与圆有关的组合图形的面积计算拓展
人教版六年级数学上册《 圆 组合图形的面积 》教学设计 教学反思

人教版六年级数学上册《圆组合图形的面积》教学设计教学反思一. 教材分析人教版六年级数学上册《圆组合图形的面积》这一章节,是在学生已经掌握了平面几何图形的面积计算方法的基础上进行学习的。
本节课主要让学生掌握圆组合图形的面积计算方法,培养学生的空间想象能力和解决问题的能力。
教材通过具体的例子引导学生思考、探索,从而得出计算圆组合图形面积的方法。
二. 学情分析六年级的学生已经具备了一定的数学基础,对平面几何图形的面积计算方法有一定的了解。
但是,对于圆组合图形的面积计算,他们可能还比较陌生,需要通过实例来引导他们理解和掌握。
此外,学生的空间想象能力和解决问题的能力有待进一步提高。
三. 教学目标1.知识与技能:让学生掌握圆组合图形的面积计算方法,能正确计算圆组合图形的面积。
2.过程与方法:通过观察、操作、思考、交流等过程,培养学生解决问题的能力和空间想象能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和创新精神。
四. 教学重难点1.重点:圆组合图形的面积计算方法。
2.难点:如何将圆组合图形分解为基本图形,并正确计算面积。
五. 教学方法1.情境教学法:通过生活实例引入课题,激发学生的学习兴趣。
2.启发式教学法:引导学生观察、思考、交流,自主探索圆组合图形的面积计算方法。
3.合作学习法:分组讨论,培养学生团队合作意识。
4.实践操作法:让学生亲自动手操作,提高学生的动手能力和解决问题的能力。
六. 教学准备1.教学课件:制作课件,展示圆组合图形的实例和计算过程。
2.学习材料:准备相关的练习题和答案。
3.教学道具:准备一些实物模型,如圆柱、圆锥等,帮助学生直观理解。
七. 教学过程导入(5分钟)教师通过展示一些生活中的实例,如圆形的桌面、圆形的蛋糕等,引导学生思考这些图形的面积如何计算。
学生可能会提到用圆的面积公式计算,教师予以肯定,并提问:“如果这些圆形物体被切割成不同的形状,我们如何计算它们的面积呢?”从而引出本节课的主题。
常见组合图形面积计算实例二

求阴影部分面积实例二求左面阴影部分的面积。
(单位:米)提示:阴影面积=大圆面积+ 2个1/2圆的面积-三角形面积。
1、大圆面积:已知圆的直径,求面积,先用直径除以2得到半径,再用圆周率乘以半径的平方可以得到。
答案:1、半圆面积:44÷2=22米3.14×22×22=1519.76平方米2、2个1/2圆的面积:22÷2=11米3.14×11×11=379.94平方米求左面阴影部分的面积。
(单位:米)提示:割补后阴影面积刚好成为半圆的面积减去一个三角形的面积。
1、半圆面积:已知圆的直径,求面积,先用直径除以2得到半径,再用圆周率乘以半径的平方可以得到。
再求圆面积的1/2,就用圆的面积乘以1/2。
2、求三角面积已知三角形形的底和高,求面积,用底乘以高除以2可以得到。
3、求阴影面积=半圆面积-三角形面积答案:1、半圆面积:80÷2=40米3.14×40×40×1/2=2512平方米2、三角形面积:80×40÷2=1600平方米3、阴影面积:2512 - 1600=912平方米2、2个1/2圆的面积:已知圆的直径,求面积,先用直径除以2得到半径,再用圆周率乘以半径的平方可以得到。
3、求三角面积已知三角形形的底和高,求面积,用底乘以高除以2可以得到。
4、阴影面积=大圆面积+ 2个1/2圆的面积-三角形面积。
3、三角形面积:44×44÷2=968平方米4、阴影面积:1519.76 + 379.94 - 968=931.7平方米求左面阴影部分的面积。
(单位:米)提示:阴影面积=大圆面积+ 2个1/2圆的面积-三角形面积。
1、大圆面积:已知圆的直径,求面积,先用直径除以2得到半径,再用圆周率乘以半径的平方可以得到。
2、小圆的面积:已知圆的直径,求面积,先用直径除以2得到半径,再用圆周率乘以半径的平方可以得到。
六年级上册数学讲义-5.3圆和扇形组合图形面积(拓展)-人教版(含答案)

扇形和圆的组合图形的面积学生姓名年级学科授课教师日期时段核心内容扇形和圆的组合图形的面积课型一对一/一对N 教学目标掌握扇形和圆的组合图形的面积的计算重、难点1、会利用平面图形的周长和面积公式求平面图形的周长和面积。
2、会用割、补、分解、代换、增加辅助线等方法,将复杂问题变得简单。
课首沟通和学生交谈。
了解学生对圆的认识,对各计算公式是否掌握。
知识导图课首小测1.一个圆形花坛的半径是3m,它的面积是多少平方米?(已知圆的半径,求圆的面积)2.圆形花坛的直径是20m,它的面积是多少平方米?(已知圆的直径,求圆的面积)3.一个圆形蓄水池的周长是25.12m,这个蓄水池的占地面积是多少?(已知圆的周长,求圆的面积)4.求下图扇形的面积。
导学一:运用代换法将复杂的图形转化为简单的规则图形例 1. 图1中右半部分阴影面积比左半部分阴影面积大33平方厘米,AB=60厘米,CB垂直AB,求BC的长。
我爱展示1.如图1-1所示,两个圆的圆心分别为O1、O两圆半径都是1厘米,且图中两个阴影部分的面积相等。
求长方形ABO1O的面积。
2.如图1-2,所示,求右半部分阴影面积比左半部分阴影面积大多少平方厘米。
3.如图1-3:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少平方厘米?导学二:巧用各基本图形的计算公式求解知识点讲解 1:把R2看成一个整体例 1. 图2中已知阴影部分的面积是20平方分米,求环形的面积。
我爱展示1.下图中正方形的面积是8平方米,圆的面积是多少平方米?2.已知下图2-2中阴影部分三角形的面积是5平方米,求圆的面积。
3.已知下图2-3中阴影部分三角形的面积是7平方米,求圆的面积。
知识点讲解 2:从局部到整体,从整体到局部,牢记公式,巧妙应用。
例 1. 如图3,半圆S1的面积是14.13平方厘米,圆S2的面积是19.625平方厘米.那么长方形(阴影部分的面积)是多少平方厘米?我爱展示1.下图3-1中,△ABC是等腰直角三角形,以为半径的圆弧交延长线于点,已知阴影部分的面积是求。
与圆有关的组合图形的面积计算拓展)

1.计算下面图形中阴影部分的面积。
(单位:厘米)2.求下面图形中阴影部分的面积。
(单位:分米)3.计算下面各图形中阴影部分的面积。
(单位:厘米)1.计算下面图中阴影部分的面积。
(单位:米)2.下面两个圆中直角等腰三角形的面积都是5平方厘米,求圆的面积。
3.已知扇形的面积是3.14平方厘米,求图中阴影部分的面积。
4.如图,已知直角等腰三角形ABC的底边AC长20厘米,求阴影部分的面积。
5.如图,已知扇形DEC的半径为18厘米,扇形BCF的半径为6厘米,四边形ABCD为长方形。
求阴影部分的面积。
6.如图,三个圆的半径分别为1厘米、2厘米、3厘米,AB与CD垂直且过这三个圆的共有圆形O,图中阴影部分的面积是多少?7.如图,O为圆心,CO垂直于AB,C为另一个圆的圆心,AC=BC,三角形ABC的面积为45平方厘米,求阴影部分的面积。
1.图中五个相同的圆的圆心连线构成一个边长为10厘米的正五边形,求五边形的内阴影部分的面积。
2.如图,两个圆形AOB与叠放一起,POQ是面积为5平方厘米的正方形,那么叠合后的图中阴影部分的面积为多少平方厘米?3.计算图中阴影部分的面积。
(单位:厘米)4.如图,已知六个圆的面积相等,而阴影部分的面积为60平方厘米。
六个圆的面积为多少平方厘米?5.如图,已知大正方形的面积为100平方厘米,小正方形的面积为50平方厘米,求阴影部分的面积。
6.如图,圆O的半径是15厘米,∠AOB=90°,∠COD=120°,CD=26厘米,求阴影部分的面积。
7.如图,∠AOB=90°,C为AB弧的中点,已知阴影甲的面积为16平方厘米,阴影乙的面积是多少?8.如图,在长方形ABCD中,AD=DE=3厘米,AE=AB,求阴影部分的面积。
9.如图是一个古座钟的图画,如果内圆的半径为12厘米,阴影部分的面积是多少?10.。
圆的组合图形的面积

假设有一个半径为5cm的圆 和一个底边长为8cm、高为 6cm的三角形,相交部分面
积为18.84cm^2。
05 圆的组合图形面积计算的 扩展应用
Байду номын сангаас
在几何图形设计中的应用
图案设计
圆的组合图形可以用于各种图案 设计,如地板、墙纸、纺织品等,
为设计提供丰富的视觉效果和创 意灵感。
建筑设计
在建筑设计中,圆的组合图形可以 用于外观设计、室内装饰和景观规 划,增加建筑的艺术感和美感。
微积分是通过微积分学中的定 积分概念,将不规则图形的面 积转化为求曲线下面积的问题 进行求解。
03 圆的组合图形面积计算
圆与圆的重叠
总结词
计算重叠部分的面积
详细描述
当两个或多个圆重叠时,需要分别计算各个圆的面积,并从总面积中减去重叠 部分的面积。重叠部分的面积可以通过计算重叠部分的弧长和半径来得出。
04 圆的组合图形面积计算实 例
实例一:圆与圆的重叠面积计算
总结词
计算重叠部分的面积
详细描述
当两个圆部分重叠时,需要计算重叠部分的面积。可以通 过计算两个圆的面积,然后减去两个圆不相交部分的面积 来实现。
公式
重叠部分的面积 = 两个圆的面积 - 不相交部分的面积
示例
假设有两个半径分别为3cm和5cm的圆,重叠部分面积为 12.56cm^2。
实例二:圆与矩形的组合面积计算
计算圆与矩形相交部分的面积
输入 标题
详细描述
当圆与矩形相交时,需要计算相交部分的面积。可以 通过计算矩形和圆的面积,然后减去矩形与圆不相交 部分的面积来实现。
总结词
公式
假设有一个半径为4cm的圆和一个长为8cm、宽为 6cm的矩形,相交部分面积为25.12cm^2。
六年级上册数学教案圆的面积 第3课时 与圆有关的组合图形的面积(1)_西师大版

圆的面积第3课时与圆有关的组合图形的面积(1)◆教学内容:教科书第23页,求与圆有关的组合图形的面积。
◆教学提示:本节课是在学生学习了圆的面积计算之后安排的,学生在以前已经学习了长方形与正方形的面积计算,在此基础上学习与圆有关的组合图形面积的计算,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生综合能力。
让学生自主探索计算组合图形的基本方法,并在交流、讨论中开阔思路,修正想法,从而更好地解决生活中有关组合图形的实际问题教材中一共安排了两个例题,本节课学习例1.例1是两个图形(半圆和正方形)面积的组合,解答时突出它的主要思路是:半圆面积+正方形面积,用主要解题思路指导解题过程,关注对共用条件的分析。
(1.2米既是正方形的边长,又是圆直径)◆教学目标:1.知识与技能:通过计算窗户的面积,掌握求组合图形面积或周长的方法;通过计算花坛周围小路的面积,掌握求圆环面积的方法。
2.过程与方法:经历解决问题的过程,学会从不同的角度去分析解决生活中的现实问题,思考解决问题的不同策略和方案。
3.情感态度与价值观:体会学习圆的面积的现实意义和价值。
◆重点难点:教学重点:掌握求简单组合图形面积的方法。
教学难点:能将组合图形分解成基本图形。
◆教学准备:教具准备:多媒体课件学具准备:圆规、直尺、练习本等◆教学过程:(一)新课导入出示所学过的几何图形:长方形、正方形、平行四边形、三角形、梯形、圆。
让学生说说怎样求这些图形的面积?生活中,有些现实问题并不是直接求这些基本图形的面积。
例如:希望小学的阅览室有这样的窗户(呈现例1图),圆形花坛的周围有一条小路(呈现课堂活动第2题图)。
如何计算它们的面积?解决相关的问题呢?我们这节课就来研究这个问题。
【设计意图:复习学过的几种基本图形的面积计算方法,唤醒学生的旧知,为下面学习组合图形的面积计算作下铺垫。
】(二)探究新知投影出示例1情境图。
学校阅览室的窗户上面是半圆的,下面是正方形(如右图)。
五年级下册数学《圆之组合图形的面积计算》的教案【优秀8篇】

五年级下册数学《圆之组合图形的面积计算》的教案【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!五年级下册数学《圆之组合图形的面积计算》的教案【优秀8篇】作为一名老师,常常要根据教学需要编写教学设计,借助教学设计可以提高教学效率和教学质量。
苏教版五年级数学上册第二单元《组合图形的面积》教案

苏教版五年级数学上册第二单元《组合图形的面积》教案一. 教材分析苏教版五年级数学上册第二单元《组合图形的面积》是根据《义务教育数学课程标准》编写的一篇教材。
本节课主要让学生掌握组合图形的面积计算方法,培养学生解决实际问题的能力。
教材通过生活中的实际情境,让学生感受数学与生活的紧密联系,激发学生的学习兴趣。
二. 学情分析五年级的学生已经掌握了基本图形的面积计算方法,具备了一定的空间观念和逻辑思维能力。
但学生在解决组合图形面积问题时,仍有一定的困难。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生通过观察、操作、思考、交流等途径,逐步掌握组合图形的面积计算方法。
三. 教学目标1.知识与技能:学生会计算组合图形的面积,并能运用所学知识解决实际问题。
2.过程与方法:学生通过观察、操作、思考、交流等途径,探索组合图形的面积计算方法,培养解决问题的能力。
3.情感态度与价值观:学生感受数学与生活的紧密联系,增强学习数学的兴趣,树立自信心。
四. 教学重难点1.重点:组合图形的面积计算方法。
2.难点:如何引导学生探索组合图形的面积计算方法,以及运用所学知识解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实际情境,让学生感受数学与生活的紧密联系,激发学生的学习兴趣。
2.启发式教学法:引导学生观察、操作、思考、交流,自主探索组合图形的面积计算方法。
3.小组合作学习:培养学生团队合作精神,提高学生解决问题的能力。
六. 教学准备1.教具:组合图形模型、多媒体课件。
2.学具:练习纸、剪刀、胶水。
七. 教学过程导入(5分钟)教师通过展示生活中的组合图形,如拼图、包装等,引导学生观察、思考:这些组合图形的面积如何计算呢?从而激发学生的学习兴趣,引入新课。
呈现(10分钟)1.教师展示一组组合图形,如一个长方形内部包含一个三角形和一个梯形。
2.引导学生观察这些组合图形,并提出问题:如何计算这些组合图形的面积呢?3.学生分组讨论,分享各自的思考和见解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.计算下面图形中阴影部分的面积。
(单位:厘米)
2.求下面图形中阴影部分的面积。
(单位:分米)
3.计算下面各图形中阴影部分的面积。
(单位:厘米)
1.计算下面图中阴影部分的面积。
(单位:米)
2.下面两个圆中直角等腰三角形的面积都是5平方厘米,求圆的面积。
3.已知扇形的面积是3.14平方厘米,求图中阴影部分的面积。
4.如图,已知直角等腰三角形ABC的底边AC长20厘米,求阴影部分的面积。
5.如图,已知扇形DEC的半径为18厘米,扇形BCF的半径为6厘米,四边形
ABCD为长方形。
求阴影部分的面积。
6.如图,三个圆的半径分别为1厘米、2厘米、3厘米,AB与CD垂直且过这三
个圆的共有圆形O,图中阴影部分的面积是多少?
7.如图,O为圆心,CO垂直于AB,C为另一个圆的圆心,AC=BC,三角形ABC的面
积为45平方厘米,求阴影部分的面积。
1.图中五个相同的圆的圆心连线构成一个边长为10厘米的正五边形,求五边形的
内阴影部分的面积。
2.如图,两个圆形AOB与叠放一起,POQ是面积为5平方厘米的正方形,
那么叠合后的图中阴影部分的面积为多少平方厘米?
3.计算图中阴影部分的面积。
(单位:厘米)
4.如图,已知六个圆的面积相等,而阴影部分的面积为60平方厘米。
六个圆的面积为多少平方厘米?
5.如图,已知大正方形的面积为100平方厘米,小正方形的面积为50平方
厘米,求阴影部分的面积。
6.如图,圆O的半径是15厘米,∠AOB=90°,∠COD=120°,CD=26厘米,求
阴影部分的面积。
7.如图,∠AOB=90°,C为AB弧的中点,已知阴影甲的面积为16平方厘米,阴影
乙的面积是多少?
8.如图,在长方形ABCD中,AD=DE=3厘米,AE=AB,求阴影部分的面积。
9.如图是一个古座钟的图画,如果内圆的半径为12厘米,阴影部分的面积是多
少?。