abaqus线性屈曲分析

合集下载

基于Python的ABAQUS在特征值屈曲分析上的应用

基于Python的ABAQUS在特征值屈曲分析上的应用
一个仓库的 steps 容器中就包含着分析中的所有 stepꎬ我们
可以通过 steps 容器来访问一个 stepꎮ
2) 单个对象:不属于容器的对象并且仅包含一个该类
型的对象ꎬ例如 Session 和 Mdb 对象ꎮ
from abaqus import ∗ :导入 Session 对象和 Mdb 对象
基 于 Python 的 ABAQUS 在 特 征 值 屈 曲 分 析 上 的 应 用
程可慧
( 江西理工大学建筑与测绘工程学院ꎬ江西 赣州 341000)
摘 要:采用 Python 脚本语言实现 ABAQUS 的前处理过程ꎬ介绍了 ABAQUS 的脚本接口和常用的对象模型ꎬ通过 Python 脚本程序
ABAQUS 具备两个主要 的 分 析 模 块:ABAQUS / Standard 与
ABAQUS / Explictꎮ 该软件为用户提供了广泛的功能ꎬ使用
起来十分简明ꎮ
Python 是一门优雅而健壮的编程语言ꎬ拥有极其丰富
和强大的类库ꎮ 作为一种理想的脚本语言ꎬ在许多领域都
得到了 广 泛 的 应 用ꎬ 尤 其 适 用 于 快 速 的 应 用 程 序 开 发ꎮ
本文主要以某钢柱为例ꎬ介绍如何利用 Python 语言在
ABAQUS 中进行参数化的特征值屈曲分析ꎮ
1 二次开发
1. 1 接口介绍
ABAQUS 具有两种接口:用户子程序接口和 ABAQUS
脚本接口ꎮ 前者运用 Fortran 语言进行开发ꎬ主要应用在自
定义本构关系、自定义单元等领域ꎮ 后者是基于 Python 语
Abstract: Based on the necessity of bridge monitoring and the status quo of bridge monitoringꎬ this paper analyzes the advantages

abaqus屈曲分析实例

abaqus屈曲分析实例

abaqus屈曲分析实例整个计算过程包括2个分析步,第1步做屈曲分析,第2步做极限强度分析。

第1步:屈曲分析载荷步定义如下:Step 1-InitialStep 2- Buckle并在Model-Edit Keywords 的图中位置加入下面的文字,输出屈曲模态 *nodefile, global=yes U,Create job 名称为“Buckling”点击continue,完成第1步的计算。

第2步:极限强度分析将“buckle”分析步替换为“riks”分析步在Basic选项卡中,Nlgeom:选择打开在Instrumentation选项卡中,定义如下参数,然后点击OK定义一个新计算工作,输入名称,点击continue在Parallelization选项卡,选择2个CPU,如下所示,点击OK。

在此编辑Model-edit keywords,删除“第1步”加入的文字“*nodefile, global=yes U,”,并在下图位置加入下段文字:*imperfection, file=buckling, step=11, 2.5点击OK,再保存文件。

最后提交计算。

提取计算结果进入visualization Module点击Create XY data选择ODB filed output,点击continue选项卡,选择跨中载荷加载点,最后点击save。

重复上一步操作,Position 选择Unique Nodal ,U :spatial displacement 选择 U3,再点击elements/nodes 选项卡,选择板格中心点,最后点击save 。

点击Create XY data, 选择operate on XY data,点击continue择保存的Point load曲线,点击最后一行Create XY Data与Save as。

abaqus屈曲分析报告实例

abaqus屈曲分析报告实例

实用标准文档整个计算过程包括 2 个分析步,第 1 步做屈曲分析,第 1 步:屈曲分析载荷步定义如下:Step 1-InitialStep 2- Buckle2 步做极限强度分析0奪莖UWICWHIK . 叽I J I*' *iirl |U*ii:* ri«-2- c.仲[U**t Wfl| «R =・|0T* |«|M4 11 屮W Ml 町扌垮・3 4M4; *E>|轴亠白*wr»44* «*M *A*S MMM-in 4414-* Ita1! I >H*d *■.■ Lrfi|i-t*b*i UWi^ *4」>jU***^ ::切2冲<a:K-.L口sMwSniLpc^l Efl «o 誓光n-3 wa HF HB・・n c:^ > q士* f *B£ -A <MI '■■*W■uTp*』«MLrii4 *M;■pofit ■直j.i t…叫町■ ' H.,机...i . r |fl»-L , | |-£I -t fr E叶*盅1并在Model-Edit Keywords 的图中位置加入下面的文字,输出屈曲模态*nodefile, global=yesU,Create job 名称为“ Buckling点击continue ,完成第 1 步的计算第 2 步:极限强度分析将“ buckle ”分析步替换为“ riks ”分析步在Basic 选项卡中,Nlgeom:选择打开在Instrumentation 选项卡中,定义如下参数,然后点击OK Array定义一个新计算工作,输入名称,点击continue在Parallelization 选项卡,选择 2 个CPU,如下所示,点击OK。

在此编辑Model-edit keywords ,删除“第 1 步”加入的文字“ *nodefile, global=yesU,”,并在下图位置加入下段文字:*imperfection, file=buckling, step=1 1, 2.5点击OK,再保存文件最后提交计算。

基于ABAQUS的钢管轴心受压非线性屈曲分析

基于ABAQUS的钢管轴心受压非线性屈曲分析

一.问题描述在钢结构中,受压杆件一般在其达到极限承载力前就会丧失稳定性,所以失稳是钢结构最为突出的问题。

压杆整体失稳形式可以是弯曲、扭转和弯扭。

钢构件在轴心压力作用下,弯曲失稳是常见的失稳形式。

而影响轴心受压构件整体稳定性的主要因素为纵向残余应力、初始弯曲、荷载初偏心及端部约束条件等。

实际的轴心受压构件往往会存在上述的一种或多种缺陷,导致构件的稳定承载力降低。

本文主要针对任意轴对称的圆形钢管截面,利用ABAQUS有限元非线性分析软件,对其在轴心受压情况下进行特征值屈曲分析和静态及动态的非线性屈曲分析(考虑材料弹塑性和初始缺陷的影响)。

通过考虑材料非线性、几何非线性并引入初弯曲,得出构件发生弯曲失稳的极限荷载,并且由弯曲失稳的临界荷载得出的构件荷载位移曲线。

同时再进行非线性分析时,需要施加初始扰动,以帮助非线性分析时失稳,可以通过特征值屈曲分析得到的初始弯曲模态来定义初始缺陷;最后由可以将特征值屈曲分析得到的临界荷载作为非线性屈曲分析时所施加荷载的参考。

二.结构模型用ABAQUS中的壳单元建立轴心受压模型,采用SI国际单位制(m)。

1.构件的材料特性: E=2.0×1011N m2,μ=0.3, f y=2.35×108N m2,ρ=7800kg m3,钢管半径:60mm,厚度:3mm,长度:2.5m。

2.钢管的截面尺寸及钢管受到的约束和荷载施加的模型图如图2-1及图2-2所示。

图2-1 图2-2三.建模步骤(Buckle分析)(1)创建部件在创建part模块中命名构件的名字为gang guan,创建的模型为三维可变形壳体单元,如图3-1所示。

截面参数见图2-1,构件长度2.5m。

图3-1(2)创建材料特性及截面属性并将其赋予单元。

材料定义为弹塑性,弹性模量E=2.0×1011N m2,泊松比0.3,屈服强度2.35×108N m2,ρ=7800kg m3,材料定义如下图3-2所示。

Abaqus稳定性与屈曲—汇报篇2

Abaqus稳定性与屈曲—汇报篇2

(3)施加载荷
点击 (Create Boundary Condition)创建位移载荷, 施加Z方向大小为5的位移载荷。
(4)提交作业并分析 在分析步中勾选set-1的支反力和set-2的位移以及全 模型的能量输出,通过数据处理得到位移载荷图。
得到位移载荷图如下
位移-载荷图
0 0 -1000 -2000 -3000 -4000 10 20 30 40 50 60 70 80 90
-5000
-6000 -7000 -8000
总能量图
显式有限元法
显式分析 问题描述
已知条件和前面相同,用显式分析方法求解该屈曲 例子,做出位移载荷图形。 求解步骤 (1)建立或导入模型,设置材料特性 (2)分析步 (3)设置单元集,绑定约束 (4)定义边界条件和载荷 (5)定义和划分网格 (6)求解和分析
用同样的方法,建立另一端的Set,取名Set-2
Module选择Iteracton,点击 (Create Constraint),选择 Coupling,分别定义两端建立的set点和所在截面的约 束。
(4)定义边界条件和载荷 建立T型轴右端的固定约束,类型选择位移转角,位 置选择Set-1.
点击主菜单中Tool中的Amplitude,创建类型选择 Tabular
线性屈曲分析
注意地方
线性分析 问题描述 如图所示的T型轴结构,轴长800mm,材料为铝,弹 性模量70GPa,泊松比0.3,求该轴的前4阶屈曲模态。
解决步骤
• • • • • • • 建立模型 定义材料 装配 分析步 边界条件及载荷 定义并划分网格 求解和分析
(1)建立模型
单击 ( Create Part)按钮,“实体”形式,“拉伸”方式

abaqus中屈曲模式下的几何缺陷

abaqus中屈曲模式下的几何缺陷

abaqus中屈曲模式下的几何缺陷
在Abaqus中,屈曲模式下的几何缺陷可以通过以下方法引入:
1. 直接在模型中创建初始几何缺陷。

这可以通过在模型构建过程中调整节点位置或通过施加适当的边界条件来实现。

2. 使用Abaqus的“扰动”功能来引入几何缺陷。

这种方法涉及在计算过程中对模型施加小的随机扰动,以模拟实际结构中可能存在的不完美之处。

需要注意的是,屈曲分析通常关注结构的整体稳定性,而不是细节的几何缺陷。

因此,引入几何缺陷的方法和程度应根据具体分析需求和模型精度来确定。

基于abaqus的钢梁特征值屈曲与失稳分析

基于abaqus的钢梁特征值屈曲与失稳分析

目录:1. 绪论 (2)1.1背景 (2)1.2 钢梁稳定理论的发展状况 (2)2 . 稳定的概念 (3)3. 线性屈曲分析 (4)3.1 工程实例的简化 (4)3.2 有限元模型的建立 (4)3.2.1创建部件 (4)3.2.2创建材料和截面的属性 (6)3.2.3定义装配件 (7)3.2.4设置分析步 (7)3.2.5定义在载荷和边界条件 (8)3.2.6网格的划分 (9)3.2.7 提交分析作业 (9)3.2.8 模型数据的后处理 (10)3.2.9 数据分析总结 (12)4.结论 (12)基于abaqus的钢梁特征值屈曲与失稳分析摘要:钢结构的稳定性能是决定其承载力的一个特别重要的因素,稳定理论和设计方法需要完善。

近几十年以来,在研究发挥钢结构稳定性能的潜力和完善稳定计算的理论方面,国内外都取得了长足的进步。

例如完善钢结构的弹塑性稳定理论,研究有几何缺陷和残余应力的钢结构的实际受力性能和其极限荷载,用数值法来解决这类问题等都取得了不少研究成果。

在作理论分析的同时进行稳定性能的试验验证,以及将理论研究结果利用图表表示或深化为计算公式,从而将弹塑性稳定理论用于解决钢结构设计中的问题都取得了丰硕成果。

本文的主要内容是对现有失稳理论进行完善和发展及其总结,利用通用有限元abaqus软件,采用特征值的Lanczos方法及子空间迭代法对钢梁进行屈曲分析,文中总共给了10个特征向量,进而得出相应的模态分析变形图,最后把lanczos 方法及子空间迭代法进行了比较,提出一些新的问题。

关键词:有限元abaqus 失稳特征值屈曲分析1. 绪论1.1背景钢材具有强度高、质量轻、力学性能好的优点,是制造结构物的一种极好的建筑材料。

钢材与在建筑结构中应用广泛的钢筋混凝土结构相比,对于受力功能相同的构件,具有截面轮廓尺寸小、构件细长和板件薄柔的特点。

但是对于因受压、受弯和受剪等存在受压区域的构件和板件,如果技术上处理不当,可能使钢结构出现整体失稳或局部失稳。

ABAQUS钢柱特征值屈曲分析

ABAQUS钢柱特征值屈曲分析

四、ABAQUS钢柱特征值屈曲分析问题描述:利用有限元软件分析咋爱不同特征值下的一个 4.2m高的钢柱的变形情况。

钢柱的截面尺寸如图所示。

钢柱的材料特性:弹性模量E=2.1e11N/m2,泊松比0.3,屈服强度f y=3.45e8 N/m2。

1.创建部件将Modeling Space设为3D,Shape设为shell,Type选择Extrusion,Approximate size项输入1,点击继续开始绘制草图。

以坐标的形式绘制线条,生成三维模型。

2.创建材料点击创建材料按钮,弹出对话框。

名称输入steel,在对话框中点击General(常规特性)-Density,在Mass Density中输入7850;点击Mechanical(力学特性)-Elasticity(弹性)-Elastic,将Young’s Modulus(弹性模量)设为2.0e11,Poisson’s Ratio为0.3。

3.创建截面属性点击创建截面按钮,将Category设为shell,Type设为Homogeneous,其余参数不变,点击继续弹出Edit section对话框,Value后面输入0.01,保持其余参数不变,完成对翼缘截面属性的定义。

同理输入0.006,完成对腹板截面属性的定义。

4.给部件赋予截面属性点击赋予截面属性按钮,分别赋予翼缘和腹板的截面属性。

5.定义装配件6.设置分析步点击创建分析步按钮,在名称后面输入load,procedure type项选择linear perturbation,下拉菜单中选择Buckle。

点击继续,弹出编辑分析步对话框,Eigensolver 项中选择Lanczos,在Number of eigenvalus requested(所需特征值数量)后输入10,即分析10个特征值下的变形情况,剩余参数不变。

7.定义荷载和边界条件●给钢柱施加边界荷载点击Create Load对话框,在名称后面输入load-1,step项中选择load,将出现的Type for Selected Step(所选分析步的荷载类型)设为Shell edge laod(壳体边缘荷载),保持其他不变,点击继续,提示区显示选择要添加荷载的壳体边缘,选择如图所示的边界,在弹出的对话框的Magnitude(幅值)后面输入1e4,剩余参数不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
*Dynamic
将屈曲问题作为隐式动力问题来处理,适合接触脱开的问题,但是假如结构接触对较多,很容易出现收敛问题。这种分析类型使用的是隐式积分方法。
显式动力分析
*dynamic, explicit
将屈曲问题作为显式动力问题来处理,适合接触脱开的问题,能够适应复杂的模型,复杂的接触对, 收敛效果较好。但是计算量较大,计算时间较长,计算完以后需要评估计算结果是否可靠。这种分析类型使用的是显式积分方法。
线性屈曲分析
*buckle
用于估计最大临界载荷和屈曲模态,无法查看屈曲后状态。可用作引入缺陷的之前的计算分析步,需要加载荷;屈曲特征值与载荷相乘就是屈曲载荷。主要用于缺陷不敏感结构。
非线性屈曲分析
*static,riks
用于计算最大临界载荷和屈曲以后的后屈曲响应,可以查看后屈曲状态,用弧长量代替时间量。载荷比例因子与载荷相乘就是屈曲载荷。可以用于缺陷敏感结构,如果结构存在接触,容易出现收敛问题。
通用静力分析
*static
用于计算结构刚度不变或结构刚度增大的结构,如果结构出现屈曲或者垮塌,很容易出现不收敛问题,无法计算后屈曲状态。
通用静力分析+阻尼稳定
步中加阻尼,有助于收敛,计算的结束点可以比通用静力分析要后一些,但要注意阻尼不能加得过大。
隐式动力分析
相关文档
最新文档