三极管基本知识大全
三极管 讲解

三极管讲解三极管,也称为晶体三极管(Bipolar Junction Transistor,简称BJT),是一种半导体器件,用于放大和开关电信号。
它由三个半导体层组成,其中包括两个异种半导体材料(通常是N型和P型硅)和一个绝缘的基底。
三极管有三个电极,分别是发射极(Emitter,E)、基极(Base,B)和集电极(Collector,C)。
三极管的基本工作原理:1.PN结:三极管中的N型和P型半导体层形成两个PN结。
PN结是两种半导体之间的界面,具有整流性质。
2.工作状态:•当NPN三极管中的发射结极(N型)接通正电压,基极(P型)接通负电压时,发射极-基极形成正向偏置,而集电极-基极形成反向偏置。
•当PNP三极管中的发射极(P型)接通负电压,基极(N 型)接通正电压时,发射极-基极形成正向偏置,而集电极-基极形成反向偏置。
3.放大作用:当在发射极和基极之间加上一个小信号电压时,这个信号电压会影响PN结的电流,从而控制集电极和发射极之间的电流。
这种调控作用使得三极管可以作为放大器。
4.工作区域:•放大区域:在适当的工作偏置下,三极管可以进入放大工作区域,通过控制小信号电压来放大输入信号。
•截止区域:当三极管的基极电压太低时,三极管截至,电流无法通过,处于关闭状态。
•饱和区域:当三极管的基极电压适当时,电流可以通过,但达到最大值,三极管处于饱和状态。
三极管的类型:1.NPN型:N型发射极,P型基极,N型集电极。
2.PNP型:P型发射极,N型基极,P型集电极。
三极管的应用:1.放大器:用于放大小信号,如音频信号。
2.开关:用作数字和模拟电路中的开关元件。
3.振荡器:用于产生振荡信号。
4.放大电路:在无线通信和射频电路中使用。
三极管在电子领域中有广泛的应用,是许多电子设备和系统的基础元件之一。
三极管的基本知识

b级会接一个大电阻RB限制电流Ib的大小,跑到b极的那 些多余的电子就只好穿越集电结,形成电流Ic
二、BJT 的电流分配和放大原理
如果基极电压翻倍,电荷分布会继续发生变化,发射结 宽度会变得更窄,这扇大门变得更宽了,将会有更多的 电子跑到b级
二、BJT 的电流分配和放大原理
由于RB是大电阻,Ib就算翻倍了也还是很小,所以更多 的电子会穿越集电结,让Ic也翻倍。
+ ui
Rb
C1 +
与二极管特性相似
+ + uCE输出 输入 uBE 回路 iE 回路
iB
Rc
+VCC
C2
RL
+ uo
iB VCC
Rb+ + uBE
Rb
iB
VCC
O
uBE
uCE 0 特性右移(因集电结开始吸引电子) uCE 1 V 特性基本重合(电流分配关系确定) 硅管: (0.6 0.8) V 取 0.7 V 导通电压 uBE 锗管: (0.2 0.3) V 取 0.2 V
+ UCE
Rc VCC
输入回路 BJT与电源连接方式
二、BJT 的电流分配和放大原理
当发射结正偏时,电荷分布会发生变化,发射结宽度会变窄; 相当于给电子打开了一扇e到b的大门 集电结反偏时,电荷分布会也发生变化,集电结宽度会变宽。 相当于打开了阻碍电子从c级跑出去的大门
二、BJT 的电流分配和放大原理
VCC
(2) 集电极 - 发射极反向饱和电流 ICEO
c b e A
ICEO
VCC
ICEO =(1+ )ICBO
iC ICM 安 全 工 ICEO O
三极管原理全总结

三极管原理全总结三极管是一种深具影响力的半导体电子器件,广泛应用于电子电路中的放大、开关和稳压等功能。
下面是对三极管原理的全面总结:一、三极管的基本结构三极管由三个掺杂不同材料的半导体层片组成,分别是发射区、基区和集电区。
发射区和集电区分别是n型和p型半导体,基区是p型半导体。
发射区和集电区之间通过基区相互连接。
二、三极管的工作原理1.放大作用:当输入信号施加在三极管的基极上时,如果正相输入,即基极向正偏压施加,会使得基区内的少数载流子浓度增加,这样会缩小基区的电阻,使得大量的电子从发射极注入到基区中,即电流通过三极管的基极。
2.输出作用:当三极管的发射极和集电极之间施加正向电压时,集电极上会有较大的电压和电流输出,且集电电流与发射电流间存在放大比例。
三、三极管的工作模式1.放大模式:当发射极到基极的电压为正时,三极管处于放大工作模式。
此时,基极电压和基极电流间的关系为非线性关系,输出电流的变化可配合输入信号进行放大。
2.饱和模式:当发射极到基极的电压为负且发射电流很小时,三极管处于饱和工作模式。
此时,输出电流取决于输入电流,而与输出电压无关。
3.截止模式:当发射极到基极的电压为负且发射电流为零时,三极管处于截止工作模式。
此时,输出电流和输出电压均为零。
四、三极管动态特性1.转输特性:描述了三极管的输入电流和输出电流之间的关系,即输出电流与输入电流之间的比例。
2.频率特性:三极管的频率响应以及对不同频率信号的放大程度。
三极管的频率特性随着频率的增大而降低,一般需要根据需要选择合适的三极管型号。
3.非线性失真:三极管在放大信号时,存在一定程度上的非线性失真。
当输入信号的幅度过大时,输出信号的波形可能会失真。
4.温度特性:三极管的性能受温度的影响较大。
一般情况下,温度越高,三极管的放大能力越差。
五、三极管的应用1.放大器:三极管的放大功能使其广泛应用于各种放大器电路中,如音频放大器、功率放大器等。
2.开关:通过控制输入信号的使能,利用三极管的饱和和截止特性,实现信号转换和开关操作。
三极管基本知识全归纳

1、三极管的正偏与反偏:给PN结加的电压和PN结的允许电流方向一致的叫正偏,否则就是反偏。
即当P区(阳极)电位高于N区电位时就是正偏,反之就是反偏。
例如NPN型三极管,位于放大区时,Uc>Ub集电极反偏,Ub>Ue 发射极正偏。
总之,当p型半导体一边接正极、n型半导体一边接负极时,则为正偏,反之为反偏。
NPN和PNP主要是电流方向和电压正负不同。
NPN是用B—E的电流(IB)控制C—E的电流(IC),E极电位最低,且正常放大时通常C极电位最高,即VC>VB>VE。
PNP是用E—B的电流(IB)控制E—C的电流(IC),E极电位最高,且正常放大时通常C极电位最低,即VC<VB<VE。
2、三极管的三种工作状态:放大、饱和、截止(1)放大区:发射结正偏,集电结反偏。
对于NPN管来说,发射极正偏即基极电压Ub>发射极电压Ue,集电结反偏就是集电极电压Uc>基极电压Ub。
放大条件:NPN管:Uc>Ub>Ue;PNP管:Ue>Ub>Uc。
(2)饱和区:发射结正偏、集电结正偏--BE、CE两PN结均正偏。
即饱和导通条件:NPN管:Ub>Ue,Ub>Uc,PNP型管:Ue>Ub,Uc>Ub。
饱合状态的特征是:三极管的电流Ib、Ic 都很大,但管压降Uce 却很小,Uce≈0。
这时三极管的c、e 极相当于短路,可看成是一个开关的闭合。
饱和压降,一般在估算小功率管时,对硅管可取0.3V,对锗管取0.1V。
此时的,iC几乎仅决定于Ib,而与Uce无关,表现出Ib对Ic的控制作用。
(3)截止区:发射结反偏,集电结反偏。
由于两个PN 结都反偏,使三极管的电流很小,Ib≈0,Ic≈0,而管压降Uce 却很大。
这时的三极管c、e 极相当于开路。
可以看成是一个开关的断开。
3、三极管三种工作区的电压测量如何判断电路中的一个NPN硅晶体管处于饱和,放大,截止状态?用电压表测基极与射极间的电压Ube。
(完整版)三极管的基本知识讲解

三极管的基本知识讲解三极管的初步认识三极管是一种很常用的控制和驱动器件,在数字电路和模拟电路中都有大量的应用,常用的三极管根据材料分有硅管和锗管两种,原理相同,压降略有不同,硅管用的较普遍,而锗管应用较少,以下以硅管为例进行讲解。
三极管有2 种类型,分别是PNP 型和NPN 型。
先来认识一下,如下图所示。
三极管一共有3 个极,横向左侧的引脚叫做基极(base),中间有一个箭头,一头连接基极,另外一头连接的是发射极e(emitter),剩下的一个引脚就是集电极c(collector)。
三极管的原理三极管有截止、放大、饱和三种工作状态。
放大状态主要应用于模拟电路中,且用法和计算方法也比较复杂,我们暂时用不到。
而数字电路主要使用的是三极管的开关特性,只用到了截止与饱和两种状态,所以我们也只来讲解这两种用法。
三极管的类型和用法有个总结:箭头朝内PNP,箭头朝外NPN,导通电压顺箭头过,电压导通,电流控制。
三极管的用法特点,关键点在于b 极(基极)和e 级(发射极)之间的电压情况,对于PNP 而言,e 极电压只要高于b 级0.7V以上(硅三极管的PN 结道导通电压,如果是锗三极管,这个电压大概为0.3V),这个三极管e 级和c 级之间就可以顺利导通。
也就是说,控制端在b 和e 之间,被控制端是e 和c 之间。
同理,NPN 型三极管的导通电压是b 极比e 极高0.7V,总之是箭头的始端比末端高0.7V就可以导通三极管的e 极和c 极。
这就是关于“导通电压顺箭头过,电压导通”的解释。
三极管的用法以上图为例介绍一下三极管的用法。
三极管基极通过一个10K 的电阻接到了单片机的一个IO口上,假定是P1.0,发射极直接接到5V 的电源上,集电极接了一个LED 小灯,并且串联了一个1K 的限流电阻最终接到了电源负极GND 上。
如果P1.0 由我们的程序给一个高电平1,那么基极b 和发射极e 都是5V,也就是说e到b 不会产生一个0.7V 的压降,这个时候,发射极和集电极也就不会导通,那么竖着看这个电路在三极管处是断开的,没有电流通过,LED2 小灯也就不会亮。
三极管原理全总结

———————————————————————————————— 作者:
———————————————————————————————— 日期:
ﻩ
1、三极管的正偏与反偏:给PN结加的电压和PN结的允许电流方向一致的叫正偏,否则就是反偏。即当P区(阳极)电位高于N区电位时就是正偏,反之就是反偏。例如NPN型三极管,位于放大区时,Uc>Ub集电极反偏,Ub>Ue发射极正偏。总之,当p型半导体一边接正极、n型半导体一边接负极时,则为正偏,反之为反偏。
截止区:Ub<=Uce且Uce>Ube
放大区:Ube>Uon且UCE>=Ube,即Uc>Ub>Ue。
饱和区:Ube>Uon且Uce<Ube
NPN型三极管导通时(饱和状态)ce间电压约为0.3V,PNP型三极管饱和导通条件Ve>Vb,Vc>Vb,ec间电压也约等于0.3V。NPN型三极管截止时只需发射极反偏即可,PNP型三极管与NPN型三极管截止条件相同。
(3)截止区:发射结反偏,集电结反偏。由于两个PN结都反偏,使三极管的电流很小,Ib≈0,Ic≈0,而管压降Uce却很大。这时的三极管c、e极相当于开路。可以看成是一个开关的断开。
3、三极管三种工作区的电压测量
如何判断电路中的一个NPN硅晶体管处于饱和,放大,截止状态?用电压表测基极与射极间的电压Ube。
共射极电路的电流放大系数为β,共基极电路的电流放大倍数为α。α的值小于1但接近于1,而β的值则远大于1(通常在几十到几百的范围内),所以Ic>>Ib。由于这个缘故,共射极电路不但能得到电压放大,还可得到电流放大,致使共射极电路是目前应用最广泛的一种组态。
4、三极管用于开关电路的原理
三极管电路讲解

三极管电路讲解
【最新版】
目录
1.三极管的基本结构
2.三极管的工作原理
3.三极管的分类与命名
4.三极管的电路应用
5.三极管的发展历程与未来展望
正文
一、三极管的基本结构
三极管,全称为双极型晶体管,是电子学中最常用的一种半导体器件。
它主要由三个区域组成:n 型区(发射极)、p 型区(基极)和 n 型区(集电极)。
发射极与集电极之间的电流放大作用是三极管最基本的功能。
二、三极管的工作原理
1.截止区:当发射极电压小于 0.7V 时,三极管处于截止区,此时没有电流流过。
2.放大区:当发射极电压大于 0.7V 时,三极管进入放大区,此时基极电流控制着集电极电流,实现电流放大。
3.饱和区:当集电极电流足够大时,三极管进入饱和区,此时电流不再随基极电流增大而增大。
三、三极管的分类与命名
根据构造和工作原理的不同,三极管可以分为两类:NPN 型和 PNP 型。
NPN 型三极管的结构是“N-P-N”,发射极是 N 型区,基极是 P 型区,
集电极是 N 型区。
PNP 型三极管的结构是“P-N-P”,发射极是 P 型区,
基极是 N 型区,集电极是 P 型区。
四、三极管的电路应用
三极管广泛应用于放大、开关、调制、稳压等电路。
常见的应用电路有三极管放大电路、三极管振荡电路、三极管稳压电路等。
五、三极管的发展历程与未来展望
自 1947 年美国科学家巴丁、布拉顿和肖克利发明晶体管以来,三极管经历了从锗到硅,从单极型到双极型,从低频到高频,从低功率到高功率的发展过程。
三极管电路设计方案基础

三极管电路设计方案基础一、三极管基础知识1.三极管结构:三极管由三个电极组成,包括基极(B)、发射极(E)和集电极(C)。
其结构类似于两个二极管的结合,其中一个二极管为PN接面,用于控制电流流动。
2.三极管工作原理:三极管基本的工作原理是由电流控制电流,即输入电流通过控制区电流的变化,使输出电流发生相应变化。
当正向偏置电压施加在基极-发射极间时,三极管处于放大状态;当反向偏置电压施加在基极-发射极间时,三极管处于截止状态。
3.三极管参数:三极管的关键参数包括最大集电极电流、最大集电极电压、最大功耗和放大倍数等。
这些参数决定了三极管的工作范围和性能。
二、三极管电路设计方案1.放大电路:放大电路是三极管最常见的应用之一,用于增加信号的幅度。
常见的放大电路有共射极放大电路、共集极放大电路和共基极放大电路。
这些电路的特点和应用场景各不相同,需要根据具体的放大要求进行选择。
2.开关电路:三极管也常被用作开关,可以实现数字信号的开关控制。
其中,当输入信号为高电平时,三极管工作在导通状态,输出信号为高电平;当输入信号为低电平时,三极管工作在截止状态,输出信号为低电平。
这种开关电路常用于数字逻辑电路和计算机系统中。
3.振荡电路:三极管还可以用于振荡电路的设计。
振荡电路是一种将正反馈引入电路的设计,能够产生稳定的周期性信号。
常见的振荡电路如晶体振荡器和谐振器等,用于产生高频信号或者时钟信号。
4.调制电路:三极管还常用于调制电路中,将低频信号调制到高频信号上。
例如,调频广播电台中的调制电路就是借助三极管实现的。
三、三极管电路设计步骤1.确定电路需求:首先需要明确电路的功能和性能需求,例如放大倍数、频率范围、功耗等。
2.选择三极管型号:根据电路需求选择合适的三极管型号,注意匹配其最大电压、电流和功耗等参数。
3.电路设计:根据电路需求,按照放大、开关、振荡或调制等不同的应用设计相应的电路。
4.参数计算:根据电路设计,计算电路中各个元件的参数,包括电阻、电容等的数值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三极管基本知识大全
半导体三极管也称为晶体三极管,可以说它是电子电路中最重要的器件。
它最主要的功能是电流放大和开关作用。
三极管顾名思义具有三个电极。
二极管是由一个PN结构成的,而三极管由两个PN结构成,共用的一个电极成为三极管的基极(用字母b表示)。
其他的两个电极成为集电极(用字母c表示)和发射极(用字母e表示)。
由于不同的组合方式,形成了一种是NPN型的三极管,另一种是PNP型的三极管。
三极管的种类很多,并且不同型号各有不同的用途。
三极管大都是塑料封装或金属封装,常见三极管的外观如图,大的很大,小的很小。
三极管的电路符号有两种:有一个箭头的电极是发射极,箭头朝外的是NPN型三极管,而箭头朝内的是PNP型。
实际上箭头所指的方向是电流的方向。
电子制作中常用的三极管有9 0**系列,包括低频小功率硅管9013(NPN)、9012(PNP),低噪声管9014(NPN),高频小功率管9018(NPN)等。
它们的型号一般都标在塑壳上,而样子都一样,都是TO-92标准封装。
在老式的电子产品中还能见到3DG6(低频小功率硅管)、3AX31(低频小功率锗管)等,它们的型号也都印在金属的外壳上。
我国生产的晶体管有一套命名规则,电子爱好者最好还是了解一下:
第一部分的3表示为三极管。
第二部分表示器件的材料和结构,A:PNP型锗材料B:NPN型锗材料C:PNP型硅材料D:NPN型硅材料第三部分表示种类:光电管K:开关管X:低频小功率管G:高频小功率管D:低频大功率管A:高频大功率管。
另外,3DJ 型为场效应管,BT打头的表示半导体特殊元件。
三极管最基本的作用是放大作用,它可以把微弱的电信号变成一定强度的信号,当然这种转换仍然遵循能量守恒,它只是把电源的能量转换成信号的能量罢了。
三极管有一个重要参数就是电流放大系数β。
当三极管的基极上加一个微小的电流时,在集电极上可以得到一个是注入电流β倍的电流,即集电极电流。
集电极电流随基极电流的变化而变化,并且基极电流很小的变化可以引起集电极电流很大的变化,这就是三极管的放大作用。
三极管还可以作电子开关,配合其它元件还可以构成振荡器。
半导体三极管除了构成放大器和作开关元件使用外,还能够做成一些可独立使用的两端或三端器件
1. 扩流。
把一只小功率可控硅和一只大功率三极管组合,就可得到一只大功率可控硅,其最大输出电流由大功率三极管的特性决定,见附图1 。
图2 为电容容量扩大电路。
利用三极管的电流放大作用,将电容容量扩大若干倍。
这种等效电容和一般电容器一样,可浮置工作,适用于在长延时电路中作定时电容。
用稳压二极管构成的稳压电路虽具有简单、元件少、制作经济方便的优点,但由于稳压二极管稳定电流一般只有数十毫安,因而决定了它只能用在负载电流不太大的场合。
图 3 可使原稳压二极管的稳定电流及动态电阻范围得到较大的扩展,稳定性能可得到较大的改善。
2. 代换。
图4 中的两只三极管串联可直接代换调光台灯中的双向触发二极管;图5 中的三极管可代用8V 左右的稳压管。
图 6 中的三极管可代用30V 左右的稳压管。
上述应用时,三极管的基极均不使用。
3. 模拟。
用三极管够成的电路还可以模拟其它元器件。
大功率可变电阻价贵难觅,用图7 电路可作模拟品,调节510 电阻的阻值,即可调节三极管C 、E 两极之间的阻抗,此阻抗变化即可代替可变电阻使用。
图8 为用三极管模拟的稳压管。
其稳压原理是:当加到A 、B 两端的输入电压上升时,因三极管的B 、E 结压降基本不变,故R2 两端压降上升,经过R2
的电流上升,三极管发射结正偏增强,其导通性也增强, C 、E 极间呈现的等效电阻减小,压降降低,从而使AB 端的输入电压下降。
调节R2 即可调节此模拟稳压管的稳压值,等效为(待续)。