七年级下册数学计算题和解答题(最新整理)
(完整版)七年级下册数学计算题和解答题

七年级数学下册复习试卷——计算题&解答题姓名__________ 班别___________ 座号___________一、计算题:1、)2()9()3(32422ab b a b a -⋅-÷2、 ()()733222x x x ÷⋅-3、)2()(b a b a -++-4、22(1)3(2)x x x ---+5、,4)12(332312++--x x x 6、)346(21)21(3223223ab b a a ab b a a ++-+-7、(x+2)(y+3)-(x+1)(y-2) 8、22)2)(2(y y x y x ++-9、x(x -2)-(x+5)(x -5) 10、⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛--y x y x 22411、)94)(32)(23(22x y x y y x +--- 12、()()3`122122++-+a a13、()()()2112+--+x x x 14、(x -3y)(x+3y)-(x -3y)215、23(1)(1)(21)x x x +--- 16、22)23()23(y x y x --+17、22)()(y x y x -+ 18、x y y x ÷-+])3[(2219、0.125100×810020、()xyxy xy y x 183********÷--21、3022)2(21)x (4554---÷⎪⎭⎫ ⎝⎛--π-+⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛ 22、(1211200622332141)()()()-⨯+----二、用乘法公式计算下列各题:23、999×1001 24、1992-25、298 26、2010200820092⨯-三、解答题::27、化简求值:)4)(12()12(2+-+-a a a ,其中2-=a 。
28、化简求值2(2)2()()2(3)x y x y x y y x y +--++-,其中12,2x y =-=。
七年级数学下册 专题 解一元一次不等式组(计算题50题)(解析版)

七年级下册数学《第九章不等式与不等式组》专题解一元一次不等式组(计算题共50题)1.(2022秋•越秀区校级期末)解不等式组:5−1>4+2≥2−4.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:5−1>4+2①≥2−4②,由①得:x>3,由②得:x≤4,则不等式组的解集为3<x≤4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.(20231≤3+2.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.1−≤3+2,由3K23>1得x>53,由4x﹣5≤3x+2得x≤7,故不等式组的解集为53<x≤7.【点评】本题考查了解一元一次不等式组.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.3.(20233−1−2<K56.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式5x≥3x﹣1得:x≥−12,解不等式r23−2<K56得:x<3,则不等式组的解集为−12≤x<3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.(20231≤−+1+23.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.1≤−+1①+23②,由①得:x≤23,由②得:x>﹣1,则不等式组的解集为﹣1<x≤23.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.(2023•陕西模拟)解不等式组:2+5≤3(+2)−1<2.【分析】分别解两个不等式,然后根据大小小大中间找确定不等式组的解集.【解答】解:2+5≤3(+2)①−1<2②,解不等式①得:x≥﹣1,解不等式②得:x<3,∴不等式组的解集为:﹣1≤x<3.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分得到不等式组的解集.6.(2023•安徽模拟)解不等式组2+1≤4−−1<32.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:2+1≤4−s−1<32②,由①得x≤1,由②得:x>﹣2,则不等式组的解集为﹣2<x≤1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.(2023≥+1≤.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由3x﹣5≥x+1,得:x≥3,由3K42≤x,得:x≤4,则不等式组的解集为:3≤x≤4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.(2023−3)≤−1>0.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.−3)≤s−1>0②,解不等式①得:x≥113,解不等式②得:x>3,则不等式组的解集为x≥113.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(2023−1)≤4−1.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式①得:≥−12,不等式②得:x<4,∴不等式组的解集为:−12≤<4.【点评】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.10.(20233≤13−2<−1.【分析】先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可.3≤13①−2<−1②,由①得x≤2,由②得x>﹣2,∴不等式组的解集为﹣2<x≤2.【点评】本题主要考查解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.(2023+2)≥2+51<K22并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,将解集表示在数轴上,根据数轴求得不等式的解集即可求解.【解答】解:解不等式①得,x≥﹣1,解不等式②得,x>0,所以不等式组的解集为x>0.这个不等式组的解集在数轴上表示如图:【点评】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,数形结合是解题的关键.12.(20232)>8+9①2>r23②.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式①,得:x<32,解不等式②,得:x>﹣5,则不等式组的解集为﹣5<x<32.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.(2023−7<3(+1)−1≥7−32.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.−7<3(+1)①−1≥7−32t,解不等式①得:x<5,解不等式②得:x≥4,则不等式组的解集为4≤x<5.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.(2023•碑林区校级三模)解不等式组:2(−2)≤3−1−2r13>+1.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:2(−2)≤3−①1−2r13>+1②,解①得:x≤73,解②得x<−15.故不等式组的解集是:x<−15.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,15.(2023−1)<72≥.【分析】先解每个不等式,再求两个不等式解集的公共部分即可.−1)<7①+2≥t,解不等式①得,x<3,解不等式②得,x≤2,∴不等式组的解集为x≤2.【点评】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的步骤是解题的关键.16.(2023•香洲区校级一模)解不等式组:4−2≤3(+1)①1−K12<4②.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:由①得x≤5,由②得x>2,故不等式组的解集为2<x≤5.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.(20231<−+21+23.【分析】分别将每个一元一次不等式求解,然后求出公共解集即可.【解答】解:解不等式2x﹣1<﹣x+2,得x<1,解不等式K12<1+23,得x>﹣5,故不等式组的解集是:﹣5<x<1.【点评】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(20232≥4+1K32+1.【分析】分别解两个不等式,求解集的公共部分即可.2≥4+1①K32+1②解不等式①得:x≥﹣1,解不等式②得:x<3.∴不等式组的解集为﹣1≤x<3.【点评】本题考查解一元一次不等式组,解题关键是熟练掌握解一元一次不等式的步骤.19.(20233)<41≤2r13.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.3)<4s−1≤2r13②,由①得:x>﹣3,由②得:x≤1,∴不等式组的解集为﹣3<x≤1.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.20.(20231≤7−32K12+1.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后写出相应的整数解即可.1≤7−32①K12+1②解不等式①,得:x≤4,解不等式②,得:x>﹣1,∴不等式组的解集是﹣1<x≤4.【点评】本题考查解一元一次不等式组,熟练掌握解一元一次不等式的方法是解答本题的关键.1.(2023•河北区一模)解不等式组2>−4①+3≤5②.请结合解题过程,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【分析】根据解一元一次不等式组的方法,可以解答本题.【解答】解:2>−4①+3≤5②,解不等式①,得x>﹣2,解不等式②,得x≤2,把不等式①和②的解集在数轴上表示出来:故原不等式组的解集为﹣2<x≤2.故答案为:x>﹣2,x≤2,﹣2<x≤2.【点评】本题考查了解一元一次不等式组、在数轴上表示不等式组的解集,掌握解一元一次不等式组的方法是关键.2.(2023•河西区模拟)解不等式组+5≥4,①4≥7−6.②请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:+5≥4①4≥7−6②,解不等式①,得x≥﹣1,解不等式②,得x≤2,把不等式①和②的解集在数轴上表示出来:∴原不等式组的解集:﹣1≤x≤2.故答案为:x≥﹣1;x≤2;﹣1≤x≤2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.(2023<7①2≥+1②请按下列步骤完成解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:(1)解不等式①,得x<4;(2)解不等式②,得x≥3;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为3≤x<4,故答案为:x<4,x≥3,3≤x<4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.(2023•南昌模拟)解不等式组3<92>−3+5,并将解集在数轴上表示出来.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示出其解集即可.【解答】解:解不等式3x<9可得:x<3;解不等式2x>﹣3x+5可得:x>1;故原不等式组的解集是1<x<3.其解集在数轴上表示如下所示:.【点评】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式的方法.5.(2023+3>−K13≤1,并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由2x+3>x得:x>﹣3,由2−K13≤1得:x≤4,则不等式组的解集为﹣3<x≤4,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.(2023春•东台市月考)解不等式组并将其解集在数轴上表示:3−2<42(−1)≤3+1.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:3−2<4①2(−1)≤3+1②,由①得:x<2,由②得:x≥﹣3,则不等式组的解集为﹣3≤x<2..【点评】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.7.(20232>3(−1)≤7−,并把解集在数轴上表示出来.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.2>3(−1)①≤7−t,解不等式①得:x>−12,解不等式②得:x≤5,∴不等式组的解集为:−12<x≤5,在数轴上表示不等式组的解集为:.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集求出不等式组的解集.8.(2023•鼓楼区校级模拟)解不等式组,并把它的解集表示在数轴上:−1)≤3(1+p①−K12②.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式①得:x≤5,解不等式②得:x>﹣1,则不等式组的解集为﹣1<x≤5,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(2023<6K12,并把它的解集在数轴上表示出来.【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.<6①K12②,由①得,x<1,由②得,x>﹣1,故不等式组的解集为﹣1<x<1,在数轴上表示为:【点评】本题考查的是解一元一次不等式组及在数轴上表示不等式组的解集,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解题的关键.10.(2023>3(−1).【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解;解不等式5x+3>3(x﹣1),得:x>﹣3,解不等式8r29>,得x<2,则不等式组的解集为﹣3<x<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.(2023•蜀山区校级模拟)解不等式组:3−1≥+1+4<4−2.并在数轴上表示它的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由3x﹣1≥x+1得:x≥1,由x+4<4x﹣2得:x>2,则不等式组的解集为x>2,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.(20234≥2−1,并将解集在数轴上表示出来.【分析】分别计算出方程组中两个不等式的解集,两个解集的公共部分就是不等式组的解集.4≥2−1①②解不等式①,得:x<﹣1;解不等式②,得:x≤3;在数轴上表示为:∴这个不等式组的解集为x<﹣1.【点评】此题考查一元一次不等式组的解集,在数轴上表示不等式的解集,解题关键在于掌握运算法则.13.(2023−3<4s14≤r12②,并把它的解集在数轴上表示出来.【分析】先求出不等式组的解集,然后根据数轴上不等式组的解集表示出来即可.−3<4①14≤r12②,解不等式①,得:x<3,解不等式②,得:x≥﹣2,∴该不等式组的解集为:﹣2≤x<3,把该不等式组的解集在数轴上表示为:【点评】本题考查了一元一次不等式组的解法以及数轴上表示不等式的解集,解题关键是熟练掌握确定不等式组解集的口诀:同大取大、同小取小、大小小大中间找、大大小小找不到.14.(2022−1<3(−1)K22≥13,并把解集在数轴上表示出来.【分析】首先解每一个不等式,求得每一个不等式的解集,即可求得该不等式组的解集,再在数轴上表示出来即可.【解答】解:由5x﹣1<3(x﹣1)得:5x﹣1<3x﹣3,解得x<﹣1,由23−K22≥13得:4x﹣3x+6≥2,解得x≥﹣4,故原不等式组的解集为﹣4≤x<﹣1,把解集在数轴上表示出来,如下图:【点评】此题主要考查了解一元一次不等式组,关键是正确掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.在数轴上表示解集时,“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.15.(20231)<3−2①1≤r22②并将其解集在数轴上表示出来.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示出其解集即可.1)<3−2①−1≤r22②,解不等式①,得:x<2,解不等式②,得:x≥﹣6,∴原不等式组的解集是﹣6≤x<2,其解集在数轴上表示如下:.【点评】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式的方法.1.(20233)≤−4在数轴上表示出它的解集,并求出它的整数解.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分求出不等式组的解集,进而求出整数解即可.3)≤−4①t ,由①得:x ≤2,由②得:x >﹣2,∴不等式组的解集为﹣2<x ≤2,解集表示在数轴上,如图所示:则不等式组的整数解为﹣1,0,1,2.【点评】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.2.(2023•鼓楼区一模)解不等式组4(−1)>3−22−3≤5,并写出该不等式组的整数解.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定整数解即可.【解答】解:4(−1)>3−2①2−3≤5②,解①得x >2,解②得x ≤4.则不等式组的解集是:2<x ≤4.则整数解是:3,4.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.3.(2022秋•道县期末)解不等式组3−2<4①2(−1)≤3+1②,并求出它的非负整数解.【分析】【先分别解不等式,求出不等式组的解集,然后找出负整数解.【解答】解:解①得:x<2,解②得:x≥﹣3,∴不等式组的解集为﹣3≤x<2,∴不等式组的非负整数解为0,1.【点评】本题考查了解一元一次不等式组,解题关键是求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小无解了.4.(2022≤3(+1)≥−1的最大整数解.【分析】先求出不等式组的解集,再求出最大整数解即可.【解答】解:由5x﹣1≤3(x+1),得:x≤2;由1+23≥−1,得:x≤4;∴不等式组的解集为:x≤2,∴不等式组的最大整数解为:2.【点评】本题考查求不等式组的整数解.正确的求出不等式组的解集,是解题的关键.5.(2022秋•湘潭县期末)求不等式组4−7<5(−1)2≤18−3+7的正整数解.【分析】先求出不等式组的解集,再求出正整数解即可.【解答】解:4−7<5(−1)①2≤18−3+7②,解不等式①得:x>﹣2,解不等式②得:x≤5,∴不等式组的解集为:﹣2<x≤5,其中正整数解是1,2,3,4,5.【点评】本题考查了解不等式组及不等式组的解集,熟练掌握不等式组的解法是解决问题的关键.6.(2023•长清区校级开学)解不等式组:2+>7−4<4+2,并求出所有整数解的和.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由2+x>7﹣4x,得:x>1,由x<4+2,得:x<4,则不等式组的解集为1<x<4,所有整数解的和为2+3=5.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.(2023−1)≥1−1,并写出它的所有非负整数解.【分析】分别求出两个不等式的解集,然后求出两个解集的公共部分,再写出范围内的非负整数解即可.−1)≥1①−1②,解不等式①得,x≤1,解不等式②得,x>﹣3,所以不等式组的解集是﹣3<x≤1,所以不等式组的非负整数解是0、1.故答案为:0、1.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).8.(2022秋•鄞州区期末)解不等式组:−4<2+3−2≤1,并求出所有满足条件的整数之和.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由x﹣4<2x,得x>﹣4,由x+3−2≤1,得:x≤﹣1,则不等式组的解集为﹣4<x≤﹣1,不等式组的整数解的和为﹣3﹣2﹣1=﹣6.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(2023−2)>4≥3r26−1并写出该不等式组的最小整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由x﹣3(x﹣2)>4,得:x<1,由2K13≥3r26−1,得:x≥﹣2,则不等式组的解集为﹣2≤x<1,∴该不等式组的最小整数解为﹣2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.(2023−1)≥1−5r12<1,并写出它的整数解.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,进而求出整数解即可.−1)≥1①−5r12<1②,由①得:x≤1,由②得:x>﹣1,∴不等式组的解集为﹣1<x≤1,则不等式组的整数解为0,1.【点评】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.11.(2022+22r15,并直接写出这个不等式组的所有负整数解.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后即可写出这个不等式组的所有负整数解.+2①2r15②,解不等式①,得:x<1,解不等式②,得:x>﹣3,∴该不等式组的解集为﹣3<x<1,∴这个不等式组的所有负整数解是﹣2,﹣1.【点评】本题考查解一元一次不等式组、一元一次不等式组的整数解,解答本题的关键是明确解一元一次不等式的方法.12.(2022春•大兴区校级期中)解不等式组4(+1)≤7+10−5<K83,并求出这个不等式组的所有的正整数解.【分析】求出每个不等式的解集,根据找不等式组解集的规律找出即可.【解答】解:4(+1)≤7+10①−5<K83②,解不等式①得:x≥﹣2,解不等式②得:x<72,所以不等式组的解集为:−2≤<72,所以不等式组的所有正整数解为:1,2,3.【点评】本题考查了一元一次不等式组的整数解的应用,关键是能根据不等式的解集找出不等式组的解集.13.(2023−5r12≤1<3(+1),在数轴上表示它的解集,并写出它的最大整数解和最小整数解.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.−5r12≤1①<3(+1)②,∵解不等式①得:x≥﹣1,解不等式②得:x<2,∴不等式组的解集为:﹣1≤x<2,在数轴上表示不等式组的解集为:,∴不等式组的最大整数解为:1,最小整数解为:﹣1.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,解题的关键是掌握不等式组的解法.14.(2022•会东县校级模拟)解不等式组3(−1)<5+1(−1)≥2−4并求它的所有的非负整数解.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定非负整数解即可.【解答】解:3(−1)<5+1①(−1)≥2−4②,解①得x>﹣2,解②得x≤3.则不等式组的解集是:﹣2<x≤3.则非负整数解是:0,1、2、3.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.(2023•鼓楼区模拟)解关于x的不等式组:4(+1)≤7+102−3<K12,并求出它所有整数解的和.【分析】先求出两个不等式的解集,再求其公共解,然后写出范围内的整数求其和即可.【解答】解:4(+1)≤7+10①2−3<K12②,解不等式①得,x≥﹣2,解不等式②得,x<53,所以不等式组的解集为﹣2≤x<53,所以原不等式组的整数解是﹣2、﹣1、0、1,所以所有整数解的和为﹣2.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).。
最新人教版初中数学七年级下册第8章《二元一次方程组》单元测试及答案(1)

人教版七年级数学下册第八章 二元一次方程组 单元测试卷一、选择题(共 10 小题,每题 3 分,共 30 分) 1. 以下各方程组中,属于二元一次方程组的是()3x 2y 72x y 1xy 15 y 1C .32D . x 3 2A .5B .2xyx z3x 4 y 2x 2 y 32 方程组3x 2 y 7).4x y 的解是(13x 1 B .x 3 x3 x 1A .3y-1C .1D .-3yyy 3.假如 2x-7y=8, 那么用含 y 的代数式表示x 正确的选项是()8 2 xB . y2x 8C . x8 7 yD . x8 7yA . y7722x 3是二元一次方程 3xmy 5 的一组解,则 m 的值为 ()4.已知2 yA . -2B . 2C . -0.5D . 0.55. 方程 2 x y 8 的正整数解的个数是()A . 4B . 3C . 2D . 16. 若方程 ax3y2x 6 是对于 x , y 的二元一次方程,则a 一定知足()A. a ≠ 2B. a ≠-2C. a=2D. a=07.若 3x 2 y 7 0 ,则 6 y 9x 6 的值为 ()A . 15B . -27C . -15D .没法确立x 2 ax by 5b 的值是 (8.已知是方程组bx ay的解,则 a)y11A. -1B. 2C. 3D. 49.假如方程 x 2y 4,2 xy7, y kx 9 0 有公共解,则 k 的解是()A .-3B . 3C .6D . -610. 甲、乙两人练习跑步,假如乙先跑 10 米,则甲跑 5 秒便可追上乙;假如乙先跑 2 秒,则甲跑 4 秒便可追上乙,若设甲的速度为 x 米 /秒,乙的速度为 y 米 /秒,可列方程组正确的选项是()5x 5 y 10B .5x5y105x+10 5 y5x 5 y 10A .C.D.4x 2 4y 4x 4 y 2 y4x 2 y 4 y4x 4 y 2二、填空题(每题 3 分,共 18 分)11.已知方程5x3y40 ,用含x的代数式表示y 的形式,则 y=__________________ 。
最新北师大版七年级下册数学期末复习计算题练习试题以及答案

七年级下册计算题练习试题一、选择题。
1、下列计算正确的是( )A 、623x x x =•B 、22x 2x 2=)(C 、623x x =)(D 、4x x 5=-2、下列计算正确的是( )A 、933a a a =•B 、224a a a =÷)(﹣C 、632a 2a 2﹣)(﹣=D 、422a 3a a 2=+ 3、若关于x 2-2(k -1)x+9是完全平方式,则k 等于( )。
A 、±1 B 、±3 C 、﹣1或3 D 、4或﹣24、在多项式中,与﹣x -y 相乘的结果是x 2-y 2的多项式是( ) A 、﹣x+y B 、x+y C 、x -y D 、﹣x -y5、下列计算正确是( )A 、22a 6a 3=)(B 、1052a a a =•C 、1234x x =)(D 、326a a a =÷ 6、下列计算正确的是( )A 、a a a 23=÷B 、923a 4a 2=)(C 、4a 2a 22-)-(=D 、523a a a =+ 7、下列计算正确的是( )A 、1055a a a =+B 、623a a a =•C 、67a a a =÷D 、33x 2x 2=)( 8、下列计算正确的是( )A 、532x x x =+B 、632x x =)(﹣C 、236x x x =÷D 、632x x x =• 9、下列运算正确的是( )A 、222a 2a a 3=-B 、326a a a =÷C 、623a a a =•D 、532a a =)( 10、下列计算正确的是( )A 、222y x y x +=+)(B 、633x x x =•C 、326x x x =÷D 、422x 6x 3=)(11、下列计算正确的是( )A 、a 12a 4a 3=•B 、326a a a =÷C 、1243a a =)(﹣D 、1243a a a =•12、已知a+b=5,ab=3,则22b a +等于( ) A 、6 B 、8 C 、19 D 、25 13、下列计算正确的是( )A 、1x 41x 222+=+)(B 、4842b a 8b a 2=)(﹣C 、6x 63x 22x 32-))(-(=+D 、222a 8a 4a 4=+14、下列计算正确的是( )A 、3a 422=-aB 、222x y x y +=+)(C 、m m3m 4y y y =÷)()(D 、842x 12x 6x 2=• 二、填空题。
北师大版七年级数学下册第一章第2节幂的乘方与积的乘方练习题(附答案)

北师大版七年级数学下册第一章第2节幂的乘方与积的乘方练习题(附答案)班级________姓名________学号________评价等次________一、选择题1. 计算(23)2015×(32)2016的结果是( )A. 23B. −23C. 32D. −322. (−a 5)2+(−a 2)5的结果是( )A. 0B. −2a 7C. 2a 10D. −2a 10 3. 如果a =355,b =444,c =533,那么a 、b 、c 的大小关系是( )A. a >b >cB. c >b >aC. b >a >cD. b >c >a4. 已知2a =5,2b =10,2c =50,那么a 、b 、c 之间满足的等量关系不成立的是( ) A. c =2b −1 B. c =a +bC. b =a +1D. c =ab5. 下列运算错误的是( )A.B. (x 2y 4)3=x 6y 12C. (−x)2·(x 3y)2=x 8y 2D.6. 下列各式中:(1)−(−a 3)4=a 12;(2)(−a n )2=(−a 2)n ;(3)(−a −b)3=(a −b)3;(4)(a −b)4=(−a +b)4正确的个数是( ) A. 1个 B. 2个 C. 3个 D. 4个 7. 下列运算正确的是( )A. a 2⋅a 3=a 6B. (−a 2)3=−a 5C. a 10÷a 9=a(a ≠0)D. (−bc)4÷(−bc)2=−b 2c 2 8. 下列运算正确的是( )A. x 2+x 3=x 5B. (−2a 2)3=−8a 6C. x 2⋅x 3=x 6D. x 6÷x 2=x 39. 计算(x 2y)3的结果是( )A. x 6y 3B. x 5y 3C. x 5yD. x 2y 310. 已知a =96,b =314,c =275,则a 、b 、c 的大小关系是( )A. a >b >cB. a >c >bC. c >b >aD. b >c >a 11. 下列运算中,正确的是( )A. 3x 3⋅2x 2=6x 6B. (−x 2y)2=x 4yC. (2x 2)3=6x 6D. x 5÷12x =2x 4 12. 下列运算正确的是( )A. a 3⋅a 3=2a 6B. a 3+a 3=2a 6C. (a 3)2=a 6D. a 6⋅a 2=a 3 13. 已知32m =8n ,则m 、n 满足的关系正确的是( ) A. 4m =n B. 5m =3n C. 3m =5n D. m =4n 14. 化简(2x)2的结果是( )A. x 4B. 2x 2C. 4x 2D. 4x 15. 已知5x =3,5y =2,则52x−3y =( )A. 34 B. 1 C. 23 D. 98 16. 计算3y 3⋅(−y 2)2⋅(−2y)3的结果是( )17.计算:(−2)2015⋅(12)2016等于()A. −2B. 2C. −12D. 1218.计算(−513)3×(−135)2所得结果为()A. 1B. −1C. −513D. −13519.计算(−x3y)2的结果是()A. −x5yB. x6yC. −x3y2D. x6y220.下列运算错误的是()A. −m2⋅m3=−m5B. −x2+2x2=x2C. (−a3b)2=a6b2D. −2x(x−y)=−2x2−2xy二、计算题21.计算: (1)(−a3)4⋅(−a)3(2)(−x6)−(−3x3)2+8[−(−x)3]2(3)(m2n)3⋅(−m4n)+(−mn)2三、解答题22.已知272=a6=9b,求2a2+2ab的值.23.若x=2m+1,y=3+4m.(1)请用含x的代数式表示y;(2)如果x=4,求此时y的值.答案和解析1.【答案】C【解析】【分析】将原式拆成(23)2015×(32)2015×32=(23×32)2015×32即可得出答案. 【解答】解:原式=(23)2015×(32)2015×32=(23×32)2015×32=32.故选C . 2.【答案】A【解析】【分析】此题主要考查了幂的乘方运算和合并同类项,幂的乘方法则是:底数不变,指数相乘. 直接利用幂的乘方运算法则计算出结果,然后再合并同类项即可. 【解答】解:(−a 5)2+(−a 2)5 =a 10−a 10 =0. 故选A . 3.【答案】C【解析】【分析】本题考查了幂的乘方,关键是掌握a mn =(a n )m .根据幂的乘方得出指数都是11的幂,再根据底数的大小比较即可. 【解答】解:a =355=(35)11=24311, b =444=(44)11=25611, c =533=(53)11=12511, ∵256>243>125, ∴b >a >c . 故选C . 4.【答案】D【解析】【分析】本题考查了幂的乘方和积的乘方、同底数幂的乘法,解答本题的关键是掌握各知识点的运算法则.根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,依此即可得到a 、b 、c 之间的关系. 【解答】解:∵22b−1=102÷2=50=2c , ∴2b −1=c ,故A 正确; ∵2a =5,2b =10,∴2a ×2b =2a+b =5×10=50, ∵2c =50,∴a +b =c ,故B 正确; ∵2a+1=5×2=10=2b , ∴a +1=b ,故C 正确; ∴错误的为D . 故选D . 5.【答案】D【解析】【分析】本题考查积的乘方与幂的乘方运算法则以及单项式乘以单项式的法则,掌握这些法则是解决问题的关键.运用这些法则逐一判断即可.解:A.(−2a2b)3=−8a6b3,本选项正确,不符合题意;B.(x2y4)3=x6y12,本选项正确,不符合题意;C.(−x)2⋅(x3y)2=x2⋅x6y2=x8y2,本选项正确,不符合题意;D.(−ab)7=−a7b7,本选项错误,符合题意.故选D.6.【答案】A【解析】解:(1)−(−a3)4=−a12,故本选项错误;(2)(−a n)2=(a2)n,故本选项错误;(3)(−a−b)3=−(a+b)3,故本选项错误;(4)(a−b)4=(−a+b)4,正确.所以只有(4)一个正确.故选A.根据幂的运算性质对各选项进行逐一计算即可判断.本题主要利用:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数以及幂的乘方的性质,需要熟练掌握并灵活运用.7.【答案】C【解析】【分析】本题考查了同底数幂的乘法、除法、积的乘方和幂的乘方,掌握运算法则是解题的关键.根据同底数幂的乘法、除法、积的乘方和幂的乘方进行计算即可.【解答】解:A、a2⋅a3=a5,故A错误;B、(−a2)3=−a6,故B错误;C、a10÷a9=a(a≠0),故C正确;D、(−bc)4÷(−bc)2=b2c2,故D错误;故选C.8.【答案】B【解析】【分析】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.根据同类项的定义,幂的乘方以及积的乘方,同底数的幂的乘法与除法法则即可作出判断.【解答】解:A.不是同类项,不能合并,故选项错误;B.正确;C.x2⋅x3=x5,故选项错误;D.x6÷x2=x4,故选项错误.故选B.9.【答案】A【解析】【分析】本题考查了积的乘方和幂的乘方,属于基础题.积的乘方等于积中各个因式分别乘方,然后再将所得的幂相乘,解答此题根据积的乘方的法则计算即可.解:(x2y)3=(x2)3y3=x6y3.故选A.10.【答案】C【解析】解:∵a=96=(32)6=312,b=314,c=275=(33)5=315,∴a<b<c,故选:C.根据幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数)分别计算得出即可.此题主要考查了幂的乘方计算,熟练掌握运算法则是解题关键.11.【答案】D【解析】解:A、3x3⋅2x2=6x5,故选项错误;B、(−x2y)2=x4y2,故选项错误;C、(2x2)3=8x6,故选项错误;x=2x4,故选项正确.D、x5÷12故选:D.根据整式的除法,幂的乘方与积的乘方,以及单项式乘单项式的方法,逐项判定即可.此题主要考查了整式的除法,幂的乘方与积的乘方,以及单项式乘单项式,解答此题的关键是熟练掌握整式的除法法则:(1)单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.(2)多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.12.【答案】C【解析】【分析】此题主要考查了同底数幂的乘法,幂的乘方,合并同类项等知识,正确掌握运算法则是解题关键.分别利用同底数幂的乘法运算法则,幂的乘方运算法则,合并同类项法则对各选项进行运算,即可判断结果.【解答】解:A.a3·a3=a3+3=a6,故此选项错误;B.a3+a3=2a3,故此选项错误;C.(a3)2=a 2×3=a6,故此选项正确;D.a6·a2=a6+2=a8,故此选项错误.故选C.13.【答案】B【解析】解:∵32m=8n,∴(25)m=(23)n,∴25m=23n,∴5m=3n.故选:B.直接利用幂的乘方运算法则将原式变形,进而得出答案.此题主要考查了幂的乘方运算,正确掌握运算法则是解题关键.14.【答案】C【解析】解:(2x)2=4x2,故选:C.利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.此题主要考查了积的乘方,关键是掌握计算法则.15.【答案】D【解析】解:∵5x=3,5y=2,∴52x=32=9,53y=23=8,∴52x−3y=52x53y =98.故选:D.首先根据幂的乘方的运算方法,求出52x、53y的值;然后根据同底数幂的除法的运算方法,求出52x−3y的值为多少即可.此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.16.【答案】A【解析】【分析】此题考查了积的乘方和幂的乘方以及单项式乘以单项式,熟练掌握运算法则是解本题的关键.原式先利用幂的乘方与积的乘方运算法则计算,再利用单项式乘以单项式法则计算即可得到结果.【解答】解:原式=3y3×y4×(−8y3)=−24y10.故选A.17.【答案】C【解析】解:(−2)2015⋅(12)2016=[(−2)2015⋅(12)2015]×12=−12.故选:C.直接利用同底数幂的乘法运算法则将原式变形进而求出答案.此题主要考查了积的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键.18.【答案】C【解析】解:(−513)3×(−135)2=[(−513)×(−135)]2×(−513)=1×(−5 13 )5故选:C .首先根据积的乘方的运算方法:(ab)n =a n b n ,求出[(−513)×(−135)]2的值是多少;然后用它乘−513,求出计算(−513)3×(−135)2所得结果为多少即可.此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn (m,n 是正整数);②(ab)n =a n b n (n 是正整数). 19.【答案】D【解析】解:(−x 3y)2=x 6y 2. 故选:D .首先利用积的乘方运算法则化简求出答案.此题主要考查了积的乘方运算,正确掌握运算法则是解题关键. 20.【答案】D【解析】【分析】本题考查同底数幂的乘法、合并同类项、积的乘方、单项式乘以多项式,解题的关键是明确它们各自的计算方法.计算出各个选项中式子的正确结果,然后对照,即可解答本题. 【解答】解:∵−m 2⋅m 3=−m 5,故选项A 正确, ∵−x 2+2x 2=x 2,故选项B 正确, ∵(−a 3b)2=a 6b 2,故选项C 正确,∵−2x(x −y)=−2x 2+2xy ,故选项D 错误, 故选D .21.【答案】解:(1)原式=a 12⋅(−a 3)=−a 15; (2)原式=−x 6−9x 6+8x 6=−2x 6; (3)原式=−m 10n 4+m 2n 2.【解析】(1)原式利用幂的乘方与积的乘方运算法则计算即可求出值; (2)原式利用幂的乘方与积的乘方运算法则计算,合并即可求出值; (3)原式利用幂的乘方与积的乘方运算法则计算即可求出值.此题考查了单项式乘单项式,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.22.【答案】解:由272=a 6, 得36=a 6, ∴a =±3; 由272=9b , 得36=32b , ∴2b =6, 解得b =3;(1)当a =3,b =3时,2a 2+2ab =2×32+2×3×3=36. (2)当a =−3,b =3时,2a 2+2ab =2×(−3)2+2×(−3)×3=18−18=0. 所以2a 2+2ab 的值为36或0.【解析】先把已知条件转化成以3为底数的幂,求出a、b的值,再代入代数式计算即可.根据幂的乘方的性质把已知条件转化为以3为底数的幂求出a、b的值是解题的关键;需要注意,a=−3容易被同学们漏掉而导致求解不完全.23.【答案】解:(1)∵4m=22m=(2m)2,x=2m+1,∴2m=x−1,∵y=4m+3,∴y=(x−1)2+3,即y=x2−2x+4;(2)把x=4代入y=x2−2x+4=12.【解析】(1)将4m变形,转化为关于2m的形式,然后再代入整理即可;(2)把x=4代入解得即可.本题考查幂的乘方的性质,解决本题的关键是利用幂的乘方的逆运算,把含m的项代换掉.。
最新人教版初中数学七年级下册第8章《二元一次方程组》测试题(含答案)

人教版七年级数学下册第八章 二元一次方程组单元检测试题(有答案)一、选择题1 . 下列各方程组中,属于二元一次方程组的是( )A .B .C .D .2 .将方程 2 x + y =3 写成用含 x 的式子表示 y 的形式,正确的是 ( ) A . y = 2 x - 3 B . y = 3 - 2 x C . x = 2y-3D . x =3-2y3 .若方程组 的解为 ,则被 “☆” 、 “ K ” 遮住的两个数分别是 ( )A . 10 , 3B . 3 , 10C . 4 , 10D . 10 , 44 .已知 x , y 满足方程组 则 x + y 的值为 ( )A . 9B . 7C . 5D . 35 .已知甲、乙两数的和是 7 ,甲数是乙数的 2 倍,设甲数为 x ,乙数为 y ,根据题意,列方程组正确的是 ( )A. B. C. D.6 .按如图所示的运算程序,能使输出结果为 5 的 x , y 的值是 ( )A . x = 5 , y =- 5B . x =- 1 , y = 1C . x = 2 , y = 1D . x = 3 , y = 27.若2310x y z ++=,43215x y z ++=,则x y z ++的值为( ) A .5 B .4 C .3 D .28.若方程组431(1)3x yax a y+=⎧⎨+-=⎩的解x与y相等,则a的值等于()A.4 B.10 C.11 D.129. 两个水池共储水40吨,如果甲池注进水4吨,乙池注进水8吨,甲池水的吨数就与乙池水的吨数相等.甲、乙水池原来各储水的吨数是()A.甲池21吨,乙池19吨B.甲池22吨,乙池18吨C. 甲池23吨,乙池17吨D.甲池24吨,乙池16吨10.某校七年级(2)班40表格中捐款2元和32元的有x名同学,捐款3元的有y名同学,根据题意,可列方程组( )A.272366x yx y+=⎧⎨+=⎩B.2723100x yx y+=⎧⎨+=⎩C.273266x yx y+=⎧⎨+=⎩D.2732100x yx y+=⎧⎨+=⎩二、填空题1.方程组的解是________ .2.已知关于x ,y 的二元一次方程2 x +■ y =7 中,y 的系数已经模糊不清,但已知是这个方程的一个解,那么原方程是________ .3.某旅行社组织甲、乙两个旅游团分别到庐山、婺源旅游,已知这两个旅游团共有55 人,甲旅游团的人数比乙旅游团的人数的2 倍少5 人,问甲、乙两个旅游团各有多少人?设甲、乙两个旅游团分别有x 人、y 人,根据题意可列方程组为__________ .4.已知+( x +2 y -5) 2 =0 ,则x +y =________ .5.“六一”儿童节,某动物园的成人门票每张8元,儿童门票半价(即每张4元),全天共售出门票3000张,共收入15600元,则这一天售出了成人票________张,儿童票___ _ 张.三、计算题1.解方程组:(1) (2)2.已知与都是方程kx -b =y 的解,求k 和b 的值.3.已知方程组小马由于看错了方程① 中的m ,得到方程组的解为小虎由于看错了方程② 中的n ,得到方程组的解为请你根据上述条件求原方程组的解.4.请你根据王老师所给的内容,完成下列各小题.(1) 若x =-5 ,2 ◎ 4 =-18 ,求y 的值;(2) 若1 ◎ 1 =8 ,4 ◎ 2 =20 ,求x ,y 的值.5. “ 六一” 儿童节有一投球入盆的游戏,深受同学们的喜爱,游戏规则如下:如图,在一大盆里放一小茶盅( 叫幸运区) 和小茶盅外大盆内( 环形区) 分别得不同的分数,投到大盆外不得分;每人各投 6 个球,总得分不低于30 分得奖券一张.现统计小刚、小明、小红三人的得分情况如下图.(1) 每投中“ 幸运区” 和“ 环形区” 一次,分别得多少分?(2) 根据这种得分规则,小红能否得到一张奖券?请说明理由.6.数学方法:解方程组若设x +y =A ,x -y =B ,则原方程组可变形为解方程组得所以解方程组得我们把某个式子看成一个整体,用一个字母去代替它,这种解方程组的方法叫作换元法.(1) 请用这种方法解方程组(2) 已知关于x ,y 的二元一次方程组的解为那么关于m ,n 的二元一次方程组的解为________ ;(3) 已知关于x ,y 的二元一次方程组的解为则关于x ,y 的方程组的解为________ .答案与解析一、选择题。
求100道初一数学计算题(附答案)

求100道初一数学计算题(附答案)1. 一个直角三角形的斜边长是18,则邻边长之和为:答案:362. 如果一圆的半径增加了50%,则这个圆的周长变多了多少?答案:150%3. 三角形的三个内角为a、b、c,若 2a + b = 180°,则 c 等于:答案:180°-2a-b4. 若一个正方形的边长是x,则它的面积为:答案:x²5. 正方形的面积是81,则其边长为:答案:96. 三角形的三条边长分别是4,5,6,则它的最大内角为:答案:90°7. 三角形的三边中,最长的边是7,短两边为x和y,则 x² +y² = 49。
答案:x=3,y=48. 正方形的边长是6,则该正方形的周长为:答案:249. 一个长方形的面积是30,其长是4,则它的宽为:答案:7.510. 一个正多边形的边数是x,则它的外角和为:答案:180x-36011. 三角形的面积是8,其底边长为4,则它的高为:答案:412. 一个正方形的面积是9,则它的周长为:答案:1213. 如果矩形的长和宽都增长了50%,则它的面积变多了多少?答案:225%14. 将圆的周长减半,则面积变成多少:答案:1/415. 若一个矩形的面积是2,则它的最大内角为:答案:90°16. 一个三角形的面积是15,短边长分别为3和5,则它的最大外角为:答案:90°17. 一个圆的半径是7,则这个圆的面积为:答案:153π18. 三角形的三边长分别为3,4,5,则它的最小外角为:答案:36°19. 三角形的三个内角是45°,60°,75°,则它的边长为:答案:3,4,520. 一个圆的周长是100,则它的半径为:答案:25π21. 三角形的三条边长分别是7,8,9,它的最小内角为:答案:25°22. 一个正多边形的边数是7,则它的最大外角为:答案:135°23. 三角形的三边长分别是4,5,6,则它的最小外角为:答案:70°24. 若正方形的面积是16,则它的边长为:答案:425. 矩形的面积是30,其宽是5,则它的长为:答案:626. 三角形的三个内角为45°,60°,75°,则它的最大外角为:答案:60°27. 若正方形的边长是2,则它的周长为:答案:828. 正多边形的边数是5,则它的内角和为:答案:540°29. 一个圆的半径减半,则它的周长变成多少:答案:1/230. 一个长方形的面积是21,短边长是3,则它的长为:答案:731. 三角形的三条边长分别为5,6,7,它的最大外角为:答案:120°32. 如果矩形的边长都减半,则它的面积变小了多少?答案:1/433. 一个正多边形的最小内角为60°,该多边形的边数是:答案:634. 将圆的面积减半,则它的周长变成多少:答案:1/235. 若一个矩形的长和宽都增加了30%,则它的面积变多了多少?答案:69%36. 圆的周长是24,则它的半径为:答案:4π37. 三角形的三边长分别为2,3,4,则它的最小内角为:答案:9°38. 圆的半径增加50%,则它的面积变成多少:答案:225%39. 三角形的三个内角是30°,60°,90°,则它的边长为:答案:2,3,440. 一个正方形的周长是12,则它的面积为:答案:941. 一个三角形的面积是10,短边长分别为4和5,则它的最大外角为:答案:91°42. 三角形的三边长分别是9,10,11,则它的最小外角为:答案:20°43. 若一个矩形的面积是9,则它的最大内角为:答案:90°44. 一个圆的周长是50,则它的半径为:答案:25π45. 将正多边形的边长翻倍,则它的面积变多了多少?答案:4倍46. 正多边形的边数是8,则它的内角和为:答案:1080°47. 若正方形的面积是25,则它的边长为:答案:548. 矩形的面积是27,其宽是3,则它的长为:答案:949. 三角形的三个内角为45°,60°,75°,则它的最大外角为:答案:60°50. 一个圆的半径是14,则这个圆的面积为:答案:612π51. 如果正多边形的边长翻倍,则它的面积变多了多少?答案:4倍52. 正多边形的边数是10,则它的周长是:答案:6053. 若一个等边三角形的边长是2,则它的内角和为:答案:180°54. 若一个矩形的长是4和宽是6,则它的面积为:答案:2455. 一个正方形的边长减半,则它的面积变成多少:答案:1/456. 正多边形的最小内角为120°,则它的边数是:答案:557. 三角形的最大外角为90°,则它的最小内角为:答案:30°58. 圆的半径减半,则它的面积变成多少:答案:1/459. 若一个矩形的长是6和宽是8,则它的周长为:答案:2860. 三角形的三边长分别为3,4,5,则它的最大外角为:答案:90°61. 将圆的半径增加50%,则它的周长变多了多少?答案:150%62. 三角形的最小内角为60°,则它的最大内角为:答案:120°63. 若一个正多边形的边数是10,则它的最小内角为:答案:36°64. 将矩形的面积减半,则它的周长变小了多少?答案:1/265. 一个正方形的边长是8,则它的面积为:答案:6466. 一个三角形的最大外角为120°,它的三条边长分别是:答案:5,5,767. 三角形的三边长分别为5,6,7,它的最小外角为:答案:7°68. 一个圆的半径是21,则它的周长是:答案:132π69. 三角形的三个内角是90°,45°,45°,它的边长为:答案:3,3,370. 一个矩形的宽是6,面积是24,则它的长为:答案:471. 若一个等边三角形的边长是2,则它的最大外角为:答案:60°72. 一个正方形的面积是64,则它的边长为:答案:873. 将正多边形的边长减半,则它的面积变小了多少?答案:1/474. 圆的周长是25,则它的半径为:答案:5π75. 若一个矩形的长是6和宽是7,则它的面积为:答案:4276. 一个三角形的最大外角为45°,它的三条边长分别是:答案:2,2,277. 三角形的最大内角为120°,则它的最小外角为:答案:60°78. 圆的面积是100,则它的周长是:答案:63.6π79. 一个正多边形的边数是6,则它的最大内角为:答案:150°80. 三角形的最小外角为30°,则它的最大内角为:答案:150°81. 若一个矩形的面积是18,则它的长为:答案:682. 一个正多边形的边长是3,则它的面积是:答案:9√383. 将矩形的宽减半,则它的面积变小了多少?答案:1/484. 一个三角形的最大内角为90°,它的三边长分别是:答案:2,2,285. 正多边形的最小内角是36°,则它的边数是:答案:1086. 若一个三角形的面积是20,短边长是5,则它的最大外角为:答案:90°的周长是:答案:88π88. 若一个正多边形的最小内角是60°,则它的边数是:答案:689. 三角形的最大外角是90°,则它的最小内角是:答案:30°90. 圆的半径增加一半,则它的周长变多了多少?答案:150%91. 三角形的三边长分别是2,3,4,则它的最小外角为:答案:1°92. 将矩形的长加倍,则它的面积变多了多少?答案:4倍93. 若一个正方形的边长是5,则它的周长为:答案:2094. 将圆的半径减半,则它的周长变小了多少?答案:1/295. 一个三角形的最大内角为120°,它的三边长分别是:答案:3,4,596. 正多边形的最大外角是180°,则它的最小内角是:答案:180°÷边数97. 一个矩形的面积是36,则它的宽为:答案:698. 将正多边形的边长增加50%,则它的面积变多了多少?答案:225%99. 三角形的三边长分别是4,5,6,它的最大外角为:答案:90°100. 一个正多边形的边数是7,则它的最小内角为:答案:128.57°。
七年级下-专题 实数的运算计算题(共45小题)(解析版)

七年级下册数学《第六章实数》专题实数的运算计算题(共45小题)1.(2022秋•招远市期末)计算:(1)(5)2+(−3)2+3−8;(2)(﹣2)3×18−327×(−【分析】(1)原式利用平方根及立方根定义计算即可求出值;(2)原式利用乘方的意义,算术平方根及立方根定义计算即可求出值.【解答】解:(1)原式=5+3+(﹣2)=8﹣2=6;(2)原式=(﹣8)×18−3×(−13)=(﹣1)﹣(﹣1)=﹣1+1=0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2.(2022•庐江县二模)计算:0.04+3−8−【分析】先计算被开方数,再开方,最后加减.【解答】解:原式=0.2﹣2−=0.2﹣2−45=0.2﹣2﹣0.8【点评】本题考查了实数的混合运算,掌握开方运算是解决本题的关键.3.(2022春•上思县校级月考)计算:(1)−12+16+|2−1|+3−8;(2)23+|3−2|−364+9.【分析】(1)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案;(2)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案.【解答】解:(1)−12+16+|2−1|+3−8;=﹣1+4+2−1﹣2=2;(2)原式=23+2−3−4+3=3+1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.4.(2022春•渝中区校级月考)实数的计算:(1)16+(−3)2+327;(2)3−3+|1−33|﹣(−3)2.【分析】(1)先计算平方根和立方根,再计算加减;(2)先计算平方根、立方根和绝对值,再计算加减;【解答】解:(1)16+(−3)2+327=10;(2)3−3+|1−33|﹣(−3)2=−33+33−1﹣3=﹣4.【点评】此题考查了实数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.5.(2022秋•原阳县月考)计算:(1)3−8+4−(−1)2023;(2)(−9)2−364+|−5|−(−2)2.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)3−8+4−(−1)2023=﹣2+2﹣(﹣1)=0+1=1;(2)(−9)2−364+|−5|−(−2)2=9﹣4+5﹣4=6.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.6.(2022春•牡丹江期中)计算:(1)−12−0.64+3−27−(2)3+(−5)2−3−64−|3−5|.【分析】(1)先计算平方、平方根和立方根,再进行加减运算;(2)先计算平方根、立方根和绝对值,再进行加减运算.【解答】解(1)−12−0.64+3−27−=﹣1﹣0.8﹣3﹣0.2=﹣5;(2)3+(−5)2−3−64−|3−5|=3+5+4+3−5=23+4.【点评】此题考查了运用平方根和立方根进行有关运算的能力,关键是能准确理解并运用以上知识.7.(2022秋•南关区校级期末)计算:16−(−1)2022−327+|1−2|.【分析】直接利用有理数的乘方运算法则、绝对值的性质、平方根的性质分别化简,进而得出答案.【解答】解:原式=4﹣1﹣3+2−1=2−1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.8.(2022秋•成武县校级期末)计算:﹣12022−364+|3−2|.【分析】这里,先算﹣12022=﹣1,364=4,|3−2|=2−3,再进行综合运算.【解答】解:﹣12022−364+|3−2|=﹣1﹣4+2−3=﹣3−3.【点评】本题考查了实数的综合运算,计算过程中要细心,注意正负符号,综合性较强.9.(2022春•昌平区校级月考)3125+(−3)2−【分析】先化简各式,然后再进行计算即可解答.【解答】解:3125+(−3)2−=5+3−=5+3﹣(−2 3)=5+3+2 3=82 3.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.10.(2022春•舒城县校级月考)计算:3−27++|−2|+1.【分析】首先计算开方、开立方和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:3−27++|−2|+1=﹣3+12×4+2+1=﹣3+2+2+1=2.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.11.(2022春•舒城县校级月考)计算:﹣12+|﹣2|+3−8+(−3)2.【分析】先化简各式,然后再进行计算即可解答.【解答】解:﹣12+|﹣2|+3−8+(−3)2=﹣1+2+(﹣2)+3=﹣1+2﹣2+3=2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.12.(2021秋•镇巴县期末)计算:(−1)10+|2−2|+49+3(−3)3.【分析】按照实数的运算顺序进行运算即可.【解答】解:原式=1+2−2+7−3=7−2.【点评】本题考查了实数的运算,掌握对值,立方根以及平方根的运算法则是关键.13.(2022春•阳新县期末)计算:|3−2|+3−8×12+(−3)2.【分析】先算开方和乘方,再化简绝对值算乘法,最后加减.【解答】解:原式=2−3+(﹣2)×12+3=2−3−1+3=4−3.【点评】本题考查了实数的运算,掌握乘方、开方及绝对值的意义是解决本题的关键.14.(2022春•十堰期中)计算:﹣12022+(−4)2+38+【分析】先算乘方、开方,再算乘法,最后算加减.【解答】解:原式=﹣1+4+2+10×3 5=﹣1+4+2+6=11.【点评】本题考查了实数的混合运算,掌握实数的运算法则、实数的运算顺序是解决本题的关键.15.(2021秋•峨边县期末)计算:|5−3|+(−2)2−3−8+5.【分析】直接利用绝对值的性质以及立方根的性质分别化简,进而得出答案.【解答】解:原式=3−5+2+2+5=7.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.16.(2021秋•乳山市期末)计算:(−3)2−2×52×3−0.027.【分析】应用实数的运算法则:先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行,进行计算即可得出答案.【解答】解:原式=3﹣2×32+52×(﹣0.3)=3﹣3−5 2×310=0−3 4=−34.【点评】本题主要考查了实数的运算,熟练掌握实数的运算进行求解是解决本题的关键.17.(2022秋•横县期中)计算:(﹣1)2022+9−(2﹣3)÷12.【分析】先计算乘方与开方和小括号里的,再计算除法,最后计算加减即可.【解答】解:原式=1+3﹣(﹣1)×2=4+2=6.【点评】此题考查的实数的运算,掌握其运算法则是解决此题的关键.18.(2022秋•儋州校级月考)计算:(1)364−81+3125+3;(2)|−3|−16+38+(−2)2.【分析】(1)直接利用立方根的性质、平方根的性质分别化简,进而计算得出答案;(2)直接利用立方根的性质、平方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=4﹣9+5+3=3;(2)原式=3﹣4+2+4=5.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.19.(2022秋•海曙区校级期中)计算:(1)﹣23+3−27−(﹣2)2+(2)(﹣3)2×(﹣2)+364+9.【分析】(1)先计算乘方、立方根和平方根,再计算加减;(2)先计算乘方、立方根和平方根,再计算乘法,最后计算加减.【解答】解:(1)﹣23+3−27−(﹣2)2+=﹣8﹣3﹣4+49=﹣1459;(2)(﹣3)2×(﹣2)+364+9=﹣9×2+4+3=﹣18+4+3=﹣11.【点评】此题考查了实数的混合运算能力,关键是能准确确定运算顺序和方法.20.(2022秋•安岳县校级月考)计算:(1)(3)2−163−8;(2)(﹣2)3×(﹣1)2013−327;(3)(−4)2+32+42.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答;(3)先化简各式,然后再进行计算即可解答.【解答】解:(1)(3)2−16+3−8=3﹣4+(﹣2)=﹣3;(2)(﹣2)3×(﹣1)2013−327=﹣8×112+(﹣1)﹣3=﹣44﹣1﹣3=﹣48;(3)(−4)2+32+42=4+32+3 2−5=2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.21.(2022秋•隆昌市校级月考)计算:(1)|−3|−16+3−8+(−2)2;(2)3−27+|2−3|−(−16)+23.【分析】(1)首先计算乘方、开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.(2)首先计算开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1)|−3|−16+3−8+(−2)2=3﹣4+(﹣2)+4=1.(2)3−27+|2−3|−(−16)+23=﹣3+(2−3)﹣(﹣4)+23=﹣3+2−3+4+23=3+3.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.22.(2021秋•泉州期末)计算:(−3)2×(12)2+(−1)2022.【分析】先算乘方和开方,再算乘法,最后算加减.【解答】解:原式=3×(−12)−14+1=−32−14+1=−12−14=−34.【点评】本题主要考查了实数的运算,掌握平方根的性质、乘方运算、开方运算是解决本题的关键.23.(2022秋•新野县期中)计算:3−8+9−+(−1)2022+|1−2|.【分析】利用立方根的定义,算术平方根的定义,乘方运算,绝对值的定义计算即可.【解答】解:3−8+9−(−1)2022+|1−2|.=﹣2+3−54+1+2−1=−14+2.【点评】本题考查了实数的运算,解题的关键是掌握立方根的定义,算术平方根的定义,乘方运算,绝对值的定义.24.(2021秋•新兴区校级期末)计算下列各题:(1;(2)35−|−35|+23+33.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1+=+=23+34=1712;(2)35−|−35|+23+33=35−35+23+33=53.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.25.(2022秋•绥德县期中)计算:2(3−1)−|3−2|−364.【分析】先去括号,化简绝对值,开立方,再计算加减即可.【解答】解:原式=23−2﹣(2−3)﹣4=23−2﹣2+3−4=33−8.【点评】本题考查实数的混合运算,平方根加法,熟练掌握实数的混合运算法则是解题的关键.26.(2022秋•义乌市校级期中)计算:﹣22×(﹣112)2−3−64−×|﹣3|.【分析】先算乘方,再算乘法,后算加减,即可解答.【解答】解:﹣22×(﹣112)2−3−64−|﹣3|=﹣4×94−(﹣4)−43×3=﹣9+4﹣4=﹣9.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.27.(2022秋•西湖区校级期中)计算:(1)|7−2|﹣|2−π|−(−7)2;(2)﹣22×(−4)2+3(−8)3×(−12)−327.【分析】(1)先化简绝对值和平方根,再计算加减;(2)先算乘方和根式,再计算乘法,最后加减.【解答】解:(1)|7−2|﹣|2−π|−(−7)2=7−2−(π−2)﹣7=7−2−π+2−7=﹣π;(2)﹣22×(−4)2+3(−8)3×(−12)−327=﹣4×4+(﹣8)×(−12)﹣3=﹣16+4﹣3=﹣15.【点评】本题考查了实数的混合运算,实数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行实数的混合运算时,注意各个运算律的运用,使运算过程得到简化.28.(2022秋•沈丘县校级月考)计算:0.01×121+0.81.【分析】直接利用平方根的性质、立方根的性质分别化简,进而得出答案.【解答】解:原式=0.1×11−1 5−0.9=1.1﹣0.2﹣0.9=0.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.29.(2022春•西山区校级期中)计算:5−2×(7−2)+3−8+|3−2|.【分析】直接利用立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=5﹣27+4﹣2+2−3=9﹣27−3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.30.(2022春•东莞市期中)计算:(−3)2+(﹣1)2020+3−8+|1−2|【分析】先化简各式,然后再进行计算即可解答.【解答】解:(−3)2+(﹣1)2020+3−8+|1−2|=3+1+(﹣2)+2−1=3+1﹣2+2−1=1+2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.31.(2022秋•安溪县月考)计算:16+3−27−3−|3−2|+(−5)2.【分析】直接利用立方根的性质、绝对值的性质算术平方根的性质分别化简,进而合并得出答案.【解答】解:原式=4﹣3−3−2+3+5=4.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.32.(2022秋•+(−4)2×(−12)3−|1−3|.【分析】先化简各式,然后再进行计算即可解答.(−4)2×(−12)3−|1−3|=−23+4×(−18)﹣(3−1)=−23+(−12)−3+1=−76−3+1=−16−3.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.33.(2022春•海淀区校级期中)计算:81+3−27−2(3−3)−|3−2|.【分析】本题涉及去掉绝对值、根式化简考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=9﹣3﹣23+6﹣(2−3)=6﹣23+6﹣2+3=10−3.【点评】本题主要考查了实数的综合运算能力,解决此类题目的关键是准确熟练地化简各式是解题的关键.34.(2022春•梁平区期中)计算:3(−1)3+3−27+(−2)2−|1−3|.【分析】利用算术平方根,立方根和绝对值的意义化简运算即可.【解答】解:原式=﹣1+(﹣3)+2﹣(3−1)=﹣1﹣3+2−3+1=﹣1−3.【点评】本题主要考查了实数的运算,算术平方根,立方根和绝对值的意义,正确利用上述法则与性质化简运算是解题的关键.35.(2022春•东莞市校级期中)计算:﹣12020+(−2)2−364+|3−2|.【分析】直接利用有理数的乘方运算法则、平方根的性质、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=﹣1+2﹣4+2−3=﹣1−3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.36.计算下列各题:(1)1+3−27−30.125+(2)|7−2|﹣|2−�|−(−7)2【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用绝对值的代数意义计算即可求出值.【解答】解:(1)原式=1﹣3−12+0.5+18=−178;(2)原式=7−2−π+2−7=﹣π.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.37.计算:30.008×−172−82÷【分析】首先计算开方、乘法和除法,然后计算减法,求出算式的值是多少即可.【解答】解:30.008×172−82÷=0.2×54−15÷(−15)=14+75=751 4【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.38.计算:33−2(1+3)+(−2)2+|3−2|【分析】首先利用去括号法则以及绝对值的性质和算术平方根的定义分别化简得出答案.【解答】解:原式=33−2﹣23+2+2−3=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.(1)(−2)2×3(2)9+|1−2|−×(−3)2+|40.25−2|【分析】(1)首先计算开方和乘法,然后计算减法,求出算式的值是多少即可.(2)首先计算开方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(1)16+32+3−8=4+3﹣2=5(2)(−2)2×−23×=2×32−8×14=3﹣2=1(3)9+|1−2|−×(−3)2+|40.25−2|=3+2−1−53×3+2−2=﹣1【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.40.计算:(﹣2)2×+|3−8|+2×(﹣1)2022【分析】原式利用平方根、立方根定义,绝对值的代数意义,以及乘方的意义计算即可得【解答】解:原式=2+2+2=4+2;【点评】此题考查了实数的运算,平方根、立方根,熟练掌握各自的性质是解本题的关键.41.计算:﹣22+16+38+1014×934.【分析】原式第一项利用乘方的意义计算,第二项利用算术平方根定义计算,第三项利用立方根定义计算,最后一项利用乘法法则计算即可得到结果.【解答】解:原式=﹣4+4+2+414×394=2+159916=1011516.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.42.计算:|﹣5|−327+(﹣2)2+4÷(−23).【分析】根据绝对值的性质、立方根的性质以及实数的运算法则化简计算即可;【解答】解:原式=5﹣3+4﹣6=0【点评】本题考查实数的混合运算,解题的关键是:掌握先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.43.(2022秋•城关区校级期中)计算:(1)12+(3)2+−(2)(−3)2+(−1)2022+38+|1−2|.【分析】(1)直接利用平方根的性质分别化简,进而计算得出答案;(2)直接利用平方根的性质、有理数的乘方运算法则、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=23+3+14×43−9×33=23+3+3−33=3;(2)原式=3+1+2+2−1=5+2.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.44.(2021春•濉溪县期末)计算:49−327+|1−2|+【分析】原式第一项利用算术平方根定义计算,第二项利用立方根定义计算,第三项利用绝对值的代数意义化简,最后一项利用平方根性质化简即可得到结果.【解答】解:原式=7﹣3+2−1+13=103+2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.45.(2022秋•岳麓区校级月考)计算−12022+(12)2+|2−3|−(−3)2.【分析】根据乘方,绝对值的意义,平方根的性质将原式进行化简,然后根据实数运算法则进行计算即可.【解答】解:原式=−1+14+3−2−3,=−34−2.【点评】本题考查了乘方,绝对值的意义,平方根的性质,掌握相关运算法则是关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学下册复习试卷——计算题&解答题
姓名__________ 班别___________ 座号___________
一、计算题:
1、 2、 )2()9()3(32422ab b a b a -⋅-÷()
()
7
33
2
22x x x ÷⋅-3、 4、)2()(b a b a -++-22(1)3(2)
x x x ---+5、
6、
,
4)12(332
312++--x x x )346(2
1
)21(3223223ab b a a ab b a a ++-+
-7、(x+2)(y+3)-(x+1)(y-2) 8、
22)2)(2(y y x y x ++-
9、x(x -2)-(x+5)(x -5) 10、
⎪⎭
⎫
⎝⎛+-⎪⎭⎫ ⎝⎛--y x y x 22411、 12、)94)(32)(23(22x y x y y x +---()()3
`122122
++-+a a 13、 14、(x -3y)(x+3y)-(x -3y)2
()()()2112
+--+x x x 15、 16、23(1)(1)(21)x x x +---2
2)23()23(y x y x --+
17、 18、22)()(y x y x -+x
y y x ÷-+])3[(2
219、0.125100×8100 20、
()
xy xy xy y x
183********
÷--21、 22、(30
2
2)2(21)x (4554---÷⎪⎭⎫ ⎝⎛--π-+⎪⎭
⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛12112006
22
332141)
()()()-⨯+----二、用乘法公式计算下列各题:
23、999×1001 24、1
992-
25、 26、
2982010200820092⨯-三、解答题::
27、化简求值:,其中。
)4)(12()12(2+-+-a a a 2-=a 28、化简求值,其中。
2(2)2()()2(3)x y x y x y y x y +--++-12,2
x y =-=
29、化简求值,其中。
)(]42)2)(2[(22xy y x xy xy ÷+--+4
1
,4-==y x
30、若x+y=1,。
()的值求求2
22,3y x y x -=+31、已知,求的值。
0106222=++-+b a b a 20061
a b
-32、如图,AE ∥BC ,∠B=∠C=,求∠DAC 的度数(5分)。
05033、如图,BD 是∠ABC 的平分线,ED ∥BC ,∠FED =∠BDE,则EF 也是∠AED 的平分线。
完成下列推理过程:∵ BD 是∠ABC 的平分线,(已知)
∴ ∠ABD=∠DBC( )∵ ED ∥BC(已知)
∴ ∠BDE=∠DBC( )∴ ∠ABD=∠BDE(等量代换)又∵∠FED=∠BDE (已知)
∴ EF ∥BD( ),∴ ∠AEF=∠ABD( )
B (第33题)
∴ ∠AEF=∠FED( ),∴ EF 也是∠AED 的平分线
34、如图是可自动转动的转盘(转盘被分成8个在相等的扇形)。
当指针指向阴影区域,则甲胜;当指针指向空白区域,则乙胜。
你认为这个游戏对双方公平吗?为什么?
35、一个飞机零件的形状如图5—19
所示,按规定∠A 应等于90°,∠ B ,∠ D 应分别是20°和30°,康师傅量得∠ BCD =143°,就能断定这个零件不合格,你能说出其中的道理吗?
36、裁剪师傅将一块长方形布料ABCD 沿着AE 折叠,使D 点落在BC 边上的F 点处,若∠BAF=60°,求∠CFE 的度数.
37、如图5—20,在△ABC 中,AD 是BC 边上的中线,△ADC 的周长比△ABD 的周长多5cm ,AB 与AC 的和为11cm ,求AC 的长.
(第34题)
(第36题)
38、如图,已知△ACF ≌△DBE ,∠E=30°,AD=9cm ,BC=5cm ,求∠F 的度数和AB 的长.
39、如图,在△ABC 中,D ,E 分别是边AC ,BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数.
40、如图,已知A 、B 、C 、D 在一条直线上,AB =CD , AE ∥DF ,BF ∥EC ,求证:∠E =∠F.
41、已知:如图AE=AC , AD=AB ,∠EAC=∠DAB ,求证:△EAD ≌△CAB .
F
E
D
C
B
A
(第40
题)
(第38
题)
(第39题)
42、如图,已知AB=AC ,AD=AE ,求证:BD=CE.
43、如图,已知AB ∥DC ,AB=DC ,BE=DF ,指出图中的一对全等三角形,并说明理由。
B C 44、△ABC 中,AB=AC ,D 是AB 边上的一点,DE 垂直平分AC ,∠A=,求∠BDC 的度数。
04045、
如图,在△ABC 中,AB 的垂直平分线交AC 于D ,如果 AE=3 cm ,求△ABC 的周长。
(第42题)
(第43题)
46、图为一位旅行者在早晨8时从城市出发到郊外所走的路程与时间的变化图.根据图像回答问题:
(1)9时,10时30分,12时所走的路程分别是多少?(2)他休息了多长时间?
(3)他从休息后直至到达目的地这段时间的平均速度是多少?
47、如图,它表示甲乙两人从同一个地点出发后的情况。
到十点时,甲大约走了13千米。
根据图象回答:
(1)甲是几点钟出发?
(2)乙是几点钟出发,到十点时,他大约走了多少千米?(3)到十点为止,哪个人的速度快?(4)两人最终在几点钟相遇?
(5)
你能将图象中得到信息,编个故事吗?
12
11109?
80161412108642(第46题
)
48、一种豆子每千克售2元,豆子总的售价y (元)与所售豆子的质量x (kg)之间的关系如下表.
所售豆子的质量
/kg 00.51 1.52 2.5345
总价/元0123456810(1)在这个表中反映哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当豆子卖出5 kg 时,总价是多少?(3)如果用x 表示豆子卖出的质量,y 表示总价,按表中给出的关系,用一个式子把x 和y 之间的关系表示出来.
(4)当豆子卖出20 kg 时,总价是多少?
49、如图,把一个面积为1的正方形分成两个面积为
的长方形,再把其中一个面积为2
1
的长方形分成两个面积为的正方形,再把其中一个面积为的正方形分成两个面积214141为的长方形,如此进行下去,8
1
用图形揭示的规律计算:(1)计算;
(2)计算:+ (25611281641321161814121)
++++++n 2
1
第 11 页 共 11 页
50、请分别补充下列轴对称图形的另一部分.(虚线为对称轴)。
⑴ ⑵ ⑶
51、请在下面的网格中画出图(1)、图(2) 52、请在下图中画出△EFG,使△EFG
关于直线AB 对称的图形。
与△
(第46题)A B
“”
“”
At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。