图像分割之Graph cut算法
融合SUSAN特征的医学图像Graph Cuts算法

融合SUSAN特征的医学图像Graph Cuts算法
詹曙;孙乔博;徐甲甲;蒋建国
【期刊名称】《电子测量与仪器学报》
【年(卷),期】2013(27)6
【摘要】交互式图像分割算法由于可以从复杂的医学图像中分割出感兴趣的组织,现已引起研究者的广泛关注。
该算法对Graph Cuts中经典能量函数的边界项进行改进,将传统的灰度特征替换为SUSAN特征。
由于SUSAN特征的求和机制,极大的抑制了噪声的影响,对边界的定位也更加准确。
实验表明该算法能够准确分割出感兴趣目标,剔除多余边界,并且对噪声也有很好的抑制作用。
【总页数】6页(P509-514)
【关键词】图切割;SUSAN算子;抗噪;能量函数;边界项;交互式
【作者】詹曙;孙乔博;徐甲甲;蒋建国
【作者单位】合肥工业大学计算机与信息学院
【正文语种】中文
【中图分类】TN929.52
【相关文献】
1.融合区域合并和Graph Cuts的彩色图像分割方法 [J], 黄娟;梅浙川;黄小明
2.第二代Curvelet变换与像素能量特征对比度结合的医学图像算法融合算法 [J], 代茵;王宇义
3.基于改进SUSAN算法的医学图像边缘检测 [J], 王敏;龚晓峰;曾军
4.基于改进SUSAN算法的医学图像边缘检测 [J], 王敏;龚晓峰;曾军
5.融合背景能量项的Graph Cuts PCB CT图像分割 [J], 董昌灏;闫镔;曾磊;李建新因版权原因,仅展示原文概要,查看原文内容请购买。
颜色分割方法

颜色分割方法
颜色分割是图像处理中的一种方法,用于将图像中的不同颜色区域分隔开。
以下是一些常见的颜色分割方法:
阈值分割:将图像的每个像素与一个或多个预定义的颜色阈值进行比较,根据比较结果将像素分类为不同的颜色区域。
基于颜色空间的分割:将图像从RGB颜色空间转换为其他颜色空间(如HSV、Lab),然后根据新颜色空间的特性进行分割。
K均值聚类:将图像中的像素分成K个簇,每个簇代表一个颜色区域。
这是一种无监督学习方法,适用于没有明确颜色标签的图像。
区域生长:从种子像素开始,逐步合并相邻的像素,合并规则通常基于像素之间的颜色相似性。
图割(Graph Cut):将图像表示为图,通过最小化或最大化割边的方式实现分割。
这在处理具有复杂颜色分布的图像时很有效。
分水岭算法:基于图像的梯度信息,将图像看作地形地貌,通过水流模拟来找到图像中不同颜色的分割。
这些方法可以单独使用,也可以结合使用,具体选择取决于图像的特性和应用需求。
在实践中,通常需要根据具体情况调整参数或采用适用于特定场景的算法。
1。
基于改进Graph Cuts的印刷电路板CT图像分割算法

DOI : 1 0 . 3 9 6 9 / j . i s s n . 1 6 7 1 — 0 6 7 3 . 2 0 1 3 . 0 1 . 0 1 2
基 于 改进 G r a p h C u t s的印刷 电路 板 C T图像 分 割算 法
董 昌灏 ,童 莉 ,曾 磊 ,闰 镔 ,李 建新
( 信 息 工 程 大 学 信 息 系统 工 程 学 院 , 河南 郑州 4 5 0 0 0 2 )
摘要: 基 于锥 束 C T的 印刷 电路 板 ( P C B) 无 损 检 测是 近 年 来 出现 的新 的 P C B检 测 手 段 , 但 是
c T图像 中普遍存 在 的金属 伪影 容 易导致 P C B图像 的错误 分 割。为 了抑制 金属 伪影 对 P C B图
第 1 4卷 第 1 期
2 0 1 3年 2月
信 息 工 程 大 学 学 报
J o u r n a l o f I n f o r ma t i o n En g i n e e r i n g Uni v e r s i Fe b . 2 01 3
f a l s e s e g me n t a t i o n wh i c h i s s t i l l a c h a l l e n g i n g p r o b l e m . To d e a l wi t h i t ,a n e w i n t e r a c t i v e s e g me n t a 。 t i o n me t h o d b a s e d o n g r a p h c u t s i s p r o p o s e d i n t hi s p a p e r . Ac c o r di ng t o t he hi s t o g r a m o f t h e P CB i ma g e, a ne w c o s t f un c t i o n i s d e s i g n e d a n d s e e d p o i n t s i n f o r ma t i o n i s u s e d a s a p a r a me t e r or f r e g i o n c o s t a t t h e s a me t i me wh i c h r e s ul t s i n a b e t t e r us e o f u s e r i n p ut i n f o r ma t i o n . Co mp a r i s o n b e t we e n d i f f e r e n t PCB i ma g e s e g me n t a t i o n e x p e r i me n t s d e mo n s t r a t e t h a t t he p r o po s e d me t h o d h a v e b e t t e r p e r ‘ f o r ma n c e c o mp a r e d wi t h t he s t a t e - o f - a r t me t h o d s s uc h a s Gr a p h Cu t s a n d Gr a b c u t i n t e r ms o f s e g -
能量函数构图割

能量函数构图割图像分割是一种重要的图像分析技术,它不仅得到人们广泛的重视和研究,也在实际中得到大量的应用。
近年来,在计算机视觉领域涌现了大量的图像分割算法。
其中基于能量函数的分割算法具有良好的特性,它通过建立数学模型,将分割问题转化成数学寻优问题,能够清楚地描述要解决的问题,而且与求解问题的算法分开。
基于能量函数的分割方法根据能量函数的类型和寻优过程的不同而区分。
通常主要的两大类是:(1)优化一个定义在连续轮廓或连续曲面的函数;(2)优化一个定义在一系列离散变量上的开销函数。
本文重点研究了第一类的水平集模型和第二类的Graphcut模型在图像分割中的应用。
(1)我们提出一个新的Graphcut模型,该模型利用随机森林算法强的学习和分类性能,来构建Graphcut能量函数,以及相应的图结构。
然后通过最大流算法优化我们的模型得到分割结果;(2)对于水平集模型,我们首先针对Chan-Vese模型提出一个避免求解偏微分方程的快速实现模型,该模型利用每次求得的灰度均值来进行演化,不仅运算量大大减少,同时保持了水平集算法的良好拓扑性能。
最后,我们提出一个基于张量场的水平集模型。
一方面,该模型利用张量结构能够分割纹理图像;另一方面,该模型使用一个区域可变项,能够注重局部信息,从而对于灰度不均匀的图像也能得到比较好的分割结果。
通过能量最小化模型解决一个问题包括两个主要步骤:第一步,描述出一个目标函数,它将所有可能解映射到实数集中,并且给出了可能解的好(坏)程度。
一个目标函数通常是对应该问题的不同约束项的累加,这些约束可以是软约束也可以是硬约束。
在本论文中,所有的目标函数将给出了可能结果的好(坏)程度。
我们称这些目标函数为能量函数。
第二步,最小化能量函数。
这通常是非常艰巨的任务。
计算机视觉中的能量函数通常有很多维和许多局部最小。
许多研究者们已经试用过某些一般的最小化方法,例如梯度下降和模拟退火的方法。
前一个方法几乎可以用于所有连续变量的函数中,后一个方法几乎可以用于所有离散变量函数中。
基于纹理平滑和GrabCut的皮影图案轮廓的智能提取

基于纹理平滑和GrabCut的皮影图案轮廓的智能提取作者:刘静庄梅玲石历丽高婷来源:《丝绸》2020年第11期摘要:为客观有效地识别局部图案轮廓,实现可选择性目标的提取,文章以皮影图案为研究对象,针对皮影图像局部细节丰富、色彩饱和度高而背景信息干扰较大的特点,设计了皮影图案轮廓的智能提取算法。
首先,采用相对总变差模型进行噪声与主结构的分离,实现图像的平滑处理;然后,设计GrabCut算法,通过分析图案轮廓的边界紧密度指标,确定最优的超像素分割数量,实现局部图案的优化分割;最后,运用Canny算子对分割后的皮影图案进行了轮廓提取。
通过6幅皮影图像的轮廓提取实验结果表明,提出的方法准确完整地实现了目标图案的轮廓提取,且图案分割结果的像素准确度(PA)均大于95%。
关键词:皮影;智能轮廓提取;相对总变差模型;超像素分割;GrabCut;Canny中图分类号: TS941.2文献标志码: A文章编号: 1001-7003(2020)11-0020-08引用页码: 111104Abstract: In order to identify the local pattern contour and extract the optional target, this paper takes the shadow pattern as the research object. According to the characteristics of rich local details, high color saturation and strong interference of background information in the shadow image, an intelligent contour extraction algorithm for shadow patterns was designed. First of all, inorder to achieve image smoothing, the relative total variation model was used to separate the noise from the main structure. Then, the GrabCut algorithm was designed. By analyzing the boundary compactness index of the pattern contour, the optimal super-pixel segmentation quantity was determined to realize the optimal segmentation of the local pattern. Finally, the contour of the segmented shadow pattern was extracted by Canny operator. The contour extraction experiment results of 6 shadow images showed that the method proposed in this paper could extract the contour of target pattern accurately and completely, and the pixel accuracy(PA) of the pattern segmentation was greater than 95%.Key words: shadow play; intelligent contour extraction; relative total variation model; super-pixel segmentation; GrabCut; Canny皮影是一門“动则成戏,静则成画”的古老艺术,蕴含着独特的美学特征和传统的文化内涵,至今已有两千多年历史[1]。
Grab cut及其改进算法研究

Grab cut及其改进算法研究作者:黄玲玲来源:《软件导刊》2015年第05期摘要:Grab cut是一种基于Graph cuts算法原理改进而来的交互式分割算法,很多情况下有着很好的分割效果,但是在图片的背景与前景具有很高相似度时,分割效果很不理想。
随着数码技术的发展,人们需要处理的图像越来越多,对如何提高算法的分割效果、执行效率及改善交互方式的研究具有深远意义。
对Grab cut算法以及在HSV颜色空间下的Grab cut算法和自适应Grab cut算法进行了研究。
关键词:Grab cut; HSV颜色空间;自适应Grab cut中图分类号:TP312文献标识码:A 文章编号:1672-7800(2015)005-0065-03作者简介:黄玲玲(1990-),女,四川广安人,西南交通大学信息科学与技术学院硕士研究生,研究方向为数字图像处理。
0 引言图割算法是目前广泛使用的交互式图像分割算法之一,该方法将图像分割过程转化为求解包含区域信息和边界信息的能量函数最小化过程。
基于该理论提出的分割算法包括:交互式Graph cut算法[1]、Grab cut 算法[2]、Lazy snapping算法[3]等。
图割算法摒弃了传统的自然图像抠图技术中的三分图输入,将自然图像抠图问题转换成下面两个问题:①找出自然图像中前景与背景之间的边界,也就是把需要抠图的自然图像分割成前景部分和背景部分;②根据上一个问题中得到的分割信息,对前景的边缘部分进行细化,从而达到自然图像抠图的目的。
Grab cut算法与其它图割算法相比,交互方式简单且分割效果好,在图像分割、图像识别等领域被广泛运用。
但是该算法对于前景和背景具有很高相似度的图片分割效果不理想,同时由于GMM模型的迭代求解过程复杂,使得算法时间花销大。
随着数码技术的发展,人们需要处理的图像越来越多,对于交互方式更为简洁的需求也越来越大,因此很多学者对进一步改善Grab cut算法的分割效果、效率和交互方式进行了研究,其中有代表性的是Priyaka和Anurag[4]等提出的基于HSV颜色空间的Grab cut算法,以及Kang[5]等提出的基于格网掩码和均值漂移的Grab cut算法。
图像分割之Graphcut算法

前景和背景。由于它是基于颜色统计采样的方法,因此对前背景相差较
大的图像效果较佳。
Basics (基础知识)
图论中的图(graph):
一个图G定义为一个有序对
(V,G),记为G=(V,G),其
中
研究背
研究方
(1) V是一个非空集合,称为顶
同的物理意义。
景
案
果
结
Graph Cuts是在普通图的基础上多了2个顶点,这2个顶点分别用符号”S”
和”T”表示,统称为终端顶点。其它所有的顶点都必须和这2个顶点相连形
成边集合中的一部分。所以Graph Cuts中有两种顶点,也有两种边。
Basics (基础知识)
第一种顶点和边是:第一种普每两个邻域像
素)的连接就是一条边。这种边也叫
n-links。
研究背
研究方
第二种顶点和边是:除图像像素外,
景
案
还有另外两个终端顶点,叫S和T。每
个普通顶点和这2个终端顶点之间都
有连接,组成第二种边。这种边也叫
t-links。
研究成
果
研究总
结
Graph Cut (图割)
Graph Cut中的Cut是指这样一个边的
term),B(L)为边界项(boundary
边界项之间的重要因子,决定它们对能量的影响大小。
景
案
果
结
E(L)表示的是权值,即损失函数,也叫能量函数,图割的目标就是优化能量函数使其值
达到最小。
?Regional Term (区域项)
区域项: t-links中边的权值计算
R L = ( )
图像切割—基于图的图像切割(Graph-BasedImageSegmentation)

图像切割—基于图的图像切割(Graph-BasedImageSegmentation)图像切割—基于图的图像切割(Graph-Based Image Segmentation)Reference:Efficient Graph-Based Image Segmentation,IJCV 2004,MIT最后⼀个暑假了,不打算开疆辟⼟了。
战略中⼼转移到品味经典。
计划把图像切割和⽬标追踪的经典算法都看⼀看。
再记些笔记。
Graph-Based Segmentation 是经典的图像切割算法,作者Felzenszwalb也是提出算法的⼤⽜。
该算法是基于图的贪⼼聚类算法,实现简单。
速度⽐較快,精度也还⾏。
只是。
眼下直接⽤它做切割的应该⽐較少,毕竟是99年的跨世纪元⽼,可是⾮常多算法⽤它作垫脚⽯。
⽐⽅Object Propose的开⼭之作《Segmentation as Selective Search for Object Recognition》就⽤它来产⽣过切割(oversegmentation)。
还有的语义切割(senmatic segmentation )算法⽤它来产⽣超像素(superpixels)详细忘记了……图的基本概念由于该算法是将照⽚⽤加权图抽象化表⽰,所以补充图的⼀些基本概念。
图是由顶点集(vertices)和边集(edges)组成,表⽰为。
顶点,在本⽂中即为单个的像素点。
连接⼀对顶点的边具有权重,本⽂中的意义为顶点之间的不相似度,所⽤的是⽆向图。
树:特殊的图。
图中随意两个顶点,都有路径相连接,可是没有回路。
如上图中加粗的边所连接⽽成的图。
假设看成⼀团乱连的珠⼦,仅仅保留树中的珠⼦和连线。
那么随便选个珠⼦,都能把这棵树中全部的珠⼦都提起来。
假设,i和h这条边也保留下来。
那么顶点h,i,c,f,g就构成了⼀个回路。
最⼩⽣成树(MST, ):特殊的树。
给定须要连接的顶点,选择边权之和最⼩的树。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果一研个割究,背它的边的所研有究权方值之和最小研, 究成 那么这个就景称为最小割,也案就是图割的结 果
果。
最大流量最小割算法就可以用来获得s-t图 的最小割,这个最小割把图的顶点划分为 两个不相交的子集S和T,其中s ∈S,t∈ T 和S∪T=V 。
(1) V是一研个非究空背集合,称为顶研究方 点集,其元景素称为顶点; 案
(2) E是由V中的点组成的无序 点对构成的集合,称为边集, 其元素称为边。
研究成 果
研究总 结
• Basics (基础知识)
此处的Graph和普通的Graph稍有不同。
普否则通为的无图研向由究图顶,点背且和边边是构有成权,研值如究的果,边方不的同有的方边向可的研以,有究这不样成同的的图权被值则,称研分为别有究代向总表图不,
研究成
研究总
景
案
果
结
Graph Cut算法仅需要在前景和背景处各画几笔作为输入,算法将
建立各个像素点与前景背景相似度的赋权图,并通过求解最小切割区分
前景和背景。由于它是基于颜色统计采样的方法,因此对前背景相差较
大的图像效果较佳。
• Basics (基础知识)
图论中的图(graph):
一个图G定义为一个有序对 (V,G),记为G=(V,G), 其中
而min cut和图的max flow是等效的,故可以
通过max研fl究ow算背法来找到s-t研图的பைடு நூலகம்mi方n cut。
目前的算法景主要有:
案
1) Goldberg-Tarjan
2) Ford-Fulkerson
3) 上诉两种方法的改进算法
研究成 果
研究总 结
• Result (结果)
研究背 景
研究方 案
同的物理意景义。
案
果
结
Graph Cuts是在普通图的基础上多了2个顶点,这2个顶点分别用符号”S” 和”T”表示,统称为终端顶点。其它所有的顶点都必须和这2个顶点相连形 成边集合中的一部分。所以Graph Cuts中有两种顶点,也有两种边。
• Basics (基础知识)
第一种顶点和边是:第一种普通顶点
研究成 果
研究总 结
研究总 结
• Weight (权值)
研究背 景
研究方 案
研究成 果
研究总 结
• ?Regional Term (区域项)
研究背 景
研究方 案
研究成 果
研究总 结
• Boundary Term (边界项)
研究背 景
研究方 案
研究成 果
研究总 结
• Min Cut (最小割)
确定每条边的权值之后,就可以通过min cut 算法来找到最小的割,这些边的断开恰好 可以使目标和背景被分割开,也就是min cut对应于能量的最小化。
图像分割之 Graph Cut 算法
• Introduction (算法简介)
Graph cuts是一种十分有用和流行的能量优化算法,在计算机视觉
领域普遍应用于前背景分割(Image segmentation)、立体视觉
(stereo vision)、抠图(Image matting)等。
研究背
研究方
对应于图像中的每个像素。每两个邻
域顶点(对应于图像中每两个邻域像
素)的连接就是一条边。这种边也叫
n-links。
研究背
研究方
第还有二另种外顶两点个和终边端是景顶:点除,图叫像S像和素T。外每, 案
个普通顶点和这2个终端顶点之间都
有连接,组成第二种边。这种边也叫
t-links。
研究成 果
研究总 结
• Graph Cut (图割)