直线与方程专题复习讲课教案
直线与方程复习优秀教案

直线与方程复习优秀教案教案标题:直线与方程复习教学目标:1.理解直线的定义,能够识别直线的特征和性质。
2.掌握直线的各种表示方法,包括点斜式、一般式和截距式。
3.能够根据给定条件写出直线的方程,并且能够在直线和坐标系中相互转换。
4.能够应用直线的性质和方程解决实际问题。
5.培养学生的逻辑思维、分析问题和解决问题的能力。
教学重点:1.直线的特征和性质。
2.直线的表示方法与转换。
3.直线的方程的写法和应用。
教学难点:1.直线方程的应用。
教学准备:1.教材课件、笔记本电脑以及投影仪。
2.小白板、粉笔、草稿纸和橡皮擦。
3.直线和坐标系的图形素材。
教学过程:一、导入(5分钟)1.引发学生对直线的思考:请学生回答,直线有什么特征和性质?为什么我们要学习直线的方程?2.引入本节课的主要内容:通过讨论学生提出的问题,引导学生了解直线方程的重要性。
二、直线的特征和性质(10分钟)1.讲解直线的定义:直线是由无数个点连在一起形成的。
指出直线的两边无限延伸、不弯曲以及无端点等特征。
2.引导学生找出直线的性质,包括直线的斜率、方向、长度等。
三、直线的表示方法与转换(20分钟)1.介绍直线的表示方法:点斜式、一般式和截距式。
以示意图解释每种表示方法的意义和用法。
2.通过例题的演示,讲解点斜式、一般式和截距式的转换方法。
3.练习:给学生一些小练习,巩固直线表示方法和转换的理解。
四、直线的方程的写法和应用(25分钟)1.讲解直线方程的写法:写出通过给定点的直线方程、写出经过给定两点的直线方程、写出垂直于给定直线的直线方程和写出平行于给定直线的直线方程。
2.引导学生通过例题,练习直线方程的写法。
3.应用:通过实际问题,引导学生运用直线方程解决实际问题。
五、错误分析和答疑(10分钟)1.分析学生在学习过程中产生的常见错误,解释正确的做法。
2.解答学生提出的问题,澄清学生对直线和方程的疑惑。
六、课堂练习(15分钟)1.分发练习题,让学生独立完成。
直线与方程复习 优秀教案

【课题】:《直线与方程》小结与复习【教学目标】:(1)知识与技能:通过小结与复习,帮助学生梳理本章知识内容,掌握本章的基础知识,强化知识间的内在联系;通过例题讲解和进一步的训练,提高学生灵活运用本章知识解决问题的能力.(2)过程与方法:在问题探究的过程中,让学生体会用代数的表达式来研究几何的思想方法,加深对本章知识的理解,培养学生分析问题解决问题的能力。
(3)情感态度与价值观:通过精心设计适宜的教学情境,让学生在师生和谐、互动的氛围中,轻松地、主动地掌握基本知识和基本技能;在问题探究的过程中,培养学生积极进行数学交流、勇于探索的科学精神。
【教学重点】:本章知识内容的梳理以及知识、方法的运用【教学难点】:本章知识的灵活运用【课前准备】:Powerpoint或投影片【教学过程设计】:PB 的倾斜角最大,PC 的倾斜角次之,PA 的倾斜角最小.这点可用三角形的外角性质去帮助理解.设PA 的倾斜角为α1,PC 的倾斜角为α,PB 的倾斜角为α2,α1<α<α2,12,,2παααπ<<,正切函数为增函数。
12tan tan tan ααα<<,∴152k -≤≤-解法二:可以实实在在地去求解,再来判断k 的取值范围.过A 、B 两点的直线为30x y --=,若要使直线y=kx +k +2与线段AB有交点,则方程组302x y y kx k --=⎧⎨=++⎩在[][]0,33,0x y ∈∈-或上有解,得5031k x k --≤=≤-,∴152k -≤≤-【思考】为什么只考虑[]0,3x ∈,是否还应当去考虑[]3,0y ∈-呢?例2.设△ABC 的顶点A(1,3),边AB 、AC 上的中线所在直线的方程分别为210x y -+=,y=1,求△ABC 中AB 、AC 各边所在直线的方程.【讲评】为了搞清△ABC 中各有关元素的位置状况,我们首先根据已知条件,画出单图,帮助思考问题.设AC 的中点为F ,AC 边上的中线BF :y=1.AB 边的中点为E ,AB 边上中线CE :210x y -+=.设C 点坐标为(m ,n).在A 、C 、F 三点中,A 点已知,C 点未知,F 虽为未知但其在中线BF 上,满足y=1这一条件.则12132FFm x n n y+⎧=⎪⎪⇒=-⎨+⎪=⎪⎩∵C 点在中线CE 上,应当满足CE 的方程,则m -2n +1=0.∴m=-3. ∴C 点为(-3,-1).用同样的思路去求B 点:设B 点为(a ,b),显然b=1.又B 点、A 点、E 点中,E 为中点,C 点为(a ,1),131(,)22a E ++即1(,2)2aE +,E 在CE 上,∴1+a4102-+=解得5a =,∴B 点为(5,1). 下面由两点式,就很容易的得到AB ,AC 所在直线的方程 :20,:270AC x y AB x y -+=+-=.〖评析〗这题思路较为复杂,做完后应当从中领悟到两点: (1)中点公式要灵活应用;(2)如果一个点在直线上,则这点的坐标满足这条直线的方程,这观念必须牢牢地树立起来.四、拓展训练1.已知点A(1,1)和点B(3,3),则在x 轴上必存在一点P ,使得从A 出发的入射光线经过点P 反射后经过点B ,点P 的坐标为__________. 2.已知点M (4,2)与N (2,4)关于直线l 对称,则直线l 的方程为对学生运用知识解决问题的能力进行训练,提倡学生进练习与测试1.如果直线0=++C By Ax 的倾斜角为45,则有关系式( )A.B A = B.0=+B A C.1=AB D.以上均不可能 2.直线,031=-+-k y kx 当k 变动时,所有直线都过定点( )A .(0,0)B .(0,1)C .(3,1)D .(2,1)3.过点(1,3)且与原点距离为1的直线有( )A.3条B. 2条C. 1条D. 0条4.设直线0123201832,06232=+-=+-=++y mx y m x y x 和围成直角三角形,则m 的取值是( )A .01或±B .或094-C .941,0或--D .941-或- 5.如果0<ac 且0<bc ,那么直线0=++c by ax 不通过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 6.直线l 与直线0632=-+y x 关于点)1,1(-对称,则直线l 的方程是( )A 、0223=+-y xB 、0732=++y xC 、01223=--y xD 、0832=++y x7.与两平行直线:1l :;093=+-y x l 2:330x y --=等距离的直线方程为 . 8.一束光线从点(1,1)A -出发,经x 轴反射到点(2,3)O ,光线经过的最短路程是 . 9.直线()0232=++-t y x t 不经过第二象限,则t 的取值范围是 .10.已知两直线01012211=++=++y b x a y b x a 和都通过点()3,2P ,则经过两点()()222111,,b a Q b a Q 、的直线方程是 .11.已知直线l 过点(1,2),且与x ,y 轴正半轴分别交于点A 、B (1)求△AOB 面积为4时l 的方程;(2)求l 在两轴上截距之和为+3l 的方程.12.△ABC 中,A (0,1),AB 边上的高线方程为x +2y -4=0,AC 边上的中线方程为2x +y -3=0,求AB ,BC ,AC 边所在的直线方程.答案与解析: 1—6.BCBCCD .7.设所求直线方程为03=+-c y x ,则10|3|10|9|+=-c c ,解得3=c ,故所求直线方程为3x-y+3=0.8.点B (2,3)关于x 轴的对称点是C (2,-3),光线经过的最短路程与A ,C 两点的距离相等,故光线经过的最短路程为5.9.因为直线()0232=++-t y x t 不经过第二象限,所以232--t >0且2t-<0,解得∈t )23,0(. 10.因为两直线01012211=++=++y b x a y b x a 和都通过点()3,2P ,所以013201322211=++=++b a b a 和,即点()()222111,,b a Q b a Q 、的坐标都满足方程2x+3y+1=0,从而经过两点()()222111,,b a Q b a Q 、的直线方程是2x+3y+1=0.11.设直线l 的方程为),1(2-=-x k y k<0,则直线l 在x ,y 轴上的截距分别为k21-,2-k. ① 当△AOB 面积为4时,4)2)(21(21=--k k,解得k=-2,从而直线l 的方程为2x+y-4=0;②当l 在两轴上截距之和为+3(k21-)+(2-k )= +3,解得2-=k ,从而求得直线l 的方程2x-y-2-2=0.12.因为AB 边与AB 边上的高线方程x +2y -4=0垂直,所以由点斜式得AB 边所在的直线方程为x y 21=-,即012=+-y x ;AC 边的中点M 在AC 边上的中线方程2x +y -3=0上,可设)23,(a a M -,则)45,2(a a C -,由点C 在AB 边上的高线方程x +2y -4=0上可求得1=a ,所以C (2,1),又联立AB 边所在的直线方程012=+-y x 和AC 边上的中线方程2x +y -3=0求得)2,21(B ,于是由两点式即可求得BC ,AC 边所在的直线方程0732=-+y x ,y =1.故AB ,BC ,AC 边所在的直线方程分别是012=+-y x ,0732=-+y x ,y =1.。
2023年直线与方程教案高三【精选4篇】

2023年直线与方程教案高三【精选4篇】直线与方程教案高三篇一《直线的方程》教案一、教学目标知识与技能:理解直线方程的点斜式的特点和使用范围过程与方法:在知道直线上一点和直线斜率的基础上,通过师生探讨得出点斜式方程情感态度价值观:养成数形结合的思想,可以使用联系的观点看问题。
二、教学重难点教学重点:点斜式方程教学难点:会使用点斜式方程三、教学用具:直尺,多媒体四、教学过程1、复习导入,引入新知我们确定一条直线需要知道哪些条件呢?(直线上一点,直线的斜率)那么我们能不能用直线上这一点的坐标和直线的斜率把整条直线所有点的坐标应该满足的关系表达出来呢?这就是我们今天所要学习的课程《直线的方程》。
2、师生互动,探索新知探究一:在平面直角坐标系中,直线l过点p(0,3),斜率k=2,q(x,y)是直线l上不同于点p的任意一点,如ppt上图例所示。
通过上节课所学,我们可以得出什么?由于p,q都在这条直线上,我们就可以用这两点的坐标来表示直线l的斜率,可以得出公式:y-3x-0=2 那我们就可以的出方程y=2x+3 所以就有l上的任意一点坐标(x,y)都满足方程y=2x=3,满足方程y=2x+3的每一个(x,y)所对应的点都在直线l上。
因此我们可以的出结论:一般的如果一条直线l上任意一点的坐标(x,y)都满足一个方程,满足该方程的每一个数对(x,y)所确定的点都在直线l上,我们就把这个方程称为l的直线方程,因此,当我们知道了直线上的一点p(x,y),和它的斜率,我们就可以求出直线方程。
3、知识剖析,深化理解我们刚刚知道了如何来求直线方程,那现在同学来做做这一个例子。
设q(x,y)是直线l上不同于点p的任意一点,由于点p,q都在l,求直线的方程。
设点p(x0,,y0),先表示出这个直线的额斜率是y-y0x-x0=k,然后可以推得公式y-y0=k(x-x0)那如果当x=x0,这个公式就没有意义,还有就是分母不能为零,所以这里要注意(x不能等于x0)1)过点,斜率是k的直线l上的点,其坐标都满足方程(1)吗?p(x0,y0)(x0,y0),斜率为k的直线l上吗?2)坐标满足方程(1)的点都在经过p那么像这种由直线上一个点和一个斜率所求的方程,就称为直线方程的点斜式。
直线与直线方程教案

直线与直线方程教案教案标题:直线与直线方程教学目标:1. 理解直线的定义和性质。
2. 掌握直线的方程表示方法。
3. 能够利用直线的方程解决与直线相关的问题。
教学重点:1. 直线的定义和性质。
2. 直线的方程表示方法。
教学难点:1. 利用直线的方程解决与直线相关的问题。
教学准备:1. 教师准备:黑板、白板、彩色粉笔或白板笔、教学投影仪。
2. 学生准备:教科书、练习册、笔、纸。
教学过程:一、导入(5分钟)1. 教师可通过展示一张图片或摆放一些直线的模型来激发学生对直线的兴趣,并引发他们的思考。
2. 引导学生思考:直线有哪些特点?直线有哪些性质?二、讲解直线的定义和性质(15分钟)1. 教师通过示意图和实例,向学生介绍直线的定义和性质,如直线是由无数个点连成的,直线上的任意两点可以确定一条直线等。
2. 教师可通过提问和让学生举例,帮助学生更好地理解直线的定义和性质。
三、讲解直线的方程表示方法(20分钟)1. 教师向学生介绍直线的方程表示方法,包括点斜式、斜截式和截距式等。
2. 教师通过示例,逐步演示如何根据已知条件写出直线的方程,并解释每种表示方法的使用场景和特点。
3. 教师可设计一些练习题,让学生通过实践巩固直线的方程表示方法。
四、练习与巩固(15分钟)1. 学生个别或小组完成教科书上的练习题,巩固直线的定义、性质和方程表示方法。
2. 教师对学生的练习情况进行检查,及时给予指导和反馈。
五、拓展应用(15分钟)1. 教师设计一些与直线相关的实际问题,让学生运用所学的知识解决问题。
2. 学生个别或小组完成拓展应用题,培养学生的问题解决能力和创新思维。
六、总结与反思(5分钟)1. 教师对本堂课的重点内容进行总结,并强调学生需要掌握的关键知识点。
2. 学生对本节课的学习进行反思,提出问题或困惑,并与教师和同学进行讨论。
教学延伸:1. 学生可通过课后阅读相关教材、参考资料,深入了解直线与直线方程的更多知识。
2. 学生可通过练习题或实际问题的解答,进一步提高对直线与直线方程的理解和应用能力。
直线的方程复习课教案8

直线的方程复习课教案一、复习目标(1)掌握直线方程的点斜式、斜截式和直线方程的一般式,并能根据条件熟练地求出直线的方程.(2)理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程.(3)掌握直线方程各种形式之间的互化.二、复习重点:掌握直线方程的点斜式、斜截式,能根据条件熟练求出直线的方程.三、难点:能根据条件熟练求出直线的方程.五、教学过程1、复习直线方程的几种形式:2.应用:例1:一条直线经过点P1(-2,3),倾斜角α=45°求这条直线的方程,并画出图形。
例2.已知A(1,6)、B(-1,-2)、 C(6,3)是三角形的三个顶点,求BC边所在的直线方程.例3、求斜率是5,在y 轴上的截距是4的直线方程。
例4、求与y 轴交于点P(0,6),且倾斜角为45°的直线方程.例5、一条直线经过点A (0,5),倾斜角为0°, 求这直线方程结论:直线l 经过点P 1(x 0,y 0) 与x 轴平行的直线可表示成 。
点斜式、斜截式不能表示与x 轴垂直的直线;与x 轴垂直的直线可表示成 。
例6已知直线 l 1经过点(2,4)且垂直于x 轴,直线l 2 经过点(2,4)且垂直于y 轴,求 l 1、l 2 的方程.。
y x 、的斜率和纵截距求直线例06237=--例8、三角形的三个顶点是A(4,3)、B(0,3)、C(3,-2),求这个三角形三边所在的直线方程.3.巩固:⒈根据下列条件写出直线的方程,并且化成一般式:①斜率是– 1/2,经过点A(8,-2);②经过点B(4,2),平行于X轴;③在X轴和Y轴上的截距分别是3/2,- 3;④经过两点P1(3,-2)P2(5,-4);2.求下列直线的斜率和在Y轴上的截距,并画出图形:①3x+y-5=0 ②x+2y=0③7x-6y+4=0 ④2y-7=04.小结5练习:根据下列条件求直线方程:。
6.[教学设计]必修二第三章直线与方程复习课_数学_高中
![6.[教学设计]必修二第三章直线与方程复习课_数学_高中](https://img.taocdn.com/s3/m/faf8f7c9e009581b6bd9ebe6.png)
直线的方程复习课教学设计一、教材分析本章注意突出解析几何的基本思想“坐标法”:用方程表示直线,运用方程研究直线的位置关系:平行、垂直,以及两条直线的交点、点到直线的距离、两条平行直线之间的距离。
几何问题代数化,用数量关系表示空间形式、位置关系等等。
结合大量的例题,突出用坐标方法解决几何问题的“三部曲”。
重要的数学思想方法不怕重复。
“坐标法”应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。
于是,我们在教学中应注意“数”与“形”的结合,在通过代数方法研究几何对象的位置关系以后,还可以画出其图形,验证代数结果;同时,通过观察几何图形得到的数学结论,对结论进行代数证明,即用解析方法解决某些代数问题,不应割断它们之间的联系,只强调“形”到“数”的方面。
而忽视“数”到“形”的方面。
二、学情分析通过前面内容的学习,学生已经对解析几何这一数学学科有了基本的了解,知道了解析几何是用代数方法研究几何问题。
由于这一节学生基础不是很好,但学习积极性较高,思维活跃,所以教学中既要放手给学生,又要注意引导学生,让学生始终是课堂的主人。
三、教学目标知识与技能:掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、斜截式、两点式、截距式和直线方程的一般式,并能根据条件熟练地求出直线的方程。
过程与方法:理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程。
掌握直线方程各种形式之间的互化。
情感、态度与价值观:通过直线方程一般式的教学培养学生全面、系统、周密的分析、讨论问题的能力。
四、教学重、难点重点:掌握直线方程的五种形式,根据具体条件能求出直线方程。
难点:直线方程特殊形式的限制条件,直线方程的整体结构,对于不同条件的情况下选用不同的方程形式。
五、教学过程1、知识回顾问题1直线的倾斜角①一个前提:直线l与x轴_______;一个基准:取______作为基准;两个方向:x轴正方向与直线l向上方向.②当直线l与x轴平行或重合时,规定:它的倾斜角为_____.问题2直线的斜率(1)定义:直线y=kx+b中的_______ 叫做这条直线的斜率,垂直于x轴的直线斜率不存在;(2)计算公式:若由A(x1,y1),B(x2,y2)确定的直线不垂直于x 轴,则k =_______ .若直线的倾斜角为θ (θ≠π2),则k = _______ 。
直线方程复习教案

教学设计方案姓 名 学生姓名上课时间 辅导科目数学年级课时教材版本课题名称 直线方程复习 教学重点教学难点教 学 及 辅 导 过 程一.基础知识回顾 (1)直线的倾斜角一条直线向上的方向与x 轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x 轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是)0(1800παα ≤≤.注:①当 90=α或12x x =时,直线l 垂直于x 轴,它的斜率不存在.②每一条直线都存在惟一的倾斜角,除与x 轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.(2) 直线方程的几种形式点法向式,点方向式,点斜式、截距式、两点式、斜截式.特别地,当直线经过两点),0(),0,(b a ,即直线在x 轴,y 轴上的截距分别为)0,0(,≠≠b a b a 时,直线方程是:1=+b ya x .附直线系:对于直线的斜截式方程b kx y +=,当b k ,均为确定的数值时,它表示一条确定的直线,如果b k ,变化时,对应的直线也会变化.①当b 为定植,k 变化时,它们表示过定点(0,b )的直线束.②当k 为定值,b 变化时,它们表示一组平行直线.(3)两条直线的位置关系 10两条直线平行1l ∥212k k l =⇔两条直线平行的条件是:①1l 和2l 是两条不重合的直线. ②在1l 和2l 的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.(一般的结论是:对于两条直线21,l l ,它们在y 轴上的纵截距是21,b b ,则1l ∥212k k l =⇔,且21b b ≠或21,l l 的斜率均不存在,即2121A B B A =是平行的必要不充分条件,且21C C ≠)推论:如果两条直线21,l l 的倾斜角为21,αα则1l ∥212αα=⇔l . 20两条直线垂直两条直线垂直的条件:①设两条直线1l 和2l 的斜率分别为1k 和2k ,则有12121-=⇔⊥k k l l 这里的前提是21,l l 的斜率都存在. ②0121=⇔⊥k l l ,且2l 的斜率不存在或02=k ,且1l 的斜率不存在. (即01221=+B A B A 是教 学 及 辅 导 过 程(4)两条直线的交角①直线1l 到2l 的角(方向角);直线1l 到2l 的角,是指直线1l 绕交点依逆时针方向旋转到与2l 重合时所转动的角θ,它的范围是),0(π,当 90≠θ时21121tan k k k k +-=θ.②两条相交直线1l 与2l 的夹角:两条相交直线1l 与2l 的夹角,是指由1l 与2l 相交所成的四个角中最小的正角θ,又称为1l 和2l 所成的角,它的取值范围是 ⎝⎛⎥⎦⎤2,0π,当90≠θ,则有21121tan k k k k +-=θ. (5)点到直线的距离 ①点到直线的距离公式:设点),(00y x P ,直线P C By Ax l ,0:=++到l 的距离为d ,则有2200BA C By Ax d +++=.②两条平行线间的距离公式:设两条平行直线)(0:,0:212211C C C By Ax l C By Ax l ≠=++=++,它们之间的距离2221BA C C d +-=.(6)对称问题:①关于点对称的两条直线一定是平行直线,且这个点到两直线的距离相等.②关于某直线对称的两条直线性质:若两条直线平行,则对称直线也平行,且两直线到对称直线距离相等. 若两条直线不平行,则对称直线必过两条直线的交点,且对称直线为两直线夹角的角平分线.③点关于某一条直线对称,用中点表示两对称点,则中点在对称直线上(方程①),过两对称点的直线方程与对称直线方程垂直(方程②)①②可解得所求对称点.注:①曲线、直线关于一直线b x y +±=对称的解法:y 换x ,x 换y . 例:曲线f(x ,y)=0关于直线y=x –2对称曲线方程是f(y+2 ,x –2)=0.②曲线C: f (x ,y )=0关于点(a ,b)的对称曲线方程是f(a – x, 2b – y)=0.二.范例解析例1.已知直线l 过点P(-1,1)且与A(-2, 3)、B(3,2)为端点的线段相交,试求直线l 倾斜角α的取值范围。
高三数学教案:直线的方程复习教学案

高三数学教案:直线的方程复习教学案
高三数学教案:直线的方程复习教学案
【】鉴于大家对查字典数学网十分关注,小编在此为大家整理了此文高三数学教案:直线的方程复习教学案,供大家参考!
本文题目:高三数学教案:直线的方程复习教学案
盐城市文峰中学美术生高中数学一轮复习教学案
20直线的方程
【考点及要求】:
1.掌握直线方程的各种形式,并会灵活的应用于求直线的方程.
2.理解直线的平行关系与垂直关系, 理解两点间的距离和点到直线的距离.
【基础知识】:
1.直线方程的五种形式
名称方程适用范围
点斜式不含直线x=x1
斜截式不含垂直于x=轴的直线
两点式不含直线x=x1(x1x2)和直线y=y1(y1y2)
截距式不含垂直于坐标轴和过原点的直线
一般式平面直角坐标系内的直线都适用
2.两条直线平行与垂直的判定
3.点A 、B 间的距离: = .
3.点到直线的距离不大于3,则的取值范围为 .
4.直线 , ,若 ,则 .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与方程专题复习专题复习 直线与方程【基础知识回忆】1.直线的倾斜角与斜率 (1)直线的倾斜角①关于倾斜角的概念要抓住三点:ⅰ.与x 轴相交; ⅱ.x 轴正向; ⅲ.直线向上方向. ②直线与x 轴平行或重合时,规定它的倾斜角为 ③倾斜角α的范围 . (2)直线的斜率①直线的倾斜角与斜率是反映直线倾斜程度的两个量,它们的关系是 ②经过两点))(,(),,(21222111x x y x P y x P ≠两点的斜率公式为:=k③每条直线都有倾斜角,但并不是每条直线都有斜率。
倾斜角为 的直线斜率不存在。
2.两直线垂直与平行的判定(1)对于不重合的两条直线21,l l ,其斜率分别为21,k k ,,则有: ⇔21//l l ⇔ ; ⇔⊥21l l⇔ .(2)当不重合的两条直线的斜率都不存在时,这两条直线 ;当一条直线斜率为0,另一条直线斜率不存在时,两条直线 . 3.直线方程的几种形式一般式)0(022≠+=++B A c By Ax注意:求直线方程时,要灵活选用多种形式. 4.三个距离公式(1)两点),(),,(222111y x P y x P 之间的距离公式是:=||21P P . (2)点),(00y x P 到直线0:=++c By Ax l 的距离公式是:=d .(3)两条平行线0:,0:21=++=++c By Ax l c By Ax l 间的距离公式是:=d .【典型例题】题型一:直线的倾斜角与斜率问题例1、已知坐标平面内三点)13,2(),1,1(),1,1(+-C B A .(1)求直线AC BC AB 、、的斜率和倾斜角.(2)若D 为ABC ∆的边AB 上一动点,求直线CD 斜率k 的变化范围.例2、图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则:A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2例3、利用斜率证明三点共线的方法:若A(-2,3),B(3,-2),C(0,m)三点共线,则m的值为 .总结:已知112233(,),(,),(,),A x y B x y C x y 若123AB AC x x x k k ===或,则有A 、B 、C 三点共线。
例4、直线l 方程为02)1(=-+++a y x a ,直线l 不过第二象限,求a 的取值范围。
变式:若0<AC ,且0<BC ,则直线0=++C By Ax 一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限题型二:直线的平行与垂直问题例1、 已知直线l 的方程为01243=-+y x ,求下列直线l '的方程, l '满足(1)过点)3,1(-,且与l 平行;(2)过)3,1(-,且与l 垂直.本题小结:平行直线系:与直线0=++C By Ax 平行的直线方程可设为01=++C By Ax垂直直线系:与直线0=++C By Ax 垂直的直线方程可设为02=+-C Ay Bx变式:(1)过点(1,0)且与直线x-2y-2=0平行的直线方程(2)过点(1,0)且与直线x-2y-2=0垂直的直线方程例2、1l :0)1(=+-+m y mx ,2l :02=-+m my x ,①若1l ∥2l ,求m 的值;②若1l ⊥2l ,求m 的值。
变式:(1)已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( )A. 0B. 8-C. 2D. 10(2)如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a =( )A . -3B .-6C .23-D .32(3)若直线1:10l mx y +-=与2:250l x y -+=垂直,则m 的值是 .题型三:直线方程的求法例1、求过点P (2,-1),在x 轴和y 轴上的截距分别为a 、b,且满足a=3b 的直线方程。
例2、已知ABC ∆三个顶点是)4,1(A -,)1,2(B --,)3,2(C .(1)求BC 边中线AD 所在直线方程;(2)求AC 边上的垂直平分线的直线方程 (3)求点A到BC边的距离.变式:1.倾斜角为45︒,在y 轴上的截距为1-的直线方程是( )A .1y x =+B .1y x =--C .1y x =-+D .1y x =- 2.求经过A (2,1),B (0,2)的直线方程3. 直线方程为02)1(=-+++a y x a ,直线l 在两轴上的截距相等,求a 的方程;4、过P (1,2)的直线l 在两轴上的截距的绝对值相等,求直线l 的方程5、已知直线l 经过点(5,4)P --,且l 与两坐标轴围成的三角形的面积为5,求直线l 的方程.题型四:直线的交点、距离问题例1:点P (-1,2)到直线8x-6y+15=0的距离为( )A .2B .21 C .1 D .27例2:已知点P (2,-1)。
(1)求过P 点且与原点距离为2的直线l 的方程;(2)求过P 点且与原点距离最大的直线l 的方程,最大距离是多少?(3)是否存在过P 点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由。
例3:已知直线1:260l ax y ++=和直线22:(1)10l x a y a +-+-=,(1)试判断1l 与2l 是否平行,如果平行就求出它们间的距离; (2)1l ⊥2l 时,求a 的值。
变式:求两直线:3x-4y+1=0与6x-8y-5=0间的距离 。
题型五:直线方程的应用例1、已知直线0355:=+--a y ax l .(1)求证:不论a 为何值,直线l 总经过第一象限;(2)为使直线不经过第二象限,求a 的取值范围.例2、直线mx-y+2m+1=0经过一定点,则该点的坐标是 ( )A .(-2,1)B .(2,1)C .(1,-2)D .(1,2)圆与方程1. 圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-.特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+.2. 点与圆的位置关系:(1). 设点到圆心的距离为d ,圆半径为r : a.点在圆内d <r ; b.点在圆上d=r ; c.点在圆外d >r(2). 给定点),(00y x M 及圆222)()(:r b y a x C =-+-.①M 在圆C 内22020)()(r b y a x <-+-⇔②M 在圆C 上22020)()r b y a x =-+-⇔(③M 在圆C 外22020)()(r b y a x >-+-⇔(3)涉及最值:① 圆外一点B ,圆上一动点P ,讨论PB的最值min PB BN BC r==- max PB BM BC r ==+② 圆内一点A ,圆上一动点P ,讨论PA的最值min PA AN r AC==-max PA AM r AC==+思考:过此A 点作最短的弦?(此弦垂直AC )3. 圆的一般方程:022=++++F Ey Dx y x . (1) 当0422>-+F E D 时,方程表示一个圆,其中圆心⎪⎭⎫⎝⎛--2,2E D C ,半径2422FE D r -+=.(2) 当0422=-+F E D 时,方程表示一个点⎪⎭⎫⎝⎛--2,2E D .(3) 当0422<-+F E D 时,方程不表示任何图形.注:方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且0422φAF E D -+.4. 直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+-圆心到直线的距离22B A C Bb Aa d +++=1)无交点直线与圆相离⇔⇔>r d ; 2)只有一个交点直线与圆相切⇔⇔=r d ;3)有两个交点直线与圆相交⇔⇔<r d ;弦长|AB|=222d r -还可以利用直线方程与圆的方程联立方程组⎩⎨⎧=++++=++0022F Ey Dx y x C By Ax 求解,通过解的个数来判断:(1)当0>∆时,直线与圆有2个交点,,直线与圆相交; (2)当0=∆时,直线与圆只有1个交点,直线与圆相切; (3)当0<∆时,直线与圆没有交点,直线与圆相离;5. 两圆的位置关系(1)设两圆2121211)()(:r b y a x C =-+-与圆2222222)()(:r b y a x C =-+-, 圆心距221221)()(b b a a d -+-=① 条公切线外离421⇔⇔+>r r d ; ② 条公切线外切321⇔⇔+=r r d ; ③ 条公切线相交22121⇔⇔+<<-r r d r r ; ④ 条公切线内切121⇔⇔-=r r d ; ⑤ 无公切线内含⇔⇔-<<210r r d ;外离 外切 相交 内切 (2)两圆公共弦所在直线方程 圆1C :221110x y D x E y F ++++=, 圆2C :222220x y D x E y F ++++=,则()()()1212120D D xE E yF F -+-+-=为两相交圆公共弦方程.补充说明: ① 若1C 与2C 相切,则表示其中一条公切线方程; ② 若1C 与2C 相离,则表示连心线的中垂线方程.(3)圆系问题过两圆1C :221110x y D x E y F ++++=和2C :222220x y D x E y F ++++=交点的圆系方程为()22221112220x y D x E y F x y D x E y F λ+++++++++=(1λ≠-)补充:① 上述圆系不包括2C ;② 2)当1λ=-时,表示过两圆交点的直线方程(公共弦)③ 过直线0Ax By C ++=与圆220x y Dx Ey F ++++=交点的圆系方程为()220x y Dx Ey F Ax By C λ+++++++=6. 过一点作圆的切线的方程: (1) 过圆外一点的切线: ①k 不存在,验证是否成立②k 存在,设点斜式方程,用圆心到该直线距离=半径,即⎪⎩⎪⎨⎧+---=-=-1)()(2110101R x a k y b R x x k y y求解k ,得到切线方程【一定两解】例1. 经过点P(1,—2)点作圆(x+1)2+(y —2)2=4的切线,则切线方程为 。
(2) 过圆上一点的切线方程:圆(x —a )2+(y —b )2=r 2,圆上一点为(x 0,y 0), 则过此点的切线方程为(x 0—a )(x —a )+(y 0—b )(y —b )= r 2 特别地,过圆222r y x =+上一点),(00y x P 的切线方程为200r y y x x =+.例2.经过点P(—4,—8)点作圆(x+7)2+(y+8)2=9的切线,则切线方程为 。