Matlab二维数组及其应用

合集下载

matlab 数组积分

matlab 数组积分

matlab 数组积分摘要:一、引言1.1 MATLAB简介1.2 数组在MATLAB中的重要性1.3 积分运算在数学和工程领域的应用二、MATLAB数组积分概念2.1 数组积分定义2.2 数组积分的性质2.3 数组积分与传统积分的关系三、MATLAB数组积分操作3.1 数组积分的创建3.2 数组积分元素的访问与修改3.3 数组积分运算符3.4 数组积分函数四、MATLAB数组积分应用实例4.1 二维数组积分示例4.2 三维数组积分示例4.3 数组积分在实际问题中的应用五、MATLAB数组积分与其他数学工具的联系5.1 MATLAB与数学软件包的集成5.2 数组积分与其他数学概念的关联六、总结6.1 数组积分在MATLAB中的重要性6.2 数组积分的优缺点6.3 对未来MATLAB数组积分的展望正文:一、引言MATLAB是一种广泛应用于科学计算和工程设计的数学软件,其强大的矩阵运算功能使得用户可以轻松地处理复杂数学问题。

在MATLAB中,数组是矩阵的一种扩展,可以存储和管理大量数据。

积分运算在数学和工程领域具有广泛的应用,如求解定积分、计算面积和体积等。

因此,了解MATLAB数组积分对于更好地应用该软件具有重要意义。

二、MATLAB数组积分概念数组积分是MATLAB中一种特殊的积分运算,它可以对数组中的每个元素进行积分。

数组积分具有以下性质:1.数组积分是逐个元素进行的,即对数组中的每个元素求积分。

2.数组积分的结果是一个新的数组,其元素是原数组中对应元素的积分结果。

数组积分与传统积分之间的关系可以通过以下例子说明:假设有一个二维数组A,对其进行数组积分得到结果B。

则B的元素b_ij 表示A中元素a_ij的积分结果。

若A是一个n×m的矩阵,则传统积分的结果为一个标量值,而数组积分的结果是一个n×m的矩阵。

三、MATLAB数组积分操作在MATLAB中,数组积分的创建、访问、修改和运算等操作均非常简便。

MATLAB实验二《一维二维数组的创建和寻访》

MATLAB实验二《一维二维数组的创建和寻访》

实验二一维二维数组的创建和寻访一、实验目的1、掌握一维数组、二维数组创建和寻访的几种方法。

2、区别数组运算和矩阵运算的差别。

3、熟悉执行数组运算的常用数组操作函数。

4、掌握数组运算中的关系和逻辑操作及常用的关系、逻辑函数。

5、掌握“非数”、“空”数组在MA TLAB中的应用。

二、实验主要仪器与设备装配有MA TLAB7.6软件的计算机三、预习要求做实验前必须认真复习第三章MATLAB的数值数组及向量化运算功能。

四、实验内容及实验步骤1、一维数组的创建方法有哪几种?举例说明。

答:(1)“冒号”生成法;(2)线性(或对数)定点法;(3)逐个元素输入法;(4)运用MA TLAB 函数生成法。

例子:b1=linspace(0,pi,4)b2=logspace(0,3,4)运行结果:b1 =0 1.0472 2.0944 3.1416b2 =1 10 100 10002、根据要求补充输入指令,并写出运行结果。

本例演示:数组元素及子数组的各种标识和寻访格式;冒号的使用;end的作用。

A= zeros(2,6)%创建(2×6)的全零数组A(:)=1:12 %赋值号左边:单下标寻访(2×6) 数组A的全部12个元素%赋值号右边:拥有12个元素的一维数组A( 2,4 ) %双下标:A数组的第2行第4列元素A(8) %单下标:数组A的第8个元素A(: , [1,3]) %双下标:显示A的“第1列和第3列上全部行的元素”A([1, 2, 5, 6]') %单下标:把A数组第1,2,5,6个元素排成列向量A(: , 4:end) %双下标:显示A的“从第4起到最后一列上全部行的元素”%在此end用于“列标识”,它表示“最后一列”A(2,1:2:5)=[-1, -3, -5] %把右边的3个数分别赋向A数组第2行的第1,3,5个元素位置B=A([1, 2, 2, 2], [1, 3, 5]) %取A数组的1,3,5列的第1行元素作为B的第1行%取A数组的1,3,5列的第2行分别作为B的第2,3,4行L=A<3 %产生与A维数相同的“0,1”逻辑数组A(L)=NaN %把逻辑1标识的位置上的元素赋为“非数”运行结果:A =0 0 0 0 0 00 0 0 0 0 0A =1 3 5 7 9 112 4 6 8 10 12ans =8ans =8ans =1 52 6ans =1256ans=7 9 118 10 12A =1 3 5 7 9 11-1 4 -3 8 -5 12B =1 5 9-1 -3 -5-1 -3 -5-1 -3 -5L =1 0 0 0 0 01 0 1 0 1 0A =NaN 3 5 7 9 11NaN 4 NaN 8 NaN 123、补充输入以下指令,写出运行结果并说明reshape,diag,repmat,flipud,fliplr,rot90的作用。

matlab2011教程之二数值数组及向量化运算

matlab2011教程之二数值数组及向量化运算

第 2 章 数值数组及向量化运算本章集中讲述两个数据类型(数值数组和逻辑数组)、两个特有概念变量(非数和空)、以及MATLAB的数组运算和向量化编程。

值得指出:本章内容是读者今后编写各种科学计算M码的基本构件。

数值数组(Numeric Array)是MATLAB最重要的数据类型数组。

在各种维度的数值数组中,二维数组为最基本、最常用。

本章对二维数组创建、标识、寻访、扩充、收缩等方法进行了详尽细腻的描述,并进而将这些方法推广到高维数组。

本章讲述的逻辑数组主要产生于逻辑运算和关系运算。

它是MATLAB 援引寻访数据、构成数据流控制条件、、编写复杂程序所不可或缺的重要构件。

数组运算是MATLAB区别于其它程序语言的重要特征,是MATLAB绝大多数函数指令、Simulink许多库模块的本性,是向量化编程的基础。

为此,本章专辟第2.2节用于阐述MATLAB的这一重要特征。

在此提醒读者注意:随书光盘mbook目录上保存着本章相应的电子文档“ch02_数值数组及向量化运算.doc”。

该文档中有本章全部算例的可执行指令,以及相应的运算结果。

2.1数值数组的创建和寻访2.1.1一维数组的创建1递增/减型一维数组的创建(1)“冒号”生成法(2)线性(或对数)定点法2其他类型一维数组的创建(1)逐个元素输入法(2)运用MATLAB函数生成法【例2.1-1】一维数组的常用创建方法举例。

a1=1:6a2=0:pi/4:pia3=1:-0.1:0a1 =1 2 3 4 5 6a2 =0 0.7854 1.5708 2.3562 3.1416a3 =Columns 1 through 81.0000 0.9000 0.8000 0.7000 0.6000 0.5000 0.4000 0.3000Columns 9 through 110.2000 0.1000 0b1=linspace(0,pi,4)b2=logspace(0,3,4)b1 =0 1.0472 2.0944 3.1416b2 =1 10 100 1000c1=[2 pi/2 sqrt(3) 3+5i]c1 =2.0000 1.5708 1.73213.0000 + 5.0000i rng defaultc2=rand(1,5)c2 =0.8147 0.9058 0.1270 0.9134 0.6324〖说明〗x1=(1:6)' , x2=linspace(0,pi,4)'y1=rand(5,1)z1=[2; pi/2; sqrt(3); 3+5i]2.1.2二维数组的创建1小规模数组的直接输入法【例2.1-2】在MATLAB环境下,用下面三条指令创建二维数组C。

matlab多维数组形状

matlab多维数组形状

matlab多维数组形状MATLAB多维数组的形状MATLAB是一种功能强大的数值计算和科学数据可视化工具,它以其多维数组操作而闻名。

在MATLAB中,多维数组是其中最重要的数据结构之一。

它们允许我们以一种清晰而简洁的方式处理和分析具有多个维度的数据。

一维数组是最简单的数组形状。

它由一系列按顺序排列的元素组成。

我们可以使用一对方括号和逗号分隔的元素列表表示一维数组。

例如,以下是一个包含5个元素的一维数组的定义:arr = [1, 2, 3, 4, 5]二维数组则是由多行和多列组成的矩阵。

我们也可以使用一对方括号表示,每行的元素由逗号分隔,每行之间用分号分隔。

以下是一个包含3行2列的二维数组的定义:matrix = [1, 2;3, 4;5, 6]三维数组是由多个二维数组组成的集合。

我们可以将三维数组看作是一个立方体,其中每个面都是一个二维数组。

在MATLAB中,我们可以使用一对方括号和分号分隔的二维数组定义每个面。

以下是一个包含2个2行3列的二维数组的三维数组的定义:cube = [1, 2, 3;4, 5, 6],[7, 8, 9;10, 11, 12]对于更高维度的数组,我们可以将其看作是一个更大的数据容器,其中嵌套了更小的维度。

同样,我们可以使用一对方括号和分号分隔的多维数组定义每个较低维度的数组。

下面是一个包含2个2行3列的二维数组的两个三维数组的定义:array = [1, 2, 3;4, 5, 6],[7, 8, 9;10, 11, 12];[13, 14, 15;16, 17, 18],[19, 20, 21;22, 23, 24]除了上述示例中使用的方括号表示数组外,我们还可以使用函数来创建不同形状的多维数组。

例如,我们可以使用zeros函数创建一个全为零的数组,使用ones函数创建一个全为一的数组,或使用rand函数创建一个随机数数组。

创建一个具有特定形状的多维数组后,我们可以对其进行各种操作,如元素索引、切片和重塑等。

matlab中array的用法

matlab中array的用法

matlab中array的用法Matlab中的array(数组)是一种重要的数据结构,它可以存储和处理一组数据。

一、创建数组在Matlab中可以通过以下方式创建数组:1.使用[]来创建数组如:A = [1,2,3,4,5],表示创建了一个包含5个元素的数组,分别是1,2,3,4,5。

2.使用linspace函数创建等差数列如:A = linspace(1,10,10),表示创建了一个长度为10的等差数列,从1到10。

3.使用logspace函数创建等比数列如:A = logspace(1,3,3),表示创建了一个长度为3的等比数列,从10到1000。

二、访问和操作数组1.通过索引访问数组元素如:A(2)表示对数组A中第二个元素进行访问、修改或运算。

2.在数组中添加、移除元素可以使用 append 函数在数组末尾添加元素;可以使用 remove 函数删除数组中的指定元素。

3.数组运算Matlab中的数组支持很多数学运算,例如:加、减、乘、除、矩阵乘积等,可以使用加减乘除符号或者对应的函数进行运算。

如:C = A + B;D = A * B。

三、应用实例以下以一个简单的数组排序为例,来介绍数组的应用。

我们要将一个包含5个随机数的数组从小到大排序。

使用sort函数可以对数组进行排序,如:A = [5,4,3,1,2],B =sort(A);则B的值为[1,2,3,4,5]。

如果我们要实现一个基于插入排序的程序,来达到同样的效果,可以按照以下步骤操作:1.设定一个数组A;2.循环从第二个元素开始到最后一个元素,每次取出一个元素;3.将待排序元素插入有序数组中,得到新的有序数组。

四、总结数组是Matlab中一个重要的数据结构,我们可以使用数组来存储和处理一组数据。

通过索引访问数组元素、数组运算、添加、移除元素,我们可以完成对数组的操作。

在本文的实例中,我们通过Matlab中的sort函数和自己实现的算法两种方式,对一个数组进行了排序,体现了数组的应用的实际意义。

Matlab二维数组及其应用

Matlab二维数组及其应用

Matlab:二维数组及其应用二维数组实际上也是一个矩阵。

应此直接创建一个矩阵就行。

创建的方法你应该会吧,就是直接按行方式输入每个元素:同一行中的元素用逗号(,)或者用空格符来分隔,且空格个数不限;不同的行用分号(;)分隔。

所有元素处于一方括号([ ])内。

比如,创建一个3×5的矩阵(对应3×5的二维数组)A = [12 62 93 -8 22; 16 2 87 43 91; -4 17 -72 95 6]A =12 62 93 -8 2216 2 87 43 91-4 17 -72 95 6当然也可以用专门用来创建多维数组的cat函数来创建。

具体如下:函数cat格式A=cat(n,A1,A2,…,Am)说明n=1和n=2时分别构造[A1;A2]和[A1,A2],都是二维数组,而n=3时可以构造出三维数组。

例如:>> A1=[1,2,3;4,5,6;7,8,9];A2=A1';>> A3=cat(2,A1,A2)A3 =1 2 3 1 4 74 5 6 2 5 87 8 9 3 6 9这样A3就是一个二维数组此外还有诸如特殊矩阵的创建方法等这里就不列举了你可以百度或者Google一下二维数组的变换我还不太确定你的意思:这里就提供几个矩阵的操作:1.矩阵的变维矩阵的变维有两种方法,即用“:”和函数“reshape”,前者主要针对2个已知维数矩阵之间的变维操作;而后者是对于一个矩阵的操作。

(1)“:”变维例1-48> A=[1 2 3 4 5 6;6 7 8 9 0 1]A =1 2 3 4 5 66 7 8 9 0 1>> B=ones(3,4)B =1 1 1 11 1 1 11 1 1 1>> B(:)=A(:)B =1 7 4 06 3 9 62 8 5 1(2)Reshape函数变维格式 B = reshape(A,m,n) %返回以矩阵A的元素构成的m×n矩阵BB = reshape(A,m,n,p,…) %将矩阵A变维为m×n×p×…B = reshape(A,[m n p…]) %同上B = reshape(A,siz) %由siz决定变维的大小,元素个数与A中元素个数相同。

matlab中二维插值函数用法

matlab中二维插值函数用法

matlab中二维插值函数用法Matlab是一种强大的数学软件,可以对数据进行各种操作和分析。

在Matlab 中,二维插值函数是一种非常常用的工具,它可以帮助我们在已知数据点的基础上,估计其它位置的数值。

在本文中,我们将一步一步介绍二维插值函数的用法,希望对你有所帮助。

首先,我们需要明确一点,二维插值是用于处理二维平面上的数据,即x和y坐标都是变化的。

插值的目的是在这样的二维数据上,估计其它位置的数值,使得整个平面上的数值分布更加密集。

在Matlab中,二维插值函数主要是interp2函数。

该函数的基本语法如下:Vq = interp2(X, Y, V, Xq, Yq, method)其中,X和Y是已知数据点的x和y坐标,V是对应的数值;Xq和Yq是我们要估计数值的位置,Vq是估计得到的数值;method是插值方法,可以是‘linear’、‘nearest’、‘spline’等。

接下来,我们来演示一个具体的例子,以说明interp2函数的用法。

假设我们有一组二维数据如下:X = [1, 2, 3; 1, 2, 3; 1, 2, 3]Y = [1, 1, 1; 2, 2, 2; 3, 3, 3]V = [0, 1, 0; 1, 4, 1; 0, 1, 0]这里,X和Y分别是数据点的x和y坐标,V是对应的数值。

现在我们想要在位置(1.5, 1.5)处进行插值,估计其数值。

我们可以使用interp2函数来完成这个任务:Vq = interp2(X, Y, V, 1.5, 1.5, 'linear')这里,我们使用了‘linear’插值方法,得到的估计值Vq为2。

这就是在位置(1.5, 1.5)处的估计数值。

除了‘linear’插值方法,我们还可以尝试其它方法,比如‘nearest’和‘spline’。

这些方法在实际应用中有着不同的特点,需要根据具体情况选择合适的方法。

例如,‘nearest’方法会选择最近的数据点的数值作为估计值,‘spline’方法则会使用样条插值进行估计。

MATLAB基础教程 第2章 数组、矩阵及其运算

MATLAB基础教程 第2章 数组、矩阵及其运算

写出MATLAB表达式。 解:根据MATLAB的书写规则,以上MATLAB表达式为: (1)y=1/(a*log(1-x-1)+C1) (2)f=2*log(t)*exp(t)*sqrt(pi) (3)z=sin(abs(x)+abs(y))/sqrt(cos(abs(x+y))) (4)F=z/(z-exp(T*log(8)))
命令:X(3:-1:1)
命令:X(find(X>0.5)) 命令:X([1 2 3 4 4 3 2 1])
第二章 数组、矩阵及其运算
2.1 数组(矩阵)的创建和寻访
2. 二维数组的创建和寻访
例2-3 综合练习。将教材P.31~P.44的实例按顺序在MATLAB的 command窗口中练习一遍,观察并体会其输出结果。 (注意变量的大小写要和教材上的严格一致。)
A./B
B.\A
A的元素被B的对应元素相除
(与上相同)
第二章 数组、矩阵及其运算
2.3 数组、矩阵的其他运算
1. 乘方开方运算
数组的乘方运算与power函数 格式:c=a.^k或c=power(a,k) 例如: >> g=[1 2 3;4 5 6] >>g.^2 矩阵的乘方运算与mpower函数 格式:C=A^P或C=mpower(A,P) 注意:A必须为方阵
第二章 数组、矩阵及其运算
2.2 数组、矩阵的运算
3. 矩阵的加法、减法
运算规则是:若A和B矩阵的维数相同,则可以执行矩阵的加减运算, A和B矩阵的相应元素相加减。如果维数不相同,则MATLAB将给出
出错信息。
第二章 数组、矩阵及其运算
2.2 数组、矩阵的运算
3. 矩阵的乘法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Matlab:二维数组及其应用
二维数组实际上也是一个矩阵。

应此直接创建一个矩阵就行。

创建的方法你应该会吧,就是直接按行方式输入每个元素:同一行中的元素用逗号(,)或者用空格符来分隔,且空格个数不限;不同的行用分号(;)分隔。

所有元素处于一方括号([ ])内。

比如,创建一个3×5的矩阵(对应3×5的二维数组)
A = [12 62 93 -8 22; 16 2 87 43 91; -4 17 -72 95 6]
A =
12 62 93 -8 22
16 2 87 43 91
-4 17 -72 95 6
当然也可以用专门用来创建多维数组的cat函数来创建。

具体如下:
函数cat
格式A=cat(n,A1,A2,…,Am)
说明n=1和n=2时分别构造[A1;A2]和[A1,A2],都是二维数组,而n=3时可以构造出三维数组。

例如:
>> A1=[1,2,3;4,5,6;7,8,9];A2=A1';
>> A3=cat(2,A1,A2)
A3 =
1 2 3 1 4 7
4 5 6 2 5 8
7 8 9 3 6 9
这样A3就是一个二维数组
此外还有诸如特殊矩阵的创建方法等这里就不列举了你可以百度或者Google一下
二维数组的变换我还不太确定你的意思:
这里就提供几个矩阵的操作:
1.矩阵的变维
矩阵的变维有两种方法,即用“:”和函数“reshape”,前者主要针对2个已知维数矩阵之间的变维操作;而后者是对于一个矩阵的操作。

(1)“:”变维
例1-48
> A=[1 2 3 4 5 6;6 7 8 9 0 1]
A =
1 2 3 4 5 6
6 7 8 9 0 1
>> B=ones(3,4)
B =
1 1 1 1
1 1 1 1
1 1 1 1
>> B(:)=A(:)
B =
1 7 4 0
6 3 9 6
2 8 5 1
(2)Reshape函数变维
格式 B = reshape(A,m,n) %返回以矩阵A的元素构成的m×n矩阵B
B = reshape(A,m,n,p,…) %将矩阵A变维为m×n×p×…
B = reshape(A,[m n p…]) %同上
B = reshape(A,siz) %由siz决定变维的大小,元素个数与A中元素个数相同。

矩阵变维例子:
>> a=[1:12];
>> b=reshape(a,2,6)
b =
1 3 5 7 9 11
2 4 6 8 10 12
2.矩阵的变向
(1)矩阵旋转
函数
格式 B = rot90 (A) %将矩阵A逆时针方向旋转90°
B = rot90 (A,k) %将矩阵A逆时针方向旋转(k×90°),k可取正负整数。

例如:
>> A=[1 2 3;4 5 6;7 8 9]
A =
1 2 3
4 5 6
7 8 9
>> Y1=rot90(A),Y2=rot90(A,-1)
Y1 = %逆时针方向旋转
3 6 9
2 5 8
1 4 7
Y2 = %顺时针方向旋转
7 4 1
8 5 2
9 6 3
(2)矩阵的左右翻转
函数fliplr
格式 B = fliplr(A) %将矩阵A左右翻转
(3)矩阵的上下翻转
函数flipud
格式 B = flipud(A) %将矩阵A上下翻转
例如:
>> A=[1 2 3;4 5 6]
A =
1 2 3
4 5 6
>> B1=fliplr(A),B2=flipud(A)
B1 =
3 2 1
6 5 4
B2 =
4 5 6
1 2 3
(4)按指定维数翻转矩阵
函数flipdim
格式 B = flipdim(A,dim) % flipdim(A,1) = flipud(A),并且flipdim(A,2)=fliplr(A)。

例如
>> A=[1 2 3;4 5 6]
A =
1 2 3
4 5 6
>> B1=flipdim(A,1),B2=flipdim(A,2)
B1 =
4 5 6
1 2 3
B2 =
3 2 1
6 5 4
(5)复制和平铺矩阵
函数repmat
格式 B = repmat(A,m,n) %将矩阵A复制m×n块,即B由m×n块A平铺而成。

B = repmat(A,[m n]) %与上面一致
B = repmat(A,[m n p…]) %B由m×n×p×…个A块平铺而成
repmat(A,m,n) %当A是一个数a时,该命令产生一个全由a组成的m×n矩阵。

例如
>> A=[1 2;5 6]
A =
1 2
5 6
>> B=repmat(A,3,4)
B =
1 2 1 2 1 2 1 2
5 6 5 6 5 6 5 6
1 2 1 2 1 2 1 2
5 6 5 6 5 6 5 6
1 2 1 2 1 2 1 2
5 6 5 6 5 6 5 6
3.矩阵元素的数据变换
对于小数构成的矩阵A来说,如果我们想对它取整数,有以下几种方法:(1)按-∞方向取整
函数floor
格式floor(A) %将A中元素按-∞方向取整,即取不足整数。

(2)按+∞方向取整
函数ceil
格式ceil(A) %将A中元素按+∞方向取整,即取过剩整数。

(3)四舍五入取整
函数round
格式round (A) %将A中元素按最近的整数取整,即四舍五入取整。

(4)按离0近的方向取整
函数fix
格式fix (A) %将A中元素按离0近的方向取整
例如:
>> A=-1.5+4*rand(3)
A =
2.3005 0.4439 0.3259
-0.5754 2.0652 -1.4260
0.9274 1.5484 1.7856
>> B1=floor(A),B2=ceil(A),B3=round(A),B4=fix(A)
B1 =
2 0 0
-1 2 -2
0 1 1
B2 =
3 1 1
0 3 -1
1 2 2
B3 =
2 0 0
-1 2 -1
1 2 2
B4 =
2 0 0
0 2 -1
0 1 1
(5)矩阵的有理数形式
函数rat
格式[n,d]=rat (A) %将A表示为两个整数矩阵相除,即A=n./d。

例如:对于上例中的A
>> [n,d]=rat(A)
n =
444 95 131
-225 2059 -472
166 48 1491
d =
193 214 402
391 997 331
179 31 835
(6)矩阵元素的余数
函数rem
格式 C = rem (A, x) %表示A矩阵除以模数x后的余数。

若x=0,则定义rem(A, 0)=NaN,若x≠0,则整数部分由fix(A./x)表示,余数C=A-x.*fix (A./x)。

允许模x为小数。

相关文档
最新文档