SAR报告模板
雷达图报告模板

雷达图报告模板简介雷达图是一种多维度数据可视化技术,适合展示多变量数据的差异。
雷达图被广泛应用于数据分析、市场调研等领域。
本文将介绍如何使用雷达图模板来展示数据分析的结果,让你的报告更具有说服力和可读性。
雷达图的组成部分雷达图由多个维度的射线组成,每个维度代表的是一个变量。
维度的数量可以根据具体的数据情况来决定。
在雷达图中,以正多边形的方式将各个维度相连,形成了一个封闭区域,称为雷达图的轴。
每个维度的值用数据标记在轴上,同一维度的数据值在轴线上对应的位置是相同的。
数据点可以用连接线相连,也可以用不同的符号进行标记。
数据点通常用颜色区分,不同的颜色代表不同的数据集。
雷达图的中心点是该数据集的起始点,所有数据点都基于该点的位置来标记。
雷达图还可以有多组数据,每组数据用不同的颜色、形状或符号分别标记。
如何使用雷达图1.选择合适的指标:首先需要确定哪些指标是需要展示的。
根据目的和数据类型来决定展示哪些维度。
2.设定尺度:由于雷达图是一个比例图,所以需要考虑指标之间的单位差异。
需要对每个指标设定尺度,以使所有指标具备可比性。
3.绘制雷达图:根据指标和尺度绘制雷达图,确定最大值、中间值、最小值,标记数据点。
4.分析结果:根据数据点的位置和指标间的差异进行分析,找出数据集之间的规律和趋势。
雷达图应用场景雷达图广泛应用于数据分析、市场调研、产品评估和比较等领域。
具体应用场景包括:•产品评估:可以用雷达图来展示产品不同维度的表现,比较不同产品的优势和劣势。
•市场调研:可以使用雷达图来比较市场上不同品牌的产品性能,分析市场上产品定位优势和劣势。
•数据分析:雷达图可以用来分析不同公司的绩效,比较同行业不同公司的表现。
雷达图示例下面是一个发布会的观众满意度的雷达图样例:维度满意度人数主持人80 40场地80 40音效60 30视频70 35内容90 45从表格中可以看出,该发布会的观众对主持人和场地的满意度最高,音效和视频需要进一步改善,而内容方面得到了高度肯定。
SAR三维立体重建实验报告要点

SAR立体三维重建姓名: ******* 学号: ********* 班级: ************* 指导教师: ******1实验目的1、理解基于合成孔径雷达立体像对的灰度信息进行三维重建的基本原理与方法;2、了解ERDAS IMAGINE的基本功能,熟练掌握StereoSAR模块的使用方法;3、理解SAR传感器几何模型及基于地面控制点(Ground Control Points, GCPs)几何模型精化的原理与方法;4、通过真实SAR像对的数据处理,掌握SAR立体三维重建的基本流程。
2实验数据说明本实验采用ERDAS IMAGINE软件的示例数据,RADASAT影像StereoSAR_Ref.img和StereoSAR_Match.img,这两景影像分别拍摄于1996年9月24日和1996年9月17日。
3实验原理经过试验九的操作,使我们对InSAR提取测区DEM有了一定的掌握。
而摄影测量中我们也学习了基于立体像对制作测区三维景观图,因此在此次实验中我们利用摄影测量的原理基于SAR影像进行三维重建。
3.1 SAR立体图像的获取立体图像在摄影测量中称为立体相对。
所谓立体相对是由不同摄站摄取的具有一定重叠的两张相片。
因此雷达立体图像也可以定义为:由天线位置探测获取的具有一定影像重叠的两幅雷达图像[1]。
雷达立体图像的获取方式有两种:同侧立体观测和异侧立体观测。
前者是指飞行器沿着不同的航线飞行(两次飞行方向可以相同或者相反),雷达从地物的一侧对同一地区成像,同侧立体观测有可分为同一高度和不同高度两类;异侧立体观测是指雷达从地物的两侧分别对同一地区成像。
图 3.1-1 雷达立体图像获取方式异侧立体观测获取的雷达立体图像视差明显,基高比(摄影基线与航高之比)大,有利于提高地物目标点高程的测量精度。
但是地形起伏较大的地区,目标地物在立体像对的两幅图像上的相应影像不仅颜色差异很大,而且由于地形起伏引起的几何变形差异也很大。
SAR 命令详解

SAR 命令详解sar 命令行的常用格式:sar [options] [-A] [-o file] t [n]在命令行中,n 和t 两个参数组合起来定义采样间隔和次数,t为采样间隔,是必须有的参数,n为采样次数,是可选的,默认值是1,-o file表示将命令结果以二进制格式存放在文件中,file 在此处不是关键字,是文件名。
options 为命令行选项,sar命令的选项很多,下面只列出常用选项:-A:所有报告的总和。
-u:CPU利用率-v:进程、I节点、文件和锁表状态。
-d:硬盘使用报告。
-r:没有使用的内存页面和硬盘块。
-g:串口I/O的情况。
-b:缓冲区使用情况。
-a:文件读写情况。
-c:系统调用情况。
-R:进程的活动情况。
-y:终端设备活动情况。
-w:系统交换活动。
下面将举例说明。
例一:使用命令行sar -u t n例如,每60秒采样一次,连续采样5次,观察CPU 的使用情况,并将采样结果以二进制形式存入当前目录下的文件zhou中,需键入如下命令:# sar -u -o zhou 60 5屏幕显示:SCO_SV scosysv 3.2v5.0.5i8038610/01/200114:43:50%usr%sys%wio%idle(-u)14:44:500149414:45:500249314:46:500229614:47:500259314:48:5002296Average02494在显示内容包括:%usr:CPU处在用户模式下的时间百分比。
%sys:CPU处在系统模式下的时间百分比。
%wio:CPU等待输入输出完成时间的百分比。
%idle:CPU空闲时间百分比。
在所有的显示中,我们应主要注意%wio和%idle,%wio的值过高,表示硬盘存在I/O瓶颈,%idle值高,表示CPU较空闲,如果%idle值高但系统响应慢时,有可能是CPU等待分配内存,此时应加大内存容量。
%idle值如果持续低于10,那么系统的CPU处理能力相对较低,表明系统中最需要解决的资源是CPU。
sar的介绍和测试

扫描定位系统
• 一般要求为了评估SAR的空间三维分布,扫 描系统应能够使固定其上的探针在人体模 型的整个被照射区域进行扫描。扫描系统 的机械结构不得影响SAR测量。技术要求精 度:探针尖端在整个测量区域的定位精度 应优于±0.2mm。
• 空间分辨率:空间分辨率是系统能够进行 测量的最小步长,抽样分辨率应为1 mm 或更小。
• Power Reference Measurent量测后对功 率的确认
功率漂移的确认
• 功率确认和功率漂移的测量被放置在开始 和最后两个部分.它们在液体中测量一点的 功率.漂移的数值主要放大器输出的功率飘 移.如果数值超过0.1dB,系统确认就应该重 新做一次.许多的放大器在温度升高后功率 有很大的漂移.建议DASY系统所应用放大器 输出功率变化在0.02dB之内.
• 如果测量在射频受控环境中进行,比如电波暗室,可以一 年进行一次射频检查。 避免环境反射对SAR测试值的影响 (例如线缆、地板、墙壁、被测物定位器等),反射信号 应小于EUT的SAR的3%
• 任何物质统的要求
• SAR测试系统的总扩展不确定度应当小于±30% (-1.55dB, +1.14 dB);如果不确定度较高,测 试实验室需要评估应当减小哪一个不确定度因素 以实现±30%的目标,并且采取措施实现这种改 进;当扩展不确定度大于±30%时,测试结果需 要考虑
SAR
什么是SAR?
• SAR是英文Specific Absorption Rate的缩写, 是计量多少无线电频率辐射能量被身体所实际吸 收的表示单位,称作特殊吸收比率或称SAR,以 瓦特/每千克 (W/kg)或毫瓦/每克 (mW/g)来表示。 SAR是无线电频率辐射能量吸收率的计量尺度。
• SAR的准确定义是:给定物质密度(ρ)下的一 体积单元(dV)中单位物质(dm)吸收(耗损) 的单位电磁能量(dW)相对于时间的导数,以下 式表示:
APPLE WATCH SAR-Report-3119254

SAR EVALUATION REPORTFCC 47 CFR § 2.1093IEEE Std 1528-2013ForApple WatchFCC ID: BCG-E3103Model Name: A1803 Report Number: 16U23783-S1V2 Issue Date: 8/24/2016Prepared forAPPLE, INC.1 INFINITE LOOP CUPERTINO, CA 95014, U.S.A.Prepared byUL VERIFICATION SERVICES INC.47173 BENICIA STREETFREMONT, CA 94538, U.S.A.TEL: (510) 771-1000FAX: (510) 661-0888Revision HistoryTable of Contents1.Attestation of Test Results (5)2.Test Specification, Methods and Procedures (6)3.Facilities and Accreditation (6)4.SAR Measurement System & Test Equipment (7)4.1.SAR Measurement System (7)4.2.SAR Scan Procedures (8)4.3.Test Equipment (10)5.Measurement Uncertainty (11)6.Device Under Test (DUT) Information (12)6.1.DUT Description (12)6.2.Wireless Technologies (12)6.3.Maximum Output Power from Tune-up Procedure (13)7.RF Exposure Conditions (Test Configurations) (14)8.Dielectric Property Measurements & System Check (15)8.1.Dielectric Property Measurements (15)8.2.System Check (17)9.Conducted Output Power Measurements (18)9.1.Wi-Fi 2.4GHz (DTS Band) (18)9.2.Bluetooth (18)10.Measured and Reported (Scaled) SAR Results (19)10.1.Wi-Fi (DTS Band) (20)10.1.1.Non-Metallic Wristbands (20)10.1.2.Metallic Wristbands (20)10.2.Bluetooth (21)10.2.1.Non-Metallic Wristbands (21)10.2.2.Metallic Wristbands (21)11.SAR Measurement Variability (22)12.Simultaneous Transmission SAR Analysis (23)Appendixes (24)16U23783-S1V1 SAR_App A Setup Photos (STC_180days) (24)16U23783-S1V1 SAR_App B System Check Plots (24)16U23783-S1V1 SAR_App C Highest Test Plots (24)16U23783-S1V1 SAR_App D Tissue Ingredients (24)16U23783-S1V1 SAR_App E Probe Cal. Certificates (24)16U23783-S1V1 SAR_App F Dipole Cal. Certificates (24)1. Attestation of Test ResultsApproved & Released By:Prepared By:2. Test Specification, Methods and ProceduresThe tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE STD 1528- 2013, the following FCC Published RF exposure KDB procedures:o248227 D01 802.11 Wi-Fi SAR v02r02o447498 D01 General RF Exposure Guidance v06o447498 D03 Supplement C Cross-Reference v01o865664 D01 SAR measurement 100 MHz to 6 GHz v01r04o865664 D02 RF Exposure Reporting v01r023. Facilities and AccreditationThe test sites and measurement facilities used to collect data are located atUL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0.4. SAR Measurement System & Test Equipment4.1. SAR Measurement SystemThe DASY5 system used for performing compliance tests consists of the following items:∙ A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).∙An isotropic Field probe optimized and calibrated for the targeted measurement.∙ A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.∙The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.∙The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.∙The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. ∙ A computer running WinXP or Win7 and the DASY5 software.∙Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc. ∙The phantom, the device holder and other accessories according to the targeted measurement.4.2. SAR Scan ProceduresStep 1: Power Reference MeasurementThe Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.Step 2: Area ScanThe Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHzStep 3: Zoom ScanZoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job’s label.Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHzStep 4: Power drift measurementThe Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.Step 5: Z-Scan (FCC only)The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.4.3. Test EquipmentThe measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers’ recommendations, and is traceable to recognized national standards.5. Measurement UncertaintyPer KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.6. Device Under Test (DUT) Information 6.1. DUT Description6.2. Wireless Technologies6.3. Maximum Output Power from Tune-up ProcedureKDB 447498 sec.4.1.(3) at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit7. RF Exposure Conditions (Test Configurations)Refer to “Antenna Location Exhibit” submission for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.8. Dielectric Property Measurements & System Check8.1. Dielectric Property MeasurementsThe temperature of the tissue-equivalent medium used during measurement must also be within 18︒C to 25︒C and within ± 2︒C of the temperature when the tissue parameters are characterized.The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 –4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.For SAR measurement systems that have implemented the SAR error compensation algorithms documented in IEEE Std 1528-2013, to automatically compensate the measured SAR results for deviations between the measured and required tissue dielectric parameters, the tolerance for εr and σ may be relaxed to ± 10%. This is limited to frequencies ≤ 3 GHz.Tissue Dielectric ParametersIEEE Std 1528-2013Refer to Table 3 within the IEEE Std 1528-20138.2. System CheckSAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.System Performance Check Measurement Conditions:∙The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.∙The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥10.0 cm for measurements > 3 GHz.∙The DASY system with an E-Field Probe was used for the measurements.∙The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.∙The coarse grid with a grid spacing of 15 mm was aligned with the dipole.For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.∙Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.∙Distance between probe sensors and phantom surface was set to 3 mm.For 5 GHz band - Distance between probe sensors and phantom surface was set to 2.5 mm∙The dipole input power (forward power) was 100 mW.∙The results are normalized to 1 W input power.System Check ResultsThe 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target.9. Conducted Output Power Measurements9.1. Wi-Fi 2.4GHz (DTS Band)Note(s):1. Output Power and SAR are not required for 802.11g/n HT20 channels when the highest reported SAR for DSSS is adjustedby the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.2. Additionally, SAR is not required for Channels 12 and 13 because the tune-up limit and the measured output power forthese two channels are no greater than those for the default test channels.9.2. BluetoothNote(s):1. Only High Power for BT was evaluated for power measurement and SAR testing. Further evaluation for Low Power is notrequired.10. Measured and Reported (Scaled) SAR ResultsSAR Test Reduction criteria are as follows:KDB 447498 D01 General RF Exposure Guidance:Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:∙≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz∙≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz∙≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHzKDB 248227 D01 SAR meas for 802.11:SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the initial test position(s) by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The initial test position(s) is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the reported SAR for the initial test position is:∙≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.∙> 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions are tested.o For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.o When it is unclear, all equivalent conditions must be tested.∙For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required test channels are considered.o The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.∙When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII 2A with the ch annel with the highest measured output power. If the reported SAR for UNII 2A is ≤ 1.2 W/kg, SAR is not required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.∙When the specified maximum output power is different between UNII 1 and UNII 2A, begin SAR with the band that has the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is ≤1.2 W/kg, testing for the band with the lower specified output power is not required; otherwise test the remaining bandsindependently for SAR.To determine the initial test position, Area Scans were performed to determine the position with the Maximum Value of SAR (measured). The position that produced the highest Maximum Value of SAR is considered the worst case position; thus used as the initial test position.10.1. Wi-Fi (DTS Band)10.1.1. Non-Metallic Wristbands10.1.2. Metallic Wristbands10.2. Bluetooth10.2.1. Non-Metallic WristbandsMetallic Wristbands10.2.2.Test Justification: Due to similar frequency, BT testing was performed based on the Wi-Fi (DTS Band) worst case SAR result.11. SAR Measurement VariabilityIn accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.1) Repeated measurement is not required when the original highest measured SAR is <0.8 or 2 W/kg (1-g or 10-grespectively); steps 2) through 4) do not apply.2) When the original highest measured SAR is ≥ 0.8 or 2 W/kg (1-g or 10-g respectively), repeat thatmeasurement once.3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and firstrepeated measurements is > 1.20 or 3 (1-g or 10-g respectively) or when the original or repeated measurement is ≥ 1.45 or 3.6 W/kg (~ 10% from the 1-g or 10-g respective SAR limit).4) Perform a third repeated measurement only if the original, first, or second repeated measurement is ≥ 1.5 or3.75 W/kg (1-g or 10-g respectively) and the ratio of largest to smallest SAR for the original, first and secondrepeated measurements is > 1.20 or 3 (1-g or 10-g respectively).Note(s):Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20 or 3 (1-g or 10-g respectively).12. Simultaneous Transmission SAR AnalysisKDB 447498 D01 General RF Exposure Guidance introduces a new formula for calculating the SAR to Peak Location Ratio (SPLSR) between pairs of simultaneously transmitting antennas:SPLSR = (SAR1 + SAR2)1.5 /RiWhere:SAR1 is the highest measured or estimated SAR for the first of a pair of simultaneous transmitting antennas, in a specific test operating mode and exposure conditionSAR2 is the highest measured or estimated SAR for the second of a pair of simultaneous transmitting antennas, in the same test operating mode and exposure condition as the firstRi is the separation distance between the pair of simultaneous transmitting antennas. When the SAR is measured, for both antennas in the pair, it is determined by the actual x, y and z coordinates in the 1-g SAR for each SAR peak location, based on the extrapolated and interpolated result in the zoom scan measurement, using the formula of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2]In order for a pair of simultaneous transmitting antennas with the sum of 1-g SAR > 1.6 W/kg to qualify for exemption from Simultaneous Transmission SAR measurements, it has to satisfy the condition of: (SAR1 + SAR2)1.5 /Ri ≤ 0.04Simultaneous Transmission ConditionN/AWi-Fi 2.4GHz Radio cannot transmit simultaneously with Bluetooth Radio.AppendixesRefer to separated files for the following appendixes.16U23783-S1V1 SAR_App A Setup Photos (STC_180days) 16U23783-S1V1 SAR_App B System Check Plots16U23783-S1V1 SAR_App C Highest Test Plots16U23783-S1V1 SAR_App D Tissue Ingredients16U23783-S1V1 SAR_App E Probe Cal. Certificates16U23783-S1V1 SAR_App F Dipole Cal. CertificatesEND OF REPORT。
赛科硫酸回收SAR环境影响报告书

本项目扩能改造仍采用孟山都公司的废酸回收专利技术,在原装置上进行部 分设备的改造或更新,满足扩能要求。其中焚烧炉的改造采用法液空公司技术, 采用纯氧代替燃烧空气,并对烧嘴进行改造。项目的工艺改造主要集中在两个方 面:焚烧炉烧嘴需更换为处理纯氧的专用烧嘴,并增设相应燃烧控制系统;对反 应器催化剂进行改造。
本项目废水主要来源包括净化工序弱酸废水(1440m3/d)和余热锅炉排污水 (48m3/d)。
净化工序产生的弱酸废水含有重金属,包括镍、铬、钒、铅,弱酸废水收集 后入脱金单元,采用中和、混凝沉淀的方法,将废水中的金属离子沉淀去除后, 送赛科无机废水系统,余热锅炉排污水同样排至赛科无机废水系统,最终纳入化 工区无机废水管网集中排放集中排海。
万 t/a。 2 项目概况 上海赛科石油化工有限责任公司硫酸回收(SAR)装置改造项目建设地点位
于上海化学工业区A1-A3、B1地块赛科公司现有SAR装置区,新增总占地面积约 1330m2。项目总投资7583万元,技改后SAR装置总处理量为69.6万t/a,产品情况: 98%浓硫酸77000t/a、10%发烟硫酸300000t/a,同时副产蒸汽55200t/a。
本项目主要噪声源为生产及公用工程噪声设备如:主风机、冷却塔泵、干燥 塔循环泵等,噪声值较高,在85~91dB(A)之间。
本项目的噪声污染防治对策措施主要依据各设备噪声特性,分别采取减震、 消声措施,通过噪声远距离传播衰减,保证赛科厂界噪声达标。
本项目采用的减震、消声措施是工程设计中通常使用的,在技术、经济方面 都是合理、可行的。根据预测结果,本项目新增噪声源对厂界的最大贡献值为 43.0dB( A ) , 昼 夜 间 噪 声 均 能 满 足 《 工 业 企 业 厂 界 环 境 噪 声 排 放 标 准 》 (GB12348-2008)3 类标准要求。由此可见,项目拟采取的噪声防治措施和建设 是可行的。
SAR数据介绍范文

SAR数据介绍范文Synthetic Aperture Radar (SAR), 合成孔径雷达,是一种主动传感器技术,用于通过雷达信号获取地球表面的图像数据。
与光学遥感技术相比,SAR具有独特的优势和适应性,在地质勘探、环境监测、军事目标探测等领域具有广泛的应用。
SAR通过发射和接收雷达脉冲来捕获地表的信息。
它的工作原理是通过将雷达天线朝向地表发射连续的脉冲,并通过记录脉冲返回的时间和强度来测量地表的特征。
这些数据被整合在一起形成图像,可以展示出地表的地形、形貌、变化等信息。
与其他遥感技术相比,SAR有几个独特的特点。
首先,它能够独立于夜晚、云层和大气干扰,因为雷达信号可以穿透这些障碍物。
其次,SAR可以提供高分辨率的图像,在地表特征识别和监测中有巨大的优势。
此外,SAR还可以提供短时间间隔内的重复观测,这对于监测地表变化非常重要。
SAR数据有两种不同的获取方式:用航天器获取的遥感数据称为星载SAR数据,而用飞机或无人机获取的数据则被称为航空SAR数据。
星载SAR数据具有广覆盖区域和高重复观测能力的优势,适用于全球尺度的应用。
航空SAR数据具有较高的分辨率和更灵活的任务规划能力,适用于局部区域的高精度应用。
SAR数据的处理需要使用一系列的算法和技术。
首先,几何校正是必要的,它可以将SAR图像纠正为地球表面上的真实位置。
然后,辐射校正是为了消除图像上的辐射斑点和斑纹,提高图像质量。
局部改正主要用于去除SAR图像中的噪声。
此外,SAR数据还需要进行图像配准、过滤和分类等处理,以提取出地表特征的信息。
SAR数据在许多应用领域具有广泛的应用。
在地质勘探方面,SAR数据可以用于矿产资源勘探、地震监测和地质构造分析等。
在环境监测方面,它可以用于冰雪覆盖监测、海洋表面风场分析和地表变化监测等。
在军事目标探测方面,SAR数据可以用于目标检测、目标识别和目标跟踪等。
此外,SAR数据还可以在城市规划、农业管理和灾害监测等领域发挥作用。
SAR课程实验报告

SAR Imaging Based On the Range DopplerAlgorithmIntroductionAfter the course Radar Imaging, I did a simulation experiment in which I try to use Range Doppler Algorithm (RDA) for SAR Imaging. Here is my report for the experiment.In my simulation experiment, I got an ideal result of 3 point targets imaging based on the RDA on the condition of high squint.First of all, I would like to give the parameters used in my simulation.Then it is the flow chart of the algorithm.Raw radar dataResult Output Result analysis1.The echo signal2 (,)rect expexpcs t j kTjττπτ⎛-⎧⎫⎪⎪⎛=⋅-⎨⎬⎝⎪⎪⎪⎩⎭⎝⎭⎧⋅-⎨⎩This is the echo dataThis is the real part of the echo data2.Range compression and the SRCTo do range compression we can simply add a matched filter2()exp{}r rc r rj f H f K π=While the SRC filter is 2()exp{}r src r srcj f H f K π-=These two filters can be combined as one filter:2()exp{}r m r mj f H f K π=Where 1/rm r srcK K K K =-This is the signal after rangecompression and SRC.3. Range Cell Migration Correction (RCMC)The migration factor (,)a r D f V =()H j ω()()i i s t n t +()()o o s t n t +()h tThe phase multiplier 44exp{}exp{}(,)r c r crcmc a r j f R f o G D f V c cππ-=⋅Where c ois the range of the scene center.This is the signal after RCMC.4. Azimuth CompressionAfter RCMC, a matched filter is applied to focus the data in the azimuth direction.004(,)exp{}a r fa j R D f V f H cπ=The result is as follow:Data after azimuth compression.This is the required result. ConclusionAfter doing this simulation, I learned more on SAR imaging. It ’s the practical knowledge. I understood how to achieve the algorithm with IDL instead of just understanding it on the book. But I realize that no matterthe algorithm or the understanding of SAR, on which my study is still primary. I’m looking forward to access more and go deeper in this field.CODE;====矩形窗函数==================================function rect,tsizearr=size(t)ff=fltarr(sizearr(1))index=where(abs(t) le 0.5)ff(index)=1.return,ffend;;==========雷达参数================c=double(3.e8) ;光速lamd=double(0.03) ;波长fc=double(c/lamd) ;载频Br=double(1.e8) ;发射信号带宽Kr=double(1.5e13) ;距离调频率Tu=double(Br/Kr) ;发射脉冲时宽fs=double(Br*1.5) ;距离采样率PRF=double(300.0)Vr=double(100.0)Na=1024Nr=2048R0=double(2.e4)cita=double(20.*!pi/180) ;波束斜视角(radian)ta=(dindgen(Na)-Na/2)/PRF ;慢时间;=====================目标位置参数======================== xx=0yy=0x1=30y1=0;=====================雷达位置参数======================== x=vr*ta-R0*sin(cita) ;雷达方位位置y=R0*cos(cita) ;雷达距离位置dt=double(sqrt(x^2+y^2))Rref=dt ;参考目标实时距离oc=Rref[Na/2] ;场景中心距离;;================== 回波模拟======================= tr=(dindgen(Nr)-Nr/2)/fs+2*oc/crecord=dcomplexarr(Nr) ;一个脉冲记录data=dcomplexarr(Na,Nr) ;回波二维数组for ii=0LL,Na-1LL do beginrecord=dcomplexarr(Nr)Rt=sqrt((x(ii)-xx)^2+(y-yy)^2) ;目标到雷达瞬时距离Rt1=sqrt((x(ii)-x1)^2+(y-y1)^2)record0=rect((tr-2.*Rt/c)/Tu)*exp(dcomplex(0,!pi*kr*(tr-2.*Rt/c)^2))*exp(dcomplex(0,-4.*!pi/la md*Rt))record1=rect((tr-2.*Rt1/c)/Tu)*exp(dcomplex(0,!pi*kr*(tr-2.*Rt1/c)^2))*exp(dcomplex(0,-4.*!pi/ lamd*Rt1))data(ii,*)=record0+record1endforwindow,0contour,abs(data)window,10contour,real_part(shift(fft(data),Na/2,Nr/2));write_tiff,'d:\im3.tif',bytscl(abs(real_part(data)));write_tiff,'d:\im4.tif',bytscl(real_part(data));stop;===================== RD算法========================Fac=double(2*Vr*sin(cita)/lamd)Rc=dt[na/2]*cos(cita)fr=shift((dindgen(Nr)-Nr/2)*Fs/Nr,0/2);fa=shift((dindgen(Na)-Na/2)*PRF/Na,0/2)+Fac;D=sqrt(1-lamd^2*fa^2/4./Vr^2)Ksrc=2.*Vr^2*Fc^3*D^3/c/Rc/Fa^2;Hfr=exp(dcomplex(0,!pi*Fr^2/Kr));距离向匹配滤波器Hsrc=dcomplexarr(Na,Nr);for i=0,Na-1 do beginHsrc[i,*]=exp(dcomplex(0,-1*!pi*Fr^2/Ksrc[i]));endfor ;SRC滤波器for j=0,Nr-1 do begindata[*,j]=data[*,j]*exp(dcomplex(0,-2*!pi*Fac*ta));endfordata=shift(fft(data),Na/2,Nr/2);;=================距离压缩与二次距离压缩=============for i=0,Na-1 do begindata(i,*)=data(i,*)*exp(dcomplex(0,!pi*Fr^2/Kr))*Hsrc[i,*]endforwindow,1contour,abs(fft(data,1));;============距离徙动校正=============for i=0,Na-1 do beginrcmc=exp(dcomplex(0,4*!pi*Fr*Rc/d[i]/c))*exp(dcomplex(0,-4*!pi*Fr*oc/c)) ;dt[Na/2]-->o cdata[i,*]=fft(data[i,*]*rcmc,1)endforwindow,2contour,abs(data);;=================方位向压缩=============rt1=double(oc*cos(cita)+(i-Nr/2)*c/2./Fs);for i=0,Nr-1 do beginh_fa=exp(dcomplex(0,4*!pi*rt1*fc/c*D))*exp(dcomplex(0,-2*!pi*fa*oc*sin(cita)/Vr))data(*,i)=fft(data(*,i)*h_fa,1)endforwindow,3contour,abs(data)end。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1710.2 ~ 1784.8
1805.2 ~ 1879.8
WCDMA Band I
1922.4 ~ 1977.6
2112.4 ~ 2167.6
PowerClass:
GSM900: 4, tested with power level 5
GSM1800: 1, tested with power level 0
Country:
XXXX
Telephone:
XXXX
Fax:
XXXX
1.4.
Company:
XXXX
Address:
XXXX
City:
XXXX
Postal Code:
XXXX
Country:
XXXX
Telephone:
XXXX
Fax:
XXXX
1.5.
GeneralInformation
Device Type:
OperatingMode(s):
GSM850/GSM1900;
GSM900/GSM1800;(tested)
WCDMA Band I;(tested)
WCDMA BandII/WCDMA BandV;
TestModulation:
(GSM)GMSK;(WCDMA)QPSK
Device Class:
The sample under test was selected by the Client.
Components list please refer to documents of the manufacturer.
1.6.
Body Worn Configuration
Mode
Channel
Position
EN 62311:2008:Assessment of electronic and electrical equipment related to human exposure restrictions for electromagnetic fields(0 Hz - 300 GHz).
IEC 62209-2 Edition1.0(2010-03):Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures – Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz).
TA Technology (Shanghai) Co., Ltd.is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test.This report only refers to the item that has undergone the test.
Report No.:RZAXXXX-XXXXSAR
TESTING
No. L2264
TESTREPORT
Product Name
XXXX
Model
XXXX
Client
XXXX
TA TechnoSUMMARY
Product Name
XXXX
PortableDevice
Exposure Category:
UncontrolledEnvironment /GeneralPopulation
Product Name:
XXXX
IMEI:
XXXX
Antenna Type:
Internal Antenna
DeviceOperatingConfigurations:
Separationdistance
SAR10g(W/kg)
GPRS900,2 slots
GPRS1800, 2 slots
WCDMA Band I
Maximum Power
Mode
MaximumConductedPower(dBm)
MaximumAverage Power(dBm)
GSM900
GPRS(GMSK),Xslots
XXXX
Performed by______________
XXXX
TABLE OF CONTENT
1.
1.1.
TA Technology (Shanghai) Co., Ltd.guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.
This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval ofTA Technology (Shanghai) Co., Ltd.and the Accreditation Bodies, if it applies.
MaxNumberofTimeslots inDownlink
Max Total Timeslot
HSDPA UECategory:
HSUPA UECategory:
OperatingFrequencyRange(s):
Mode
Tx (MHz)
Rx (MHz)
GSM900
880.2 ~ 914.8
925.2 ~ 959.8
2.2.
For the body SAR tests for GSM900andGSM 1800, a communication link is set up with a System Simulator (SS) by air link. The EUT is commanded to operate at maximum transmitting power;the power lever is set to “5”in SAR of GSM900, set to “0”in SAR of GSM 1800.The tests in the band of GSM900andGSM 1800 are performed in the mode ofGPRS/EGPRS.Since the GPRS class is 12for this EUT, it has at most4timeslots in uplinkandat most4timeslots in downlink, themaximum totaltimeslotis 5.The EGPRS class is 12for this EUT,it has at most4timeslots in uplink,and at most4timeslots in downlink, themaximum totaltimeslotis 5.
2.
2.1.
Connection to the EUT is established via air interface with E5515C, and the EUT is set to maximum output power by E5515C. The antenna connected to the output of the base station simulator shall be placed at least50 cmaway from the EUT. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the EUT by at least 30 dB.
General Judgment:Pass
(Stamp)
Date of issue:XXXXXXX,XXXX
Comment
The test result only responds to the measured sample.
Approved by________________