供热系统节能技术措施(2021新版)

合集下载

城镇供热系统节能技术措施

城镇供热系统节能技术措施

城镇供热系统节能技术措施城镇供热系统是城市能源消耗的重要部分,也是城市能源消耗的主要来源之一。

为了实现可持续发展和节能减排的目标,需要采取一系列的技术措施来提高城镇供热系统的能源利用效率。

以下是一些常见的城镇供热系统节能技术措施:1. 锅炉热效率提升:提高锅炉的热效率可以减少能源消耗。

可以通过安装高效燃烧器、增加余热回收设备、采用先进的燃烧控制系统等手段来提高锅炉的热效率。

2. 管网绝热和泄漏控制:通过绝热材料包裹管道、安装绝热阀门和保温套来减少管网的热损失。

要定期检查和修复管网泄漏,避免能源的浪费。

3. 采用低温供热系统:低温供热系统可以减少供热管道和设备的散热损失,提高热水回收和利用的效率。

对于一些特定的建筑,可以使用地热、太阳能等可再生能源进行供热,减少能源消耗。

4. 热量计量和节能监测:通过安装热量计量装置,对供热系统的能耗进行监测和测量,了解系统的能耗情况和经济性。

通过节能监测系统可以对供热系统进行优化调整,提高能源利用效率,减少能源浪费。

5. 使用高效换热设备:在供热系统中使用高效换热设备可以提高热能的传递效率,减少能源损耗。

使用高效的换热器和散热器。

6. 建筑节能改造:通过对建筑进行节能改造,减少建筑的能耗,可以间接减少城镇供热系统的负荷。

包括加强建筑的隔热性能、采用节能照明和空调设备等手段。

7. 微网供热系统:通过建立微网供热系统,可以将多种能源进行集成利用,提高能源的综合利用效率。

将太阳能、风能和地热能与传统的供热系统进行结合,满足城镇供热需求。

8. 定期维护保养:对供热设备进行定期检查和维护保养,保证设备的正常运行和高效运转。

及时清理设备表面和管道内部的沉积物,减少能源的浪费。

城镇供热系统的节能技术措施主要包括提高锅炉热效率、管网绝热和泄漏控制、采用低温供热系统、热量计量和节能监测、使用高效换热设备、建筑节能改造、微网供热系统和定期维护保养。

通过采取这些措施,可以提高城镇供热系统的能源利用效率,减少能源消耗和环境污染。

集中供热热网系统的节能措施

集中供热热网系统的节能措施

集中供热热网系统的节能措施在当前的环境保护和能源节约的大背景下,节能成为社会各行各业的共同关注点。

而集中供热热网系统作为一个能源消耗较大的系统,在节能方面也有着很大的潜力。

本文将探讨集中供热热网系统的节能措施,并提出相应的解决方案。

1. 定期清洗管道集中供热热网系统中的管道是热量传输的重要通道,但长期使用容易产生水垢和污垢,导致管道内壁粗糙度增加,传热效率降低。

因此,定期清洗管道是一个有效的节能措施。

清洗管道可以采用化学清洗和机械清洗相结合的方式,将管道内的沉积物彻底清理,提高传热效率,减少能源浪费。

2. 提高换热器效率换热器是集中供热热网系统中的一个重要组件,它起到加热供暖水的作用。

为了提高换热器的效率,可以采用以下措施:(1) 清洗换热器管道:定期检查和清洗换热器管道,确保其内部畅通无阻,减少管道壁垢和污垢的堆积,提高传热效率。

(2) 优化换热器结构:设计合理的换热器结构,增加传热面积,改善传热条件,进一步提高换热器的效率。

3. 合理运行调整运行调整是保证集中供热热网系统高效运行的关键。

合理的运行调整可以减少系统的能耗,延长设备的使用寿命,降低维护成本。

以下是一些常见的运行调整措施:(1) 调整供热水温度:根据不同的季节和室内温度要求,合理调整供热水温度,避免供热过热或不足,以减少能源的浪费。

(2) 控制水泵的运行:合理控制水泵的启停和运行时间,减少不必要的能耗,同时保证供暖的舒适度。

4. 采用新技术和新材料随着科技的不断发展,新技术和新材料的应用也为集中供热热网系统的节能提供了更多可能。

以下是一些新技术和新材料的应用建议:(1) 采用可再生能源:如太阳能、地热能等可再生能源,可以作为集中供热热网系统的补充能源,减少对传统能源的依赖,降低系统的能耗。

(2) 使用节能设备:选择高效节能的设备,如高效换热器、节能水泵等,可以有效减少能源的消耗。

(3) 应用智能控制系统:利用智能控制系统,实现对集中供热热网系统的精确控制和管理,提高系统的运行效率,降低能源的浪费。

供热系统节能降耗优化措施

供热系统节能降耗优化措施

供热系统节能降耗优化措施供热系统的节能降耗优化措施是指通过改进供热设备的运行方式和改善供热系统的热能利用效率,从而减少能源消耗和降低运行成本。

下面是一些常见的供热系统节能降耗优化措施:1.热网设计优化:供热网络应该合理布局,减少管线长度,降低管线阻力。

同时,应该优化网络结构,减少热损失。

2.供热设备优化:使用高效供热设备,如高效锅炉、热泵等,提高供热设备的热能利用效率。

同时,对供热设备进行定期检查和维护,确保设备运行正常。

3.节能改造:对老旧供热设备进行节能改造,如安装热回收装置、提高设备的热能利用效率等。

4.管道绝热:对供热管道进行绝热处理,减少热能传输损失。

可以采用保温材料包覆管道,或者在管道外部增设保温层。

5.合理调节供热水温:根据室内温度需求和季节变化,合理调节供热水温,避免过高的水温造成能源浪费。

6.节能控制系统:安装智能控制系统,实时监控供热系统的运行状态,调整设备运行参数,使系统运行更加高效和节能。

7.热力计量管理:对供热系统进行热力计量管理,可以推行热量计量和结算制度,激励用户降低能耗。

8.建立节能宣传教育制度:通过开展节能宣传教育活动,提高用户节能意识,鼓励用户采取节能措施。

9.持续改进和优化:定期进行供热系统能耗分析,找出问题和不足,并采取相应措施进行改进和优化。

通过实施以上节能降耗优化措施,可以有效提高供热系统的能源利用效率,减少能源消耗,降低运行成本,实现可持续发展。

同时,还可减少对环境的影响,保护生态环境。

因此,供热系统节能降耗优化对于提高供热系统的经济效益和社会效益具有重要意义。

供热系统节能技术措施

供热系统节能技术措施

供热系统节能技术措施随着全球能源资源的日益紧缺,能源补给体系建设越来越繁重,能源问题也愈发日益凸显。

为降低能源消耗和减少能源浪费,供热系统节能技术措施成为必须重视的问题。

下面我将介绍一些供热系统节能技术措施。

一、优化供暖方式1.推广地源、空气源、太阳能采暖等新型供暖方式,提高供暖效率。

2.在集中供暖地区,推广热总管网式供暖,降低能耗、减少传统供暖方式带来的污染。

3.采用热泵供暖,将环境中的空气、水等低温热量提升到高温,从而达到供暖的目的。

4.改善供暖结构,推广分户式供暖,避免“温差争夺”造成的热能浪费。

二、优化供暖系统1.淘汰老旧锅炉,采用高效、节能的锅炉和热泵等设备,提高供热效率。

2.在系统中增加节能附件,如在各个分支线增设节能循环泵、高效节能电动调节阀等。

3.增加热网智能化控制技术,在自动化控制的同时,充分利用多种能源输入装置的优势,提供智能控制手段,降低运行成本。

4.合理使用余热,建设余热回收系统,将余热再利用,进一步提高热效率,达到能源节约的目的。

三、保证输电、供热管道的优良工艺、质量1.在管道铺装时要选择合适的绝热材料,降低热损失以及管道对周边环境的污染。

2.在管道的设计和施工中,要按照要求,选择合适的热带计算方法和标准。

3.在输热系统的管道中,应保证输送流体的安全、稳定、低能耗的条件。

4.加强输热管道的检验、维护,对老旧管道进行改造或更换。

总之,以上就是供热系统节能技术措施的一些具体方法,随着科技的日新月异,可以预见,在未来节能领域的技术创新,将会为节能应用带来前所未有的机遇和挑战。

供热系统节能技术措施

供热系统节能技术措施

供热系统节能技术措施随着能源的日益紧缺和全球气候变化的威胁日益严重,节能成为了一个非常重要的议题。

供热系统作为一个重要的能源消耗者,通过采取节能技术措施,能够有效地减少能源的消耗,降低对环境的影响,实现可持续发展。

本文将介绍一些供热系统常用的节能技术措施,帮助提高热能利用率,减少能源消耗。

1. 热源优化提高供热系统的热源效能是节能的关键。

首先,应优先选择清洁、高效的热源设备,如天然气燃烧锅炉、电能热泵等,以减少能源的浪费和污染物的排放。

其次,应根据实际需求合理设计和运行热源设备,避免出现过大或者过小的供热系统。

最后,在热源设计中要注意热源的热效率,尽量实现热源的高效利用。

2. 管网节能供热管网是热能传输的重要部分,通过进行管道绝热、减小管道的阻力和梯度,可以有效地提高供热系统的效率。

首先,对供热管道进行绝热处理,减少热量的散失。

其次,合理设计供热管道的布局,减小管道的阻力和梯度。

最后,在管道的连接处和弯头处安装各种阀门和节流装置,减小系统的泄漏和能耗。

3. 控制系统优化供热控制系统在节能中起到至关重要的作用。

通过安装智能控制设备,可以实时监测和调节供热系统的运行状态,保持系统的高效稳定运行。

例如,通过安装温度传感器和流量控制阀等装置,实现供热系统的精确控制,根据需求进行调节。

此外,也可以利用建筑物内外的环境信息、日照信息等,进行智能化的控制,提高供热系统的节能效果。

4. 集中供热和分户计量集中供热系统可以将多个建筑物的供热需求集中处理,而不是每个建筑物都单独设置供热设备。

这样可以通过优化热源配置、减少供热损失等方式,节约能源和减少环境污染。

与此同时,分户计量也是一种有效的节能措施,通过对用户的热量计量,可以鼓励用户节约能源,提高供热系统的整体效率。

5. 定期维护和管理供热系统的维护和管理也是节能的重要环节。

定期对供热设备进行检查、清洁和维修,保持设备的正常运行,减少能源的浪费。

同时,采用科学合理的供热管理制度,将供热系统的各个环节进行有效的监管和调控,确保供热系统的高效运行,最大程度地减少能源的消耗。

城镇供热系统节能技术措施

城镇供热系统节能技术措施

城镇供热系统节能技术措施城镇供热系统是一种集热、输送、分发和利用能源的综合性工程系统,其节能技术措施主要包括以下几个方面。

1. 提高供热系统的热源利用效率。

通过选用先进的热源设备和技术,如燃气锅炉、燃煤锅炉和热力联产等,提高燃料的利用率,减少热损失。

2. 优化供热管网的设计与运行。

通过合理布局、减少管道的长度和弯头,增加绝热材料的厚度和热工性能,改进供回水管的布置等措施,减少管网的热损失和水力损失,提高供回水温差,降低供回水压差,提高系统输送能力和热效率。

3. 推广低温热供热技术。

通过降低供热系统的供水温度和回水温度,采用低温热源和低温换热器,减少系统的热损失和热量需求,提高系统的供热效率。

4. 加强热量计量和能耗管理。

对供热系统进行水、电、气、热量的全量计量,建立科学合理的计量制度,精确测量各项能耗指标,实现能耗的全面监控和节约。

5. 采用智能控制和管理技术。

通过自动控制和远程监控技术,实现对供热系统运行状态、供回水温度、管网压力等参数的实时监控和调节,最大限度地提高系统的运行稳定性和热量利用效率。

6. 开展用户能源管理和节能宣传工作。

通过开展用户能源管理活动和节能宣传工作,增强用户对能源的节约意识,引导用户合理使用能源,减少能源的浪费,提高整个供热系统的能源利用效率。

城镇供热系统的节能技术措施主要包括提高热源利用效率、优化供热管网、推广低温热供热技术、加强热量计量和能耗管理、采用智能控制和管理技术以及开展用户能源管理和节能宣传等措施,通过综合应用这些技术措施,可以有效地提高城镇供热系统的能源利用效率,实现节能减排的目标。

供热系统节能技术措施

供热系统节能技术措施

供热系统节能技术措施供热系统是指通过燃煤、燃气、燃油等能源将热量输送到用户室内,为用户提供舒适的室内温度的系统。

如何提高供热系统的能效,减少能源消耗,是当前热力工程领域亟待解决的课题。

下面将介绍一些供热系统节能技术措施。

首先,通过改进供热设备和优化热源系统可以实现供热系统的节能。

一方面,可以选择高效燃烧器替代传统的燃烧器,提高燃料的燃烧效率。

另一方面,可以改进锅炉一体化设计,减少烟气温度,提高锅炉热效率。

此外,在热源系统中,可以采用余热回收技术,将烟气余热和锅炉排放的废热利用起来,提高系统能源利用率。

其次,通过改进供热管网系统可以实现供热系统的节能。

供热管网的设计和施工过程中,应避免过长的管道、复杂的线路以及陡峭的坡度,减少管道的摩擦损失和水泵的能耗。

此外,可以采用地埋管道方式,利用地下温度较为稳定的特点,降低供热管道在输送过程中的能耗损失。

第三,通过合理调整供热系统的运行参数可以实现供热系统的节能。

在供热系统运行过程中,可以根据实际需求合理调整供热温度、流量和压力等参数,避免过高或过低的运行参数对系统能耗的影响。

此外,可以采用分时段调峰供热的方式,在供热系统负荷较低的时段,降低锅炉的工作负荷,减少能源消耗。

第四,通过加强供热系统的维护和管理可以实现供热系统的节能。

供热系统设备的定期检查和维护,可以保证设备的正常运行,减少能耗损失。

同时,可以定期清洗锅炉和换热器,保证热传递效果,提高系统的热效率。

此外,可以通过智能监控和调控系统对供热系统进行实时监测和管理,及时发现并解决问题,提高供热系统的稳定性和能效。

综上所述,供热系统的节能技术措施包括改进供热设备和热源系统、优化供热管网系统、合理调整系统运行参数以及加强系统的维护和管理。

通过实施这些措施,可以有效降低供热系统的能源消耗,提高系统的能效,为用户提供更加舒适和节能的供热服务。

供热系统节能降耗优化措施(通用5篇)

供热系统节能降耗优化措施(通用5篇)

供热系统节能降耗优化措施(通⽤5篇)供热系统节能降耗优化措施 ⼀、节能降耗的回收⽅法 烟⽓余热回收途径通常采⽤⼆种⽅法:⼀种是预热⼯件;⼆种是预热空⽓进⾏助燃。

烟⽓预热⼯件需占⽤较⼤的体积进⾏热交换,往往受到作业场地的限制(间歇使⽤的炉窑还⽆法采⽤此种⽅法)。

预热空⽓助燃是⼀种较好的⽅法,⼀般配置在加热炉上,也可强化燃烧,加快炉⼦的升温速度,提⾼炉⼦热⼯性能。

这样既满⾜⼯艺的要求,最后也可获得显著的综合节能效果。

当前,煤电油运全⾯紧张,价格⼤幅度上涨,⽯油对外依存度不断提⾼,能源供应紧张已经成为经济社会发展的重要制约因素之⼀。

但另⼀⽅⾯,我国能源利⽤效率低、浪费⼤、污染重。

我国能源利⽤率为33%,⽐国际先进⽔平低10个百分点,主要产品单位能耗平均⽐国际先进⽔平⾼40%。

中国能源消费总量约为美国的1/3,居世界第⼆位,仅占世界能源消费总量的1/10,但能源供给和能源安全问题已经显现。

能源形势告诉我们,全⾯实现⼩康社会的征程,也将是克服能源制约的历程,中国特⾊的现代化道路必须是节能之路。

另⼀⽅⾯⽤电效率低、浪费⼤的问题仍然⼗分突出。

我国单位产值电⼒消耗⾼于美国和⽇本等发达国家。

电动机、泵类、风机、空⽓压缩机、⼯业电炉等主要终端⽤电设备平均能效⽔平较低,⽤电管理粗放,企业、机关、居民都还存在很多不良消费习惯,节电潜⼒很⼤。

必须⾼度重视节电⼯作,采取节电措施,提⾼电能利⽤效率,降低电⼒消耗。

节约⽤电,是全社会的共同责任。

我们要动员社会各界⼒量,深⼊开展节约⽤电⼯作,以实际⾏动为建设资源节约型社会,促进⼈与⾃然和谐发展做贡献。

⼆、供热系统节能降耗优化措施(通⽤5篇) 在社会发展不断提速的今天,我们可以接触到措施的地⽅越来越多,措施是⼀个汉语词语,意思是针对某种情况⽽采取的处理办法。

我们应当如何写措施呢?下⾯是⼩编为⼤家收集的供热系统节能降耗优化措施(通⽤5篇),欢迎阅读,希望⼤家能够喜欢。

供热系统节能降耗优化措施1 1、热⽹的节能 热⼒供热管⽹的任务是把集中供热系统热源的热量通过管⽹输送到热⼒站或热⽤户,这相当于⾼压电⽹送电,热⽹在热能输送的过程中,如何能⾼效率安全的输送,是集中供热管⽹设计中的⼀个重要问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

供热系统节能技术措施(2021新版)Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management.( 安全管理 )单位:______________________姓名:______________________日期:______________________编号:AQ-SN-0606供热系统节能技术措施(2021新版)1.安装热工仪表,掌握系统的实际运行情况供热系统安装所需的热工仪表是掌握系统运行工况、准确了解和分析系统存在的问题、采取正确方法与措施以达到节能挖潜目的重要手段。

目前热工仪表安装不全、不准的情况比较普遍,因此,必须要按照规定补齐所有热工仪表,并保证仪表的完好和准确。

2.加强锅炉房的运行管理,是投资少、效果显著的节能措施1.司炉人员及水处理人员必须经国家劳动部门或技术监督部门培训并考试合格;2.建立正确、完善、切实可行的运行操作规程;3.锅炉房水处理(包括软化水或脱盐、除氧)设备处理后的水质,必须达到而易见国家规程规定的水质标准,严禁锅炉直接补自来水或河水;4.严格执行定期维修,停炉保养制度,保证设备完好,杜绝跑、冒、滴、漏。

3.采用分层燃烧技术,改善锅炉燃烧状况目前城市集中供热锅炉房多采用链条炉排,燃煤多为煤炭公司供应的混煤,着火条件差,炉膛温度低,燃烧不完全,炉渣含碳量高,锅炉热效率普遍偏低。

采用分层燃烧技术对减少炉渣含碳量、提高锅炉热效率,有明显的效果。

沈阳惠天公司一台10.5MW的热水炉,采用分层燃烧后,热效率由70.2%提高到75.1%,炉渣含碳量由13%下降为10%。

唐山热力公司采用该技术,使锅炉热效率提高10~15%,炉渣含碳量降低至10%以下,而且锅炉燃烧系统的设备故障大大减少,提高了锅炉运行的可靠性和安全性。

对于粉末含量高的燃煤,可以采用分层燃烧及型煤技术。

该技术是将原煤在入料口先通过分层装置进行筛分,使大颗粒煤直接落至炉排上,小颗粒及粉末送入炉前型煤装置压制成核桃大小形状的煤块,然后送入炉排,以提高煤层的透气性,从而强化燃烧,提高锅炉热效率和减少环境污染。

中原油田锅炉燃用鹤壁煤,粉末含量高,Φ<3mm的煤粒约占60~70%,采用此技术后,炉渣含碳量降低到15%以下,锅炉效率提高了8%,烟尘排放达到环保标准,年节煤8~10%。

没有空气予热器的锅炉,因为向炉排上送的是冷风,容易造成大块煤不易烧透,使炉渣含碳量反而略有增加,不宜采用。

4.中小型锅炉采用煤渣混烧、减少炉渣含碳量中小型锅炉、采用煤与炉渣混烧法是一种投入较很小,效果很好的节煤措施。

煤与炉渣的比例约为4:1,充分混合后入炉燃烧,煤中掺了颗粒较大的渣,减少了通风阻力,送风更加均匀,增加了煤层的透气性,提高了燃烧的稳定性,使炉渣含碳量显著下降。

北京市昌平县房管局供暖服务公司,海淀区房屋土地管理局房屋设备经营管理处及天津市房屋供热公司在14MW锅炉上采用煤与渣混烧法后,炉渣含碳量分别下降到3%~8%。

5.改善锅炉系统的严密性,降低过剩空气系数锅炉的过剩空气系数是评价锅炉燃烧状况的一个重要参数,只有过剩空气系数达到设计值时,锅炉才能在最经济的状态下燃烧,因此要采取防止锅炉本体及烟风道渗漏风的措施,改善锅炉及烟风道的严密性,降低过剩空气系数以提高锅炉的效率和出力沈阳惠天公司对锅炉除渣系统进行水封,同时对鼓、引风系统、炉墙、烟道等漏风点封堵后,锅炉热效率由68%提高到76%,过剩空气系数从2.9下降为2.1,锅炉不仅升温快,而且炉渣含碳量也能降到12%以下。

6.保证锅炉受热面的清洁,防止锅炉结垢锅炉的水冷壁、对流管束、省煤器、空气予热器等受热面积灰和锅炉结垢是影响锅炉传热的一个主要因素,据有关试验测定,水垢的热阻是钢板的40倍,灰垢的热阻是钢板的400倍,因此要建立及建全锅炉水质管理和定期的除灰制度,保证锅炉用水的水质和锅炉受热面的清洁,以提高锅炉效率和设备使用寿命。

7.大、中型锅炉采用计算机控制燃烧过程,提高锅炉效率对大中型锅炉房应逐步建立微机系统实现锅炉燃烧过程自动控制。

由于锅炉燃烧过程是一个不稳定的复杂变化过程,各种各样的因素都会引起工况的变化,只有实现锅炉燃烧的自动控制才能达到锅炉的最佳燃烧工况,热效率达到最高。

北京北辰热力厂经过多年努力,采用两台PLC工控机对9台35t/h的蒸汽锅炉进行集中管理,实现锅炉燃烧自动控制。

根据负荷状况,对蒸汽压力、流量、煤量、炉膛温度、排烟温度、烟气含氧量进行综合分析和寻优调整,以达到人工操作难以达到的效果,同时还可以根据煤质的好坏,加湿程度等因素适当调整参数,以达到最佳燃烧工况。

几年来运行工况一直平稳,吨汽标煤耗平均下降9.8kg/t,炉渣含碳量降低1.37%,效果显著。

8.改变大流量、小温差的运行运行方式,提高供水温度和输送效率目前国内供热系统,包括一次水系统和二次水系统都普遍采用大流量小温差的运行方式,实际运行的供水温度比设计供水温度低10~20℃,循环水量增加20~50%。

此种运行状态使循环水泵电耗急剧增加(50%以上)、管网输送能力严重下降、热力站内热交换设备数量增加。

其原因除受热源的限制不能提高供水温度外,主要是因为管网缺乏必要的控制设备,系统存在水力工况失调的问题,为保证不利用户供热而采取的措施。

因此,应该在供热系统增加控制手段,解决了水力工况失调后,将供水温度提高到设计温度或接近设计温度,以提高供热系统的输送效率、节约能源,并为用户扩展打下良好基础。

太原市热力公司在太原第一热电厂供热系统上采用了分阶段改变流量的质调节运行方式,提高了初寒期的热网供水温度,循环水量减少约25%,一个采暖季循环水泵节电近200万度,减少运行费用近83万元。

9.风机、水泵采用调速技术,更换压送能力过大的水泵,节约电能风机、水泵的选择和配置其能力都有一定的富裕度,这是因为:1.风机、水泵选型时要求扬程有一定裕度,而且风机、水泵规格不可能与需要完全一致,一般选型结果都稍大;2.在运行过程中荷载(扬程、流量)常有波动变化,小荷载时风机、水泵的能力会进一步富裕;3.热网建设有一发展过程,循环水量逐年增加,系统满负荷前水泵能力富裕很大。

风机、水泵采用调速技术,可以及时地把流量、扬程调整到需要的数值上,消除多余的电能消耗。

一般都能达到30%以上的节电效果。

长春市热力(集团)有限责任公司,在1997和1998两年内,将58台水泵改造为变频调速泵后,节电率达40~60%,投资回收期为1.2个采暖期;白城热力公司于1999年在43台水泵上加装变频调速装置后,节电率为40~50%,采用调速技术所增加的投资,一般在一个采暖季内通过减少电费支出就能得到回收。

但对压送能力过大的水泵,采用调速技术来降低水泵扬程,将导致水泵在低效区工作,达不到预期的节能效果,因此,应根据实际运行资料的分析更换水泵。

长春市热力(集团)有限责任公司96年更换了5台循环水泵,节电率达40~70%;97、98年进一步更换155台水泵后电耗比改造前下降46.1%,年节电800万度,两年共创经济效益945万元,投资回收期约为0.6个采暖期。

郑州市热力公司96年投资40万元,更换了26台水泵,年节电90万度,节省电费45万元。

目前常用的水泵变速装置有变频器和液力耦合器两种。

采用变频器效率高、调速范围大,但投资费用高且管理比较复杂;采用液力耦合器效率低、调速范围小,但投资费用少且维护简单。

采用何种调速设备、设备功率如何选定、是否需要同时更换风机或水泵,应根据实际情况经技术、经济比较后确定。

10.推广热水管道直埋技术,降低基础投资和运行费用热水管道直埋技术在国内使用已有经验。

《城镇直埋供热管道工程技术规程》(CJJ/T81-98)也已于1999年6月1日起颁布实施。

直埋敷设与地沟敷设比较,不仅具有节省用地、方便施工、减少工程投资(DN≤500,管径越小越明显)和维护工作量小的优点外,由于用导热系数极小的聚氨酯硬质泡沫塑料保温,热损失小于地沟敷设。

尤其是长期运行后,地沟管道的保温层会产生开裂、损坏以及地沟泡水而大幅度增加热损失,而直埋管道不存在上述问题。

根据烟台经济技术开发区热力公司1998年冬季实测结果,DN800地沟管道每公里温降为0.75℃,而DN500直埋管道的温降仅为0.34℃,按同类敷设方式的管道,管径越大温降应越小推算,DN800直埋管道的温降将更小。

建议在DN500以下管道积极推广直埋敷设。

推广时应注意使用符合产品标准的预制保温管和管件,并保证设计和施工的质量。

由于大口径(DN≥600mm)管道直埋的技术数据和使用经验不够,实施时可能会发生问题,使用时要填重。

11.推广管道充水保护技术,防止管道腐蚀国内部分非常年运行的供热系统,采取夏季放水检修,冬季投产前充水的作法。

由于系统放水后不及时充水,空气进入管道而造成管内壁腐蚀。

所以非常年运行的供热系统应积极推广夏季管道充水保护技术,在夏季检修后及时充满符合水质要求的水,既可省去管道投运时的充水准备时间,又可防止管内壁腐蚀。

12.热力站入口装设流量控制设备,解决一次水系统水力失调现象目前,供热系统的一次系统,因通过每个热力站的水量得不到有效地控制而造成的水力失调和能源浪费的现象很严重。

因此应在热力站入口装设流量控制设备以解决一次水系统水力失调问题。

对于当前国内供热系统绝大多数采用的定流量质调节运行方式应装设自力式流量限制器,对于近期即将采用或正在采用的变流量调节的系统应装压差控制器。

八十年代末北京市热力公司在热力站入口加装了流量限制器,在热源能力不增加的条件下供热面积由1304万平方米增加到1610万平方米,节约热能约20%。

天津市热电公司于1994~1996年在第一热电厂热水管网上安装了148台自力式流量限制器,耗热指标由72W/m2降到44.4W/m2,扩大供热面积160万平方米。

中原油田供热管理处98年在基地北区160万平方米供热系统的16座热力站一次网回水管上,投资26万元加装国产自力式流量控制器后,停用了5台燃油锅炉,年节省燃油费用84万元,循环水量由2300t/h下降到2100t/h。

13.热力站(或混水站)安装监控系统、实时调节供给用户的热量为了实现实时控制和调节供给用户的热量,热力站应安装监控系统。

热力站(或混水站)内设有采暖系统、生活热水系统和空调系统,那个系统需要控制,实施什么样的控制水平应根据实际情况确定。

当一、二次系统都为质调节、流量基本不变时,根据二次系统的供回水温度控制一次系统的供水阀门,可以使用手动调节阀,自力式调节阀,对于控制要求高、控制过程复杂的,则应考虑配有电动执行机构的计算机控制装置。

相关文档
最新文档