
序言:
重组DNA技术
又称: 分子克隆(molecular cloning) DNA克隆(DNA cloning) 基因工程(genetic engineering)
主要过程:
——在体外将目的DNA与能自主复制的遗传元件(载体)连接, 形成重组DNA分子 ——重组DNA分子在受体细胞中复制、扩增及克隆化,从而获得 单一DNA分子的大量拷贝
• 大多数RE的识别序列为回文结构(palindrome) • 有些RE所识别的序列虽然不完全相同,但切割DNA双链后可产
生相同的黏端,这样的酶彼此互称同尾酶(isocaudamer) • 有些RE虽然来源不同,但能识别同一序列(切割位点可相同或
不同),这样的两种酶成同裂酶(isoschizomer)
克隆载体
——是指用于外源DNA片段的克隆和在受体细胞中扩增的DNA分子。
克隆载体的基本特点:
至少有一个复制起点使载体能在宿主细胞中自主复制,并能使克隆的外源DNA片段得到 同步扩增; 至少有一个选择标志(selection marker),从而区分含有载体和不含有载体的细胞,如 抗生素抗性基因、-半乳糖苷酶基因(lacZ)、营养缺陷耐受基因等; 有适宜的RE单一切点,可供外源基因插入载体。
第一节小结
小结:
自然界DNA重组方式 主要包括: 同源重组,Holliday模式是最经典的同源重组模式 位点特异性重组 转座重组或转座,包括插入序列和转座子的重组 接合,通过细胞接触所发生的基因转移 转化,通过细胞自主摄取发生的DNA整合 转导,病毒感染介导的DNA整合 CRISPR/Cas9系统,细菌获得病毒DNA用于攻击病毒
一、同源重组
同源重组的Holliday模型
基因工程

1、基因工程,是指将一种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人们的意愿稳定遗传并表达出新产物或新性状的DNA体外操作程序,也称为分子克隆技术。
(供体基因、受体细胞、载体是重组DNA技术的三大基本元件。
)2、同尾酶:识别的靶序列也各不相同,但切割DNA后,产生相同的粘性末端,这一类限制酶特称为同尾酶。
这两个相同的粘性末端称为配伍未端。
3、同裂酶:有一些来源不同的限制酶识别的是同样的核苷酸靶子序列,这类酶特称为同裂酶。
同裂酶的切点位置可相同或不同。
4、1酶活性单位(U):某种限制性核酸内切酶在最适反应条件下,60 min内完全切割1μg λDNA所需的酶活性5、星号(*)活性:如果改变反应条件就会影响酶的专一性和切割效率,称星号(*)活性。
6、停滞效应:PCR中后期,随着目的DNA扩展产物逐渐积累,酶的催化反应趋于饱和,DNA扩增产物的增加减慢,进入相对稳定状态,即为停滞效应,又称平台期。
7、PCR扩增引物:是指与待扩增互补的人工合成的寡核苷酸短片段,其长度通常在15~30个核苷酸之间。
8、linker:是指用化学方法合成的一段由8~12个核苷酸组成,具有一个或数个限制酶识别位点的平末端的双链寡核苷酸片段。
9、衔接头:它是一类人工合成的一头具有某种限制酶切的粘性末端另一头为平末端的特殊的双链寡核苷酸短片段。
10、粘性末端:因酶切位点在两条DNA单链上不同(对称),酶切后形成得具有互补碱基的单链末端结构。
酶切后产生两个粘性末端很容易通过互补碱基的配对而重新连接起来。
11、平末端:因酶切位点在两条DNA单链上相同,酶切后形成的平齐的末端结构,这种末端不易重新连接起来。
12、基因克隆载体:通过不同途径将承载的外源DNA片段(基因)带入受体细胞且能在其中维持的DNA分子。
也称DNA克隆载体。
13、cos位点:λDNA两端各有12bp的粘性末端,粘性末端形成的书暗恋区域称为~~14、受体细胞:又称为宿主细胞或寄主细胞(host cell)等,从实验技术上讲是能摄取外源DNA并使其稳定维持的细胞;从实验目的上讲是有应用价值和理论研究价值的细胞。
贵州大学基因工程复习题库

第二章《基因工程》复习题一、选择题1. 限制性核酸内切酶是由细菌产生的,其生理意义是(D)A 修复自身的遗传缺陷B 促进自身的基因重组C 强化自身的核酸代谢D 提高自身的防御能力2.生物工程的上游技术是(D)A 基因工程及分离工程B 基因工程及发酵工程C 基因工程及细胞工程D 基因工程及蛋白质工程3. 基因工程操作的三大基本元件是:(I 供体 II 受体 III 载体 IV 抗体 V 配体) (A)A. I + II + IIIB. I + III + IVC. II + III + IVD. II + IV + V4. 多聚接头( Polylinker )指的是(A)A. 含有多种限制性内切酶识别及切割顺序的人工 DNA 片段B. 含有多种复制起始区的人工 DNA 片段C. 含有多种 SD 顺序的人工 DNA 片段D. 含有多种启动基因的人工 DNA 片段5.下列五个 DNA 片段中含有回文结构的是(D)A. GAAACTGCTTTGACB. GAAACTGGAAACTGC. GAAACTGGTCAAAGD. GAAACTGCAGTTTC6. 若将含有 5' 末端 4 碱基突出的外源 DNA 片段插入到含有 3' 末端 4 碱基突出的载体质粒上,又必须保证连接区域的碱基对数目既不增加也不减少,则需用的工具酶是(D)I T 4 -DNA 聚合酶 II Klenow III T 4 -DNA 连接酶 IV 碱性磷酸单酯酶A. IIIB. I + IIIC. II + IIID. I + II + III7.下列有关连接反应的叙述,错误的是(A)A. 连接反应的最佳温度为 37 ℃B. 连接反应缓冲体系的甘油浓度应低于 10%C. 连接反应缓冲体系的 ATP 浓度不能高于 1mMD. 连接酶通常应过量 2-5 倍8. T 4-DNA 连接酶是通过形成磷酸二酯键将两段 DNA 片段连接在一起,其底物的关键基团是(D)A. 2' -OH 和 5' –PB. 2' -OH 和 3' -PC. 3' -OH 和 5' –PD. 5' -OH 和 3' -P9. 载体的功能是(I 运送外源基因高效进入受体细胞 II 为外源基因提供复制能力 III 为外源基因提供整合能力) (D)A. IB. I + IIIC. II + IIID. I + II + III10.克隆菌扩增的目的是 (I 增殖外源基因拷贝 II 表达标记基因III 表达外源基因) (D)A. I + IIB. I + IIIC. II + IIID. I + II + III11. 下列各组用于外源基因表达的受体细胞及其特点的对应关系中,错误的是(C)A. 大肠杆菌-繁殖迅速B. 枯草杆菌-分泌机制健全C. 链霉菌-遗传稳定D. 酵母菌-表达产物具有真核性12.考斯质粒(cosmid)是一种(B)A. 天然质粒载体B. 由λ -DNA 的 cos 区与一质粒重组而成的载体C. 具有溶原性质的载体D. 能在受体细胞内复制并包装的载体13. 某一重组 DNA ( 6.2 kb )的载体部分有两个 SmaI 酶切位点。
高二生物选修3 DNA重组技术的基本工具

编码区下游
终止子
外显子
内含子
外显子: 能够编码蛋白质的序列叫做外显子 内含子: 不能够编码蛋白质的序列叫做内 含子
真核 细胞 的 基因 结构
编码区
外显子:能编码蛋白质的序列
内含子:不能编码蛋白质的序列
非编码区:有调控作用的核苷酸序列, 包括位于编码区上游的RNA 聚合酶结合位点。 非编码序列: 包括非编码区和内含子
G AA T T C
C T T AA G
G AA T T C
C T T AA G
用同种限制酶切割
G AA T T C G G AA T T C G
C T T AA
C T T AA
基因的针线:DNA连接酶
G AA T T C
C T T AA G
2、基因的针线──DNA连接酶
连接酶的作用是:将互补配对的两个黏性末 端连接起来,使之成为一个完整的DNA分子。
与载体连接
目的基因 分离
运载体 导入 受体细胞
载入
外源DNA扩增
产生特定性状
2.人工合成基因法
目的基因的mRNA
1)反转录法: 以目的基因转录成 的信使RNA为模板,反转录 成互补的单链DNA,然后在 酶的作用下合成双链DNA, 从而获得所需的基因。
反转录
单链DNA(cDNA)
合成
双链DNA (即目的基因)
尝试写出下列序列受EcoRI 限制酶作用后的黏性末端
CTTCATGAATTCCCTAA GAAGTACTTAAGGGATT
目的 基因
ห้องสมุดไป่ตู้
GAATTCCGTAGAATTCGGATT CTTAAGGCATCTTAAGCCTAA
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重组dna技术的三大基本元件
重组DNA技术是一种基因工程技术,是用来改变或修饰DNA序列的技术。
它主要由三大基本元件组成:
酶:重组DNA技术中使用的酶主要有限制性内切酶和连接酶。
限制性内切酶能够在特定位置将DNA片段切开,而连接酶则能够将被切开的DNA片段连接在一起。
载体:载体是用来携带重组DNA片段的载体,常见载体有质粒, 条件克隆质粒, 人造chromosome, 以及转基因植物,动物等。
特异性识别元件:特异性识别元件是用来识别目标DNA序列的元件,如引物和探针等。
这些元件能够特异性地识别目标DNA序列,使得重组DNA片段能够高效地插入到目标DNA序列中。