用于EMIRF吸波材料性能比较

合集下载

电磁屏蔽与吸波材料

电磁屏蔽与吸波材料

电磁屏蔽与吸波材料在当今的高科技社会,电磁辐射已经成为日常生活中不可避免的一部分。

然而,过量的电磁辐射对人体健康的影响却不容忽视。

为了解决这一问题,电磁屏蔽与吸波材料应运而生。

电磁屏蔽材料是一种能够阻挡电磁波传播的材料,可有效防止电磁辐射对人体的伤害。

而吸波材料则通过吸收电磁波的能量,将其转化为热能或其他形式的能量,以减少电磁辐射的传播和反射。

电磁屏蔽材料主要分为导电材料和导磁材料。

导电材料的屏蔽效能主要取决于材料的电导率,而导磁材料的屏蔽效能则取决于磁导率。

在实际应用中,往往需要结合使用导电和导磁材料,以实现更全面的电磁屏蔽效果。

吸波材料则根据吸收原理的不同,分为吸收型材料和干涉型材料。

吸收型材料主要通过介质的介电常数和磁导率来吸收电磁波;而干涉型材料则通过相邻界面的反射波相互抵消来实现吸波效果。

随着科技的不断进步,电磁屏蔽与吸波材料的应用领域越来越广泛。

除了传统的电子设备和军事领域,现在还涉及到医疗、建筑、汽车等多个领域。

例如,医疗设备中的核磁共振仪需要采用有效的电磁屏蔽措施,以避免对患者和操作人员的辐射伤害;建筑物的窗户和墙壁可以使用具有吸波性能的材料,减少电磁辐射的侵入;汽车中的电磁屏蔽可以有效保护驾乘人员免受电磁辐射的伤害。

总之,电磁屏蔽与吸波材料在保护人类免受电磁辐射伤害方面发挥着重要作用。

随着科学技术的不断发展和人们对健康生活的不断追求,电磁屏蔽与吸波材料的研究和应用将会得到更广泛的和更深入的发展。

引言:随着电子设备和系统的飞速发展,电磁屏蔽材料与吸波材料在保障设备和系统正常运行、降低电磁干扰和提高安全性等方面具有重要作用。

电磁屏蔽材料能够反射或吸收电磁波,阻止其传播或干扰敏感元件。

吸波材料则能够吸收电磁波,并将其转化为热能或其他形式的能量,从而降低电磁干扰。

为了更好地评估电磁屏蔽材料与吸波材料的性能,本文将介绍其性能测试方法及进展。

测试方法:电磁屏蔽材料与吸波材料的性能测试方法主要包括传统方法和最新技术。

多功能吸波材料

多功能吸波材料

多功能吸波材料
多功能吸波材料是一种具有多种功能的吸波材料,除了基本的吸波性能外,还具有其他的物理、化学或力学性能。

这些材料在军事、电子、通信、航空航天等领域有广泛的应用。

多功能吸波材料的主要类型包括:
1.隐身材料:这种材料不仅具有吸波性能,还能实现隐身效果。

它通过减少对电磁波的反射和散射,使雷达等探测设备难以发现目标。

例如,歼10战斗机的机身上就使用了吸波材料,具有一定的隐形功能。

2.导电吸波材料:这种材料具有导电性能,可以将吸收的电磁波能量转化为热能,并通过导电层排放到外部环境中。

导电吸波材料广泛应用于电磁兼容(EMC)领域,如电子设备的屏蔽和防护。

3.耐高温吸波材料:这种材料具有较高的耐热性,可在高温环境下保持吸波性能。

它主要用于航空航天、导弹等高温环境下的吸波应用。

4.耐腐蚀吸波材料:这种材料具有较高的耐腐蚀性,可在恶劣环境下保持吸波性能。

它主要用于海洋、化工等腐蚀环境中的吸波应用。

5.结构吸波材料:这种材料将吸波性能与结构性能相结合,既具有吸波功能,又可作为结构部件使用。

例如,吸波混凝土、吸波玻璃等。

总之,多功能吸波材料具有多种功能,可以满足不同领域和应用场景的需求。

随着科技的发展,多功能吸波材料的研究和应用将不断拓展。

几种解决电磁干扰对策

几种解决电磁干扰对策

电在道体流动时会有能量逸出到空中,就是所谓的电磁波。

这些复杂的电磁波如果其能量够大就会造成电磁干扰(EMI)进而影响产品的功能及环境污染和人体健康。

有医学文献指出不论电磁波的来源是来自电器设备、高压电线或家电用品,只要环境中电磁波的背景值大于2毫高斯,就会增加血癌的发生率。

美国科学杂志曾报道出,有证据显示电磁波超过60MHZ时,对人体细胞的结构会造成伤害,尤其是移动电话会对人脑产生的影响包括失忆,行为能力降低等。

对为减少电磁波的危害,电波吸收材料越来越多的应用于各类电子产品。

如手机、电脑、微波炉、信号基站等。

何谓电磁吸收材料呢?电波吸收材它是将入射电波加以切割,使其能量转弱,因而降低电波对外辐射的能力。

它可以贴在任何电子元件表面不会改变电路的特性。

它可以直接遮断或减弱EMI讯号源的辐射。

它可以随机构的需要来裁切基形状。

电磁辐射污染是全球关注的一大难点问题,接触具有电磁污染的环境又是不可避免。

国际欧盟CE、北美的FCC等很早就对电磁相容、安规认证提出了明确的要求,很多公司产品设计,却忽视了考虑EMI及安规问题,导致产品推向市场速度大大降低。

吸波产品能为电子厂家提供更便捷的EMI解决方案。

以下就常用EMI对策加以比较吸波材料的主要应用范围如下:· GSM,CDMA,WCDMA,PHS……· Handy phone,Smart phone,PDA Phone,Video phone……· Digital Camera,Camera phone,MP-5……· Notebook,PC,LNB,Set top bos ……· WLAN、RF Modules· Shielding Box,DVD,VCD,VOIP……· OA 事务机器、监视器、读卡机·网路电话、网路摄影机、无线充电等.……以下为不同频率段的吸波材料的选择。

电磁兼容常用材料屏蔽吸波材料

电磁兼容常用材料屏蔽吸波材料

电磁兼容常用材料屏蔽吸波材料电磁兼容常用屏蔽材料吸波材料电磁屏蔽材料即利用屏蔽材料阻隔或衰减被屏蔽区域与外界的电磁能量传播。

电磁屏蔽材料的作用原理是利用屏蔽体对电磁能流的反射、吸收和引导作用,其与屏蔽结构表面和屏蔽体内部感生的电荷、电流与极化现象密切相关。

屏蔽按其原理分为电场屏蔽(静电屏蔽和交变电场屏蔽) 、磁场屏蔽( 低频磁场和高频磁场屏蔽) 和电磁场屏蔽( 电磁波的屏蔽) 。

通常所说的电磁屏蔽是指后一种,即对电场和磁场同时加以屏蔽。

屏蔽效果的好坏用屏蔽效~g(SE,Shielding effectiveness) 来评价,它表现了屏蔽体对电磁波的衰减程度。

屏蔽效能定义为屏蔽前后该点电磁场强度的比值,即:SE=2Olg(Eo/ Es)或SH=20lg(HdHs)式中:分别为屏蔽前该点的电场强度与磁场强度,分别为屏蔽后该点的电场强度与磁场强度。

对屏蔽效果的评价是根据屏蔽效能的大小度量的。

按照屏蔽作用原理,屏蔽体对屏蔽效能的贡献分为三部分:(1) 屏蔽体表面因阻抗失配引起的反射损耗;(2) 电磁波在屏蔽材料内部传输时,电磁能量被吸收引起传输损耗或吸收损耗;(3) 电磁波在屏蔽材料内壁面之间多次反射引起的多次反射损耗。

由此可以得到影响吸波材料屏蔽效能的三个基本因素,即材料的电导率、磁导率及材料厚度。

这也是屏蔽材料研究本身所必须关注的问题和突破口。

当然,对于电磁屏蔽体结构,其屏蔽效能还与结构、形状、气密性等有关,对于具体问题,还需要考虑被屏蔽的电磁波频率、场源性质等。

常见的电磁屏蔽材料电屏蔽指的是对电场( E 场)的屏蔽,它通常可选用的屏蔽材料种类比较多,如下:一、导电弹性体衬料(导电橡胶)每种导电橡胶都是由硅酮、硅酮氟化物、EPDM或者碳氟化物-硅氟化物等粘合剂及纯银、镀银铜、镀银铝、镀银镍、镀银玻璃、镀银铅或炭颗粒等导电填料组成。

由于这些材料含有银,包装和存储条件应与其他含银元件相似,它们应当存储在塑料板中,例如聚酯或者聚乙烯,远离含硫材料。

吸波材料知识介绍系列

吸波材料知识介绍系列

吸波材料知识介绍系列—————之一吸波材料简介在解决高频电磁干扰问题上,完全采用屏蔽的解决方式越来越不能满足要求了。

因为诸多设备中,端口的设置及通风、视窗等的需求使得实际的屏蔽措施不可能形成像法拉第电笼那样的全屏蔽电笼,端口尺寸问题是设备高频化的一大威胁。

另外,困扰人们的还有另外一个问题,在设备实施了有效的屏蔽后,对外干扰问题虽然解决了,但电磁波干扰问题在屏蔽系统内部仍然存在,甚至因为屏蔽导致干扰加剧,甚至引发设备不能正常工作。

这些都是屏蔽存在的问题,也正是因为这些问题的存在,吸波材料有了用武之地。

吸波材料是指能够有效吸收入射电磁波并使其散射衰减的一类材料,它通过材料的各种不同的损耗机制将入射电磁波转化成热能或者是其它能量形式而达到吸收电磁波目的。

不同于屏蔽解决方案,其功效性在于减少干扰电磁波的数量。

既可以单独使用吸收电磁波,也可以和屏蔽体系配合,提高设备高频功效。

目前常用的吸波材料可以对付的电磁干扰频段范围从到40GHz。

当然应用在更高和更低频段上的吸波材料也是有的。

吸波材料大体可以分成涂层型、板材型和结构型;从吸波机理上可以分成电吸收型、磁吸收型;从结构上可以分为吸收型、干涉型和谐振型等吸波结构。

吸波材料的吸波效果是由介质内部各种电磁机制来决定,如电介质的德拜弛豫、共振吸收、界面弛豫磁介质畴壁的共振弛豫、电子扩散和微涡流等。

吸波材料的损耗机制大致可以分为以下几类:其一,电阻型损耗,此类吸收机制与材料的导电率有关的电阻性损耗,即导电率越大,载流子引起的宏观电流(包括电场变化引起的电流以及磁场变化引起的涡流)越大,从而有利于电磁能转化成为热能。

其二,电介质损耗,它是一类与电极有关的介质损耗吸收机制,即通过介质反复极化产生的“摩擦”作用将电磁能转化成热能耗散掉。

电介质极化过程包括:电子云位移极化,极性介质电矩转向极化,电铁体电畴转向极化以及壁位移等。

其三,磁损耗,此类吸收机制是一类与铁磁性介质的动态磁化过程有关的磁损耗,此类损耗可以细化为:磁滞损耗,旋磁涡流、阻尼损耗以及磁后效效应等,其主要来源是与磁滞机制相似的磁畴转向、磁畴壁位移以及磁畴自然共振等。

各种吸波材料的比较

各种吸波材料的比较

各种吸波材料的比较Christopher L Holloway沙斐翻译一前言最早暗室(全电波)建于50年代,用于天线测量。

吸波材料由动物毛发编制而成,外涂一层碳,厚2英寸(5.08cm)。

在2.4~10GHz正入射时,反射系数为-20dB。

60年代,以上的吸波材料被新一代、由一定形状的吸波材料所取代,正入射时反射系数为-40dB。

目前普遍使用的聚氨酯锥体40年代就开始研究,60年代才有产品。

正入射时的反射系数为-60dB。

然而可使用的频率范围较高,要求锥体的厚度(尖顶到基座)至少是几个波长。

电-厚锥体的良好性能主要来源于锥体直接的良好多重反射。

由于锥体的厚度大于波长,锥体的周边反射入射波。

波在相邻的锥体间不断的反射,再反射很多次。

每次反射时总有一部分波被锥体吸收。

因此,仅有小部分抵达锥体基座。

基座吸收后到达金属板,金属板反射后又进入锥体,再通过多重反射和吸收。

最后从锥体的尖返回的波已是非常小了。

电-厚锥体的最佳性能的获得,依靠锥体内渗碳加载的调节,要求碳负载足够小,以便每次波反射时进入锥体的波尽可能多,但渗碳加载又要足够大,以便充分吸收进入锥体的波的能量。

半电波暗室最早用于70年代,作为开阔场地的替代场地,测量辐射发射。

频率范围为30-1000MHz。

但最早暗室中粘贴的典型的吸波材料厚度为3-6英尺(0.91-1.83m)。

显然在30MHz的频率上,厚度不可能是几个波长。

因此暗室的频率范围被限制在90-1000MHz。

30-90MHz频段的吸波材料开发缓慢,因为无法预测和测量电-薄吸波材料(即厚度<14λ)的性能,只能安装上以后,测量暗室特性来判定。

直到80年代中期,计算和测量技术发展以后,对小型宽带吸波材料的评估才成为可能。

【4】-【6】中叙述了在理论模型中使用“均质化方法”可以精确地计算吸波材料的反射特性。

【7】-【10】中叙述了使用大测试装置直接测小型宽带吸波材料的反射特性。

在整个30-1000MHz的频段都要获得小的反射率,则小型宽带吸波材料必须使用锥形模型,它们在高频段是电-厚模型,但在低频段则是电-薄形材料。

纳米雷达吸波材料概述

纳米雷达吸波材料概述

纳米雷达吸波材料概述隐身技术是当今世界三大尖端军事技术之一,是一种通过控制和降低目标的信号特征,使其难以被发现、识别、跟踪和攻击的技术。

在现代战争中,雷达是探测目标的一种可靠手段,因此,雷达隐身技术依然是隐身技术的发展重点。

雷达吸波涂料主要由吸收剂与粘结剂体系组成,是一种功能性涂料,能够吸收、衰减入射的电磁波,具有将电磁能转换成热能而耗散掉或使电磁波因干涉而消失的功能.吸波材料可分为传统型和新型吸波材料两种,新型吸波材料包括:纳米材料、多晶铁纤维、手性材料、导电高聚物吸波材料、等离子体吸波材料和可见光、红外及雷达兼容吸波材料等.本文主要介绍纳米吸波复合材料。

纳米吸波复合材料是指能吸收投射到它表面的电磁波能量,并通过材料的介质损耗使电磁波能量转变成热能或其他形式能量的一类纳米功能复合材料.b~纳米碳化硅目前国际上的重要几项研究如下:美国研制了一种“超墨粉”吸波涂料,对雷达波的吸收率可达99%。

SiIks 公司将一种超细陶瓷球粉体添加在普通的漆中,喷涂在飞机和车辆上,可以提高隐形能力,还可以涂覆在电子装备上来对付电子干扰.法国研制成功一种宽频谱微波吸收涂层,该涂层由粘结剂和纳米级微粉填充材料构成,具有良好的磁导率,在50Mhz ~ 50Ghz 频率范围内吸收性能较好。

还有采用化学法成功制备了FeB 超细非晶合金颗粒,并对其吸波性能进行了研究,结果表明,这种纳米颗粒具有较大的磁损耗,是一种有应用潜力的吸波材料。

而纳米吸波材料为何如此受各军事大国的青睐呢?首先,纳米吸波涂料具有良好的吸波特性,同时具有宽频带、兼容性好、质量轻和厚度薄等特点。

其次,纳米吸收剂具有多种吸波机制,如界面效应、量子尺寸效应,产生磁滞损耗、界面极化、多重散射及分子分裂能级激发等。

因此,纳米吸波涂料是一种非常有发展前景的功能涂料。

纳米吸波复合材料的工作原理:雷达波首先传输到阻抗为Z 0的自由空间,然后投射到阻抗为Z 1的材料表面,这时雷达波产生部分反射.反射系数R 由下式得出:R =(Z 0—Z 1)/(Z0 +Z 1).式中,Z 0=(μ0/ε0)1/2,Z 1=(μ1/ε1)1/2.μ0、μ1 分别为自由空间和吸波材料的磁导率;ε0 和ε1分别为自由空间和吸波材料的介电常数.为了不产生反射,反射系数必须为零,即满足Z 0=Z 1或μ0/ε0=μ1/ε1。

吸波材料现状和应用——超经典

吸波材料现状和应用——超经典

吸波材料现状和应用——超经典吸波材料的发展现状一.1.目前吸波材料分类较多,现大致分成下面4种:1.1按材料成型工艺和承载能力可分为涂覆型吸波材料和结构型吸波材料。

1.2 按吸波原理吸波材料又可分为吸收型和干涉型两类。

吸收型吸波材料本身对雷达波进行吸收损耗,基本类型有复磁导率与复介电常数基本相等的吸收体、阻抗渐变“宽频”吸收体和衰减表面电流的薄层吸收体;干涉型则是利用吸波层表面和底层两列反射波的振幅相等相位相反进行干涉相消。

1.3 按材料的损耗机理吸波材料可分为电阻型、电介质型和磁介质型3大类。

碳化硅、石墨等属于电阻型吸波材料,电磁能主要衰减在材料电阻上;钛酸钡之类属于电介质型吸波材料,其机理为介质极化驰豫损耗;磁介质型吸波材料的损耗机理主要归结为铁磁共振吸收,如铁氧体、羟基铁等。

1.4 按研究时期可分为传统吸波材料和新型吸波材料。

铁氧体、钛酸钡、金属微粉、石墨、碳化硅、导电纤维等属于传统吸波材料,它们通常都具有吸收频带窄、密度大等缺点。

其中铁氧体吸波材料和金属微粉吸波材料研究较多,性能也较好。

新型吸波材料包括纳米材料、手性材料、导电高聚物、多晶铁纤维及电路模拟吸波材料等,它们具有不同于传统吸波材料的吸波机理。

其中纳米材料和多晶铁纤维是众多新型吸波材料中性能最好的2种。

2.无机吸波剂2.1 铁系吸波剂2.1.1 金属铁微粉金属铁微粉吸波剂主要是通过磁滞损耗、涡流损耗等吸收衰减电磁波,主要包括金属铁粉、铁合金粉、羰基铁粉等。

金属铁微粉吸收剂具有较高的微波磁导率,温度稳定性好等优点,但是其抗氧化、抗酸碱能力差,介电常数大,频谱特性差,低频吸收性能较差,而且密度大。

2.1.2 多晶铁纤维多晶铁纤维具有很好的磁滞损耗、涡流损耗及较强的介电损耗,并且是良好的导体,在外界电场作用下,其内部自由电子发生振荡运动,产生振荡电流,将电磁波的能量转化成热能,从而削弱电磁波。

2.1.3 铁氧体铁氧体吸波材料是研究较多也较成熟的吸波材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用于EMI-RF吸波材料性能比较
用于EMI/RF吸波材料性能比较
中心议题:吸波材料测试装置的构造吸波材料测试方法
解决方案:环天线放置在相互垂直的位置相隔距离为环天线直径的二分之一利用表面电流减少装置测试
随着工程师们需要遵循的辐射电磁干扰(EMI)规范的不断增多,市场上开始出现各种类型的EMI吸波材料。

一般而言,市场上所提供的这些吸波材料的厚度很薄并具有很好的外形柔韧性,再加上其背面带有粘合剂的设计使得我们能够很容易地将这些吸波材料应用到一些不符合电磁干扰和射频干扰(EMI/RFI)相关规范的产品表面。

因此,选择合适的吸波材料就成为符合EMI/RFI相关规范、维护系统性能完好的一个关键因素。

在10MHz到3000MHz的频率范围内,大部分吸波材料都会采用加入有损耗的磁性材料(例如,羰基铁或者铁氧体粉末等)的方式来削弱其表面电流。

这些表面电流源于有害EMI和导体的相互作用,
而且它们的出现还会导致电磁场的二次辐射,因此为了保证产品符合相关规范,通常都会设法降低该表面电流。

除此之外,这些表面电流还可能会对其它电路造成干扰,妨碍系统的正常运行。

比较不同生产厂家提供的吸波材料的性能需要花
费大量的金钱和时间。

考虑到EMI测试试验室每天几千美元的费用,试错试验(trialanderrortesting)的次数必须被限制到最少。

因此,通过携带若干种可能会使用到的吸波材料到EMI试验室进行测试以确定效果最好的一种材料的方法已经被证明是一种非常昂贵的解决方法。

而本文所介绍的这种简单的表面电流减小测试装置(SCRF)则允许我们对各种吸波材料样品的性能进行快速、简单的比较,从而缩小吸波材料的选择范围,确定某频率范围内具体EMI问题所需的性能最好的一种或两种吸波材料。

SCRF装置主要由两个经过静电屏蔽的磁场环形天线构成,而且通过将它们小心地放置在相互垂直的位置上可以在相关频率范围内获得70dB甚至更高的隔离度。

SCRF中的一个环形天线被连接到射频(RF)扫频源,而另一个环形天线则被连接到RF扫频接收机。

如果将一块与产品壳体
相仿的导体板放置在接近两环形天线的一个固定的位置上,那么就会在导体表面产生电流,该表面电流所产生的二次辐射会被环形天线接收,由此造成的天线接
收信号的增大的典型值约为20dB到30dB。

在此基础上,如果在导体板上覆盖某种EMI吸波材料的样品并重复上述测试过程,就可以测量得到电磁场二次辐
射的减小量。

我们可以利用这种二次辐射的减小量来对不同吸波材料的吸波性能进行对比。

测试装置的构造加工制造出一个的探头并不困难。

该探头是由带固体
Teflon@绝缘层的#24AWG导线在一个1.5厘米的心轴上绕两圈而得到的。

加大直径、提高圈数会提高该探头的测量灵敏度,而其相应的代价就是最高使用频率的降低。

图1.实验室加工制造的屏蔽环(频率范围:2MHz-600MHz)环天
线的一端被焊接到同轴线的芯线上,而另一端则被焊接到同轴线的屏蔽层上。

除了在环天线和同轴线的连接点所正对的一部分圆环处有一个小的间隙之外,环天线的其它部分都被铜带完全覆盖。

如果没有这个小的间隙,那么环天线就会被完全短路,电场和磁场也会被屏蔽,环天线也就无法完成测量。

另外,铜带和同轴线的屏蔽层之间、前后交叠的铜带之间连接则是通过大量使用焊料来完成的。


照上述方法我们可以加工两个相同的环天线。

的探头所适用的频率范围在3MHz 到600MHz之间。

通过商业渠道订购适合的探头会更加经济、更加省时。

下面
列出的一些生产厂家所提供的屏蔽环天线的样品都会明确给出其各自的适用频率范围,可以作为参考。

ARATechnologies,DeerPark,NY;Com-Power,LakerForest,CA;-power.co mCredenceTecnologies,Soquel,CA;Electro-Metrics,Johnstown,NY;EMCT estSystems,CedarPark,TX;FischerCustomerCommunications,Torrance,C A;,不论是选择加工还是购买环天线,两个环天线都必须被小心地放置在相互垂
直的位置上,以便获得两天线之间的最小耦合;而用于支撑测试装置的平台则可以简单的用木头和塑料来实现。

如前所述,测试装置中的一个探头会被连接到
RF扫频源,而另一个探头则会被连接到扫频接收机上。

如果测试试验室内装备有矢量网络分析仪,那么只要其RF信号源和接收端口之间的隔离度大于70dB,
则综合了频谱分析仪功能和扫频信号源功能的网络分析仪就能很好的完成本项测试任务。

另外,测试过程中环天线必须被固定在介质材料上,例如木头和塑料。

基本的测试装置并不复杂,通过在木块上插入螺丝钉就可以得到一个的简单的测
试装置。

图2.在没有导体板的情况下两环天线耦合最小时的相对位置构建测试装置过程中最困难的一步就是调整天线之间的相对位置以获得两天线之间的最
小耦合。

首先,我们可以将某个探头粘附在支撑平台上。

然后,在支撑平台的二维面上仔细调整第二个探头的位置从而使得两探头之间的耦合最小。

当第二个探头的大致位置确定以后,我们可以对第二个探头采用施加高温、快速定型热熔胶的方法来进行固定。

因为刚刚施加的热熔胶还没有凝固,所以我们可以继续手动微调第二个探头的位置;当热熔胶凝固之后,第二个探头就可以被精确地放置在耦合度最小的位置上了。

经过一个小时仔细的试错和调整,我们可以用热熔胶的
方法在两个十倍频程的范围内实现80dB的隔离度。

另外,在测试装置的同轴线
上加入一个或若干个夹扣磁环会有助于我们在更大的频率范围内达到试验所需
的至少70dB的隔离度。

两环天线之间相隔最近的两点间距离的大小并不是特别重要,相隔距离为环天线直径的二分之一或者一个直径都可以获得很好的性能。

一旦确定了两环天线之间
的间距,而且暂时固定在测试平台上的两环天线之间的隔离度也大于70dB,那
么我们就可以根据吸波材料将要附着的表面选择一块材料类似的金属板,并将其靠近两个环天线,。

使得两环天线之间耦合最强的位置就是金属板的最佳位置。

由此造成的两环天线之间耦合度的提高如果能够达到20dB甚至更大,那么它对
提高整体的测量精度就非常有利,尤其是对于那些高性能的待测吸波材料更是如
此。

图3.导体板上的表面电流将耦合度提高了20-30dB测试为了测量某给定材料的吸波性能,需要将其附着在SCRF装置的金属板上。

通过和没有附着吸波材料情况下测试装置测量得到的数值相比,我们可以利用接收机直接测量到EMI 反射的减小量。

尽管可以同时提供RF扫频源和接收机功能的矢量网络分析仪是
一种理想的测试仪器,但覆盖所需频率范围的标量网络分析仪也是一个很好的解决方案。

如果缺乏上述测试设备,我们也可以利用更廉价的频谱分析仪及其跟踪
源来完成EMI吸波材料性能的比较。

上面介绍的这三种测试仪器都可以在环形
磁场天线所覆盖的频率范围内实现扫频测量。

另外,如果干扰仅仅出现在个别频率点上,那么即使缺乏相关的扫频设备,我们也可以用信号发生器和某些测试接收机来完成相关的测试任务。

测试结果利用表面电流减少装置,我们对来自
BrigitflexInc和ARCTechnologies的不同EMI吸波材料样品的性能进行了对比测试。

测试所选择的金属面是单面或者双面覆铜的FR-4型印刷电路板(PCB)。

覆铜PCB板每面的尺寸约为环形天线直径的三到五倍。

PCB板覆铜的一侧朝向环形天线。

通过与无吸波材料的情况进行对比,SCRF装置中材料A所带来的覆铜FR-4印刷电路板反射的减少量。

图中稍高的那条曲线是参考曲线,而稍低的
一条曲线则是加入了待测吸波材料引起的损耗之后的曲线。

与此类似,将材料B 在的测试装置中进行测量可以得到的更大的衰减损耗。

图4.材料A显示出了
4-6dB的表面电流减少量图5.材料B显示出了6-9dB的表面电流减少量本文设计加工了一种简单的表面电流减少测试装置,通过它可以在实验室环境下对不同EMI吸波材料的吸波性能进行相对的比较。

尽管吸波材料所引起的表面电流的减少量并不完全等于预期的EMI减少量的测量值,但该方法可以很快的确定在特定频率范围内具备最佳吸波性能的材料。

相关文档
最新文档