4-马氏体转变.ppt
合集下载
《马氏体相变》课件

由于外界应力的作用,晶体结构 发生变形,形成弹性变形。
核化和形核
马氏体晶体生长
形核是马氏体相变的起始过程, 晶体结构中形成马氏体的小区域。
形核后的马氏体晶体开始在晶界 上生长,同时产生剩余奥氏体。
相变的影响因素
温度
相变温度是马氏体相变的一 个重要参数,不同温度下会 产生不同的相变行为。
合金化元素
添加合金元素可以调控马氏 体相变的速率和转变温度。
《马氏体相变》PPT课件
相信大家对于马氏体相变并不陌生,但是真正了解它的人却寥寥无几。本课 件将带您深入了解马氏体相变的概述及其形成机理。
马氏体相变的概述
马氏体相变是材料在冷却或应力作用下从奥氏体晶体结构转变为马氏体晶体 结构的过程。这种相变具有显著的物理和机械性能改善效果。
马氏体的形成机理
弹性变形发生
形状记忆合金
马氏体相变可以用于制造形状记 忆合金,可以实现金属材料的形 状记忆和恢复功能。
金属焊接
马氏体相变可以应用于金属焊接, 提高焊接接头的强度和韧性。
相变过程的图解
1
奥氏体
材核化
马氏体晶体开始在晶界上形成小的马氏体区域。
3
马氏体生长
马氏体晶体在晶界上迅速生长,同时奥氏体产生剩余。
总结与展望
马氏体相变具有广泛的应用前景,为材料科学领域带来了新的突破和挑战。未来的研究将致力于探究更高效的 相变控制方法和应用领域的拓展。
晶体结构
晶体结构对于马氏体相变的 发生和转变过程起着重要作 用。
马氏体相变的分类
稳定马氏体相变 非稳定马氏体相变 自适应马氏体相变
通过淬火等方法形成的马氏体相变
通过应力作用下的马氏体相变
通过金属合金中微观结构变化而形成的马氏体相 变
核化和形核
马氏体晶体生长
形核是马氏体相变的起始过程, 晶体结构中形成马氏体的小区域。
形核后的马氏体晶体开始在晶界 上生长,同时产生剩余奥氏体。
相变的影响因素
温度
相变温度是马氏体相变的一 个重要参数,不同温度下会 产生不同的相变行为。
合金化元素
添加合金元素可以调控马氏 体相变的速率和转变温度。
《马氏体相变》PPT课件
相信大家对于马氏体相变并不陌生,但是真正了解它的人却寥寥无几。本课 件将带您深入了解马氏体相变的概述及其形成机理。
马氏体相变的概述
马氏体相变是材料在冷却或应力作用下从奥氏体晶体结构转变为马氏体晶体 结构的过程。这种相变具有显著的物理和机械性能改善效果。
马氏体的形成机理
弹性变形发生
形状记忆合金
马氏体相变可以用于制造形状记 忆合金,可以实现金属材料的形 状记忆和恢复功能。
金属焊接
马氏体相变可以应用于金属焊接, 提高焊接接头的强度和韧性。
相变过程的图解
1
奥氏体
材核化
马氏体晶体开始在晶界上形成小的马氏体区域。
3
马氏体生长
马氏体晶体在晶界上迅速生长,同时奥氏体产生剩余。
总结与展望
马氏体相变具有广泛的应用前景,为材料科学领域带来了新的突破和挑战。未来的研究将致力于探究更高效的 相变控制方法和应用领域的拓展。
晶体结构
晶体结构对于马氏体相变的 发生和转变过程起着重要作 用。
马氏体相变的分类
稳定马氏体相变 非稳定马氏体相变 自适应马氏体相变
通过淬火等方法形成的马氏体相变
通过应力作用下的马氏体相变
通过金属合金中微观结构变化而形成的马氏体相 变
《马氏体相变 》课件

2 条件的作用原理是什么?
马氏体相变的条件是实现马氏体相变的必要 前提,它们直接影响马氏体晶体结构和材料 性能的形成和转化。
马氏体相变的过程
1
马氏体相变的步骤和原理
马氏体相变包括两个基本过程——形变和回复过程,当材料由奥氏体转变为马氏 体时,晶体结构发生相应的改变。
2
过程中有哪些需要注意的地方?
马氏体相变的过程会受到多种因素的干扰,如温度、压力、组织性能等,需要注 意这些影响因素对相变的影响。
应用领域
哪些领域得到应用?
马氏体相变广泛应用于机械、电子、材料等领域, 如机械弹簧、手机天线、记忆合金等。
应用的优势和局限是什么?
马氏体相变具有自修复性、快速响应、压电性、形 状记忆等特性,但仍然存在加工困难和应用的局限 性等问题。
结论和展望
总结发现和成果
本课件详细介绍了马氏体相变的背景、条件、过程和应用,使人们更好地了解该领域的发展 现状。
展望未来的发展前景
马氏体相变技术在自动化、能源、环境等领域有广阔的应用前景,我们期待它能在未来发挥 更大的作用。
参考文献
• 李新. 材料科学[M]. 化学工业出版社, 2013. • 关辰. 马氏体相变的研究进展[C]// 2019第五届全国现代材料学术会议论文集. 2019: 254-259. • 郭宝昌, 焦彦龙. 马氏体晶体几何结构及马氏体相变过程的研究进展[J]. 您刊, 2018, 39(05): 57-63.
马氏体晶体结构
晶结构是什么?
马氏体的晶体结构是单斜晶体结构,其单斜晶体形 状由一维位错和孪晶形成。
性质和特点是什么?
马氏体晶体中存在位形、变形、弹性、能量等多种 耦合,与其他晶体类似,但具有独特的特点和性质。
第四章 马氏体相变

7
Yuxi Chen Hunan Univ.
特征2:马氏体转变的无扩散性
马氏体转变时,晶体点阵的改组只依赖原子微 量的协作迁移,而不依赖于原子的扩散。这一 特征称为马氏体转变的无扩散性。
1)只有晶体结构的变化,没有成分的变化。 2)无扩散并不是说转变时原子不发生移动。
注意间隙原子碳的扩散,区别于置换原子的扩 散。
逆转变开始的温度称为As,结束的温度称为Af 。
M→A的逆转变也是在一定温度范围内(As-Af)进行。 形状记忆合金的热弹性马氏体就是利用了这个特点。
马氏体转变最主要的和最基本的只有两个:切变共格 性和无扩散性。其他的特点可由这两个特点派生出来。
16
Yuxi Chen Hunan Univ.
第二节 马氏体的晶体结构
2、一般钢中马氏体的晶体结构
马氏体转变时只有点阵的改组而无成分的 变化,转变所得的马氏体与其母相奥氏体 的成分一致。
碳原子位于面心立方奥氏体的八面体间隙, 马氏体相变后,碳原子依然位于体心立方 的马氏体八面体间隙,但体心立方马氏体 的八面体是扁八面体,两个轴中有一个轴 是短轴。
终了。
为使转变继续进行,必须继续降低温度,所以马氏体
转变是在不断降温的条件下才能进行。
当温度降到某一温度之下时,马氏体转变已不能进行,
该温度称为马氏体转变终了点,Mf 。
14
Yuxi Chen Hunan Univ.
马氏体转变量是温度的函数,与等温时间无关。
马氏体的降温转变称为马氏体转变的非恒温性。
由于多数钢的 Mf 在室温以下,因此钢快冷到室 温时仍有部分未转变奥氏体存在,称为残余奥 氏体,记为Ar。
有残余奥氏体存在的现象,称为马氏体转变不 完全性。要使残余奥氏体继续转变为马氏体, 可采用冷处理。
热处理原理之马氏体转变

热力学第二定律
马氏体转变过程中,存在熵变,熵变与热力学第二定律有关。
马氏体转变的相变驱动力与热力学关系
温度
温度是影响马氏体转变的重要因素之一 ,温度的升高或降低会影响马氏体的形 成和转变。
VS
应力
应力也是影响马氏体转变的因素之一,应 力可以促进或抑制马氏体的形成和转变。
马氏体转变过程中的热效应与热力学关系
马氏体转变的种类与形态
板条状马氏体
01
02
03
定义
板条状马氏体是一种具有 板条状结构的马氏体,通 常在低合金钢和不锈钢中 形成。
形态
板条状马氏体由许多平行 排列的板条组成,每个板 条内部具有单一的马氏体 相。
特点
板条状马氏体具有较高的 强度和硬度,同时具有良 好的韧性。
片状马氏体
定义
片状马氏体是一种具有片 状结构的马氏体,通常在 高速钢和高温合金中形成 。
这种转变主要在钢、钛、锆等金属及 其合金中发生,常温下不发生马氏体 转变。
马氏体转变的特点
01
马氏体转变具有明显的滞后效应,转变速度与温度 和时间有关。
02
转变过程中伴随着体积的收缩或膨胀,并伴随着能 量的吸收或释放。
03
马氏体转变过程中晶体结构发生改变,但化学成分 基本保持不变。
马氏体转变的应用
06
相关文献与进一步阅读建议
主要参考文献列表
01
张玉庭. (2004). 热处理工艺学. 科学出版社.
02
王晓军, 王心悦. (2018). 材料热处理技术原理与应用. 机械 工业出版社.
03
周志敏, 纪松. (2019). 热处理实用技术与应用实例. 化学工 业出版社.
相关书籍推荐
马氏体转变过程中,存在熵变,熵变与热力学第二定律有关。
马氏体转变的相变驱动力与热力学关系
温度
温度是影响马氏体转变的重要因素之一 ,温度的升高或降低会影响马氏体的形 成和转变。
VS
应力
应力也是影响马氏体转变的因素之一,应 力可以促进或抑制马氏体的形成和转变。
马氏体转变过程中的热效应与热力学关系
马氏体转变的种类与形态
板条状马氏体
01
02
03
定义
板条状马氏体是一种具有 板条状结构的马氏体,通 常在低合金钢和不锈钢中 形成。
形态
板条状马氏体由许多平行 排列的板条组成,每个板 条内部具有单一的马氏体 相。
特点
板条状马氏体具有较高的 强度和硬度,同时具有良 好的韧性。
片状马氏体
定义
片状马氏体是一种具有片 状结构的马氏体,通常在 高速钢和高温合金中形成 。
这种转变主要在钢、钛、锆等金属及 其合金中发生,常温下不发生马氏体 转变。
马氏体转变的特点
01
马氏体转变具有明显的滞后效应,转变速度与温度 和时间有关。
02
转变过程中伴随着体积的收缩或膨胀,并伴随着能 量的吸收或释放。
03
马氏体转变过程中晶体结构发生改变,但化学成分 基本保持不变。
马氏体转变的应用
06
相关文献与进一步阅读建议
主要参考文献列表
01
张玉庭. (2004). 热处理工艺学. 科学出版社.
02
王晓军, 王心悦. (2018). 材料热处理技术原理与应用. 机械 工业出版社.
03
周志敏, 纪松. (2019). 热处理实用技术与应用实例. 化学工 业出版社.
相关书籍推荐
热处理工程基础第四章马氏体转变

直线划痕在倾动面处改变方向,但仍保持连续, 且不发生扭曲。说明马氏体与母相保持切变共格, 惯习面未经宏观可测的应变和转动,即惯习面为 不变平面。
不变平面应变
倾动面一直保持为平面。
发生马氏体转变时,虽发生了变形,但 原来母相中的任一直线仍为直线,任一 平面仍为平面,这种变形即为均匀切变。
M长大到一定程度,A中弹 性应力超过其弹性极限,共格 关系破坏,M停止生长。
Cu-14.2Al-4.2Ni合金的马氏体浮凸
Fe-31%Ni-10%Co-3%Ti alloy
二、马氏体转变的无扩散性
M成分与A成分完全一致;钢中马氏体转变 时无成分变化,仅发生点阵改组。
M可在极低温(例如-196℃)进行,置换原 子、间隙原子都极难扩散,而M生长速度可 达103m/s,音速,不可能依靠扩散来进行。
M—A界面的台阶模型和惯习面
五、马氏体的亚结构
亚结构: M组织内出现的组织结构 低碳M:高密度位错, 高碳M: 细小孪晶; 有色金属M:孪晶或层错。
亚结构的意义:是M的一个重要特征,对力 学性能有直接影响。
六、马氏体转变的可逆性
母相以大于临界冷却速度的冷速(钢中是为了避免P转变) 冷至某一温度以下才能发生M转变,这一温度称为M转变开始 点,以Ms表示。
5016’
奥氏体 (111)面上马氏体的六种不同K-S取向
24种变体
② 西山关系:
{111}γ∥{110}M ; <112>γ∥<110>M
按西山关系,在每个{111}γ面上,马氏 体可能有3种取向,故马氏体共有12种 取 向(变体)。
奥氏体 (111)面上马氏体的三种不同西山取向
③ G-T关系:
倾动面
不变平面应变
倾动面一直保持为平面。
发生马氏体转变时,虽发生了变形,但 原来母相中的任一直线仍为直线,任一 平面仍为平面,这种变形即为均匀切变。
M长大到一定程度,A中弹 性应力超过其弹性极限,共格 关系破坏,M停止生长。
Cu-14.2Al-4.2Ni合金的马氏体浮凸
Fe-31%Ni-10%Co-3%Ti alloy
二、马氏体转变的无扩散性
M成分与A成分完全一致;钢中马氏体转变 时无成分变化,仅发生点阵改组。
M可在极低温(例如-196℃)进行,置换原 子、间隙原子都极难扩散,而M生长速度可 达103m/s,音速,不可能依靠扩散来进行。
M—A界面的台阶模型和惯习面
五、马氏体的亚结构
亚结构: M组织内出现的组织结构 低碳M:高密度位错, 高碳M: 细小孪晶; 有色金属M:孪晶或层错。
亚结构的意义:是M的一个重要特征,对力 学性能有直接影响。
六、马氏体转变的可逆性
母相以大于临界冷却速度的冷速(钢中是为了避免P转变) 冷至某一温度以下才能发生M转变,这一温度称为M转变开始 点,以Ms表示。
5016’
奥氏体 (111)面上马氏体的六种不同K-S取向
24种变体
② 西山关系:
{111}γ∥{110}M ; <112>γ∥<110>M
按西山关系,在每个{111}γ面上,马氏 体可能有3种取向,故马氏体共有12种 取 向(变体)。
奥氏体 (111)面上马氏体的三种不同西山取向
③ G-T关系:
倾动面
热处理工艺学课件--第04章 马氏体转变

n
n n
n
M核等温形成, 并快速长大至极 限尺寸 形核有孕育期 I随ΔT先增后减 转变量有限
自触发形核、瞬时长大(M
第一片马氏体形 成时,激发大量 马氏体转变,并 快速长大至极限 尺寸 爆发完成后,为 使M转变进一步 进行,需再降温
奥氏体的稳定化
n
n n
n
n n n
形态:截面:平直带状;立体:薄板状 亚结构:全孪晶 惯习面:{259}A 位相关系:K-S关系
Fe-31Ni-0.28C合金的薄板状马氏体
薄片状马氏体(ε马氏体)
n
n n n n
与其它类型不同,ε马氏体具有H.C.P.(密 排六方)结构 形态:截面:线状;立体:薄片状 亚结构:层错 惯习面:{111}A 位相关系: <1120>ε∥<110>A 、 {0001}ε∥{111}A
n
惯习面
<0.6% {111}A 0.6~1.4% {225}A 1.4~2.0% {259}A
C% 惯习面
马氏体惯习面示意图
五、马氏体转变的可逆性
n
n n n n
奥氏体冷却→马氏体 马氏体加热→奥氏体(高温稳定相) 转变开始温度:As 转变终了温度:Af 通常As>Ms(后续详细讨论)
§4-3 马氏体的组织形态
Fe-16.4Mn-0.09C合金的薄片状马氏体
影响M形态及内部结构的因素
A中的C%: C%<0.2%:M条;C%>1%:M片;C%∈ (0.2,1.0): M条+ M片 n A中的Me 扩大A相区:促使M片形成;反之促使M条形成 n M形成温度 随T↓,板条状→蝶状→透镜片状→薄板状
n
碳钢M形成特征
马氏体高硬、高强的原因
n n
n
M核等温形成, 并快速长大至极 限尺寸 形核有孕育期 I随ΔT先增后减 转变量有限
自触发形核、瞬时长大(M
第一片马氏体形 成时,激发大量 马氏体转变,并 快速长大至极限 尺寸 爆发完成后,为 使M转变进一步 进行,需再降温
奥氏体的稳定化
n
n n
n
n n n
形态:截面:平直带状;立体:薄板状 亚结构:全孪晶 惯习面:{259}A 位相关系:K-S关系
Fe-31Ni-0.28C合金的薄板状马氏体
薄片状马氏体(ε马氏体)
n
n n n n
与其它类型不同,ε马氏体具有H.C.P.(密 排六方)结构 形态:截面:线状;立体:薄片状 亚结构:层错 惯习面:{111}A 位相关系: <1120>ε∥<110>A 、 {0001}ε∥{111}A
n
惯习面
<0.6% {111}A 0.6~1.4% {225}A 1.4~2.0% {259}A
C% 惯习面
马氏体惯习面示意图
五、马氏体转变的可逆性
n
n n n n
奥氏体冷却→马氏体 马氏体加热→奥氏体(高温稳定相) 转变开始温度:As 转变终了温度:Af 通常As>Ms(后续详细讨论)
§4-3 马氏体的组织形态
Fe-16.4Mn-0.09C合金的薄片状马氏体
影响M形态及内部结构的因素
A中的C%: C%<0.2%:M条;C%>1%:M片;C%∈ (0.2,1.0): M条+ M片 n A中的Me 扩大A相区:促使M片形成;反之促使M条形成 n M形成温度 随T↓,板条状→蝶状→透镜片状→薄板状
n
碳钢M形成特征
马氏体高硬、高强的原因
第五章 马氏体转变PPT课件

编辑版pppt
23
西山关系与K-S关系相比,晶面关系相同,晶向
关系相差5°16’
编辑版pppt
24
(3)G—T关系
1994年,Grenigen与Troiano 在Fe-NiC合金中发现,马氏体与奥氏体的位向接 近K-S关系,但略有偏差,其中晶面差1 度,晶向差2度,称为G-T关系。
{110} αˊ∥{111}γ 差 1° <111> αˊ∥<110>γ 差 2°
2、惯习面
惯习面即马氏体转变的不变平面,总是平行或接近奥氏体的某一晶 面,并随奥氏体中含碳量及马氏体形成温度而变化。马氏体即在此平 面上形成中脊面。
编辑版pppt
13
五、马氏体转变的可逆性:
在某些合金中A冷却时A→M,而重新加热时马氏 体又能M→A,这种特点称为马氏体转变的可逆性。
逆转变开始的温度称为As,结束的温度称为Af 。
编辑版pppt
34
2、片状马氏体
形成片状马氏体的钢和合金:出现于中、高碳 钢中、高Ni的Fe-Ni合金中,WC>1.0% 片状马氏体的形成温度:
MS≈200~100℃(WC≈1.0~1.4%) MS<100℃(WC≈1.4~2.0%)
编辑版pppt
35
(1)显微组织
典型的马氏体组织形态见下图所示:
[110] γ ∥ [ 111] α
[211] γ ∥ [ 110] α
形成温度
M s>350℃
Ms≈ 200~ 100℃
Ms<100℃
合 金 成份 %C
<0.3
1~ 4
0.3~ 1 时 为 混 合 型
1.4~ 2
板 条 体 常 自 奥 氏 体 晶 界 向 晶 内 凸 透 镜 片 状 ( 或 针 状 、 竹 同 左 ,片 的 中 央 有 中 脊 。在 两
第4章 马氏体转变

M转变的表面浮凸
表面浮凸与共格特点
• 表面浮凸说明M是以切变方式进行的 • 是在不变平面上产生的均匀 变平面的距离成正比 • 不变平面可以是相界面(孪晶面)或非相界面 (中脊面) • 界面上原子排列既同于M又同于A-共格界面
三种不变平面应变
M无扩散性
Fe-24Ni-0.8C针状马氏体 x300
高碳M组织
蝶状马氏体
• • • • 形成温度:在板条和透镜M形成温度之间 位相:K-S关系 亚结构:位错 惯习面:两翼 {225} γ ,相交136°, 两翼结合面:{100} γ
薄板M
• • • • 在Ms为-100°C以下,Fe-Ni-C合金中 惯习面{259}γ, 位向关系:K-S 亚结构:孪晶{112}α’
第一节 M转变的主要特征
• • • • • 非恒温性:转变开始点Ms, 终了点Mf 共格性和表面浮凸 无扩散性 位向关系和惯习面 可逆性
M转变的非恒温性
M等温转变曲线
M转变量与温度的关系
爆发式转变时M转变量与温度关系
Fe-23%Ni-3.7%Mn合金M转变动力学曲线
M转变非恒温性的特点
• 无孕育期,在一定温度下转变不能进行 到底。 • 有转变开始和转变终了温度。M转变在 不断降温下进行,转变量是温度的函数 • 有些Ms在0C以下的合金,可能爆发形成 • 有些可能等温形成,但不能转变完全。
K-S关系
M在(111)γ形成时三种不同的西山取向
M转变的可逆性
• 冷却时,高温相可以通过M转变而转变 为M。开始点Ms,终了点Mf • 加热时,M也可通过M转变而转变为高温 相。开始点As,终了点Af
第二节 M转变的晶体学
• M的晶体结构: Fe-C合金M是C在α-Fe中的过饱和固溶体。具有 体心正方点阵 • M的点阵常数与钢中含C量有关: c=a0+αρ a=a0-βρ c/a=1+γρ a0=2.861Å α=0.116±0.002 β =0.113±0.002 γ=0.046±0.001 ρ-钢中M的含C量(wt%)