曲线型组合图形的面积计算方法

合集下载

组合图形的面积公式

组合图形的面积公式

组合图形的面积公式许多天文学家和数学家经常发现,天文和数学形状的总体面积可以通过不同的图形组合而成。

经常的形状可以是三角形、正方形、圆形、多边形和椭圆形等。

为了计算组合图形的总体面积,我们需要知道每个组件面积的公式,以及它们如何组合在一起。

下面,我将介绍组合图形的常用面积公式。

1、三角形面积公式三角形的面积可以通过三角形的底边长与其高的乘积来确定。

如果三角形的底边长是a,其高为h,则可以通过以下公式确定三角形的面积:S = 1/2 a h2、正方形面积公式正方形的面积可以通过其边长乘积来确定。

如果正方形的边长是a,则可以通过以下公式确定正方形的面积:S = a a3、圆形面积公式圆形的面积可以通过圆形的半径乘以π来确定。

如果圆形的半径是r,则可以通过以下公式确定圆形的面积:S = r r4、多边形面积公式多边形的面积可以通过多边形的顶点与其中心的距离乘积来确定。

如果多边形的顶点是A,它的中心距离为d,则可以通过以下公式确定多边形的面积:S=1/2 A d5、椭圆形面积公式椭圆形的面积可以通过椭圆形的长轴与短轴的乘积来确定。

如果椭圆形的长轴是a,它的短轴是b,则可以通过以下公式确定椭圆形的面积:S = a b以上就是组合图形的常用面积公式。

当在计算更复杂的组合形状时,可以使用多边形分解法来计算总面积。

这种方法可以将复杂的多边形分解为若干较小的多边形,然后在每个小多边形上应用前面提到的面积公式,最后将每个小多边形的面积相加,从而获得总面积。

总之,组合图形的面积计算可以通过不同图形的面积公式进行计算,也可以通过多边形分解方法来计算总面积。

不同结构的图形可以有不同的面积计算方法,但基本思路都是将复杂的形状分成若干个简单的形状,以最简单的形状的面积公式为基础,求出复杂形状的面积值。

通过学习和研究以上计算面积的方法,可以帮助我们更好地解决天文学和数学中的组合图形的面积计算问题。

曲线型组合图形的面积计算方法

曲线型组合图形的面积计算方法

曲线型组合图形的面积计算方法姓名对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有:一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积。

例如下图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了。

30厘米二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差。

例如下图中,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可。

30厘米三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积,欲求阴影部分的面积,只要找到三角形的底和高就行了,底是直径,高是半径。

6cm四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求下图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了。

10厘米五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如下图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便.6厘米4厘米六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如下图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半。

20厘米七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积。

例如下图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边长方形内,这样整个阴影部分恰是一个长方形。

容斥原理在曲线型面积中的应用

容斥原理在曲线型面积中的应用

容斥原理在曲线型面积中的应用
容斥原理是组合数学中的一个基本原理,它用于计算至少在一个集合中的元素数量。

在几何学中,尤其是在计算曲线型面积时,容斥原理可以用来求解多个区域重叠部分的总面积。

在曲线型面积的应用中,容斥原理通常用于以下情况:
1. 多个区域的并集面积:当需要计算两个或多个曲线区域的并集面积时,这些区域可能会相互重叠。

直接计算每个区域的面积然后相加会导致重叠部分被重复计算。

使用容斥原理,可以先计算每个单独区域的面积,然后减去所有两两区域交集的面积,再加上所有三重交集的面积,依此类推,直到达到所需的精度。

2. 复杂图形的面积:对于包含多个相交曲线的复杂图形,直接计算整个图形的面积可能非常困难。

此时,可以将图形分解为不相交的部分,分别计算这些部分的面积,然后应用容斥原理来合并这些部分的面积。

3. 概率问题中的面积计算:在概率论中,容斥原理常用于计算多个事件并集的概率。

如果这些事件对应于平面上的曲线型区域,那么计算这些区域并集的面积就相当于计算这些事件并集的概率。

4. 数值积分:在数值积分中,尤其是使用蒙特卡洛方法时,容斥原理可以用来计算多个函数的重叠区域的积分值。

通过随机抽样和统计抽样点落在不同区域的次数,可以近似计算出各区域的面积,进而应用容斥原理得到并集区域的总面积。

在应用容斥原理时,需要注意的是,随着涉及的区域数量增加,计算交集的数量会急剧增加,这可能导致计算变得非常复杂。

因此,在实际应用中,通常会寻找简化计算的方法,例如利用对称性、特殊性质或者高效的算法来减少计算量。

组合图形面积6种办法

组合图形面积6种办法

组合图形面积6种办法组合图形面积是数学中一个重要的概念,它可以帮助我们计算复杂图形的面积。

组合图形面积的计算有很多种方法,下面我们就来介绍一下这六种计算组合图形面积的方法。

首先,我们可以使用分割法来计算组合图形的面积。

这种方法是将复杂图形分割成若干个简单图形,然后分别计算每个简单图形的面积,最后将这些简单图形的面积相加,就可以得到复杂图形的面积。

其次,我们可以使用三角形面积公式来计算组合图形的面积。

这种方法是将复杂图形分割成若干个三角形,然后分别计算每个三角形的面积,最后将这些三角形的面积相加,就可以得到复杂图形的面积。

第三,我们可以使用积分法来计算组合图形的面积。

这种方法是将复杂图形的面积看作一个函数,然后使用积分法来计算这个函数的积分,最后得到复杂图形的面积。

第四,我们可以使用梯形面积公式来计算组合图形的面积。

这种方法是将复杂图形分割成若干个梯形,然后分别计算每个梯形的面积,最后将这些梯形的面积相加,就可以得到复杂图形的面积。

第五,我们可以使用平行四边形面积公式来计算组合图形的面积。

这种方法是将复杂图形分割成若干个平行四边形,然后分别计算每个平行四边形的面积,最后将这些平行四边形的面积相加,就可以得到复杂图形的面积。

最后,我们可以使用椭圆面积公式来计算组合图形的面积。

这种方法是将复杂图形分割成若干个椭圆,然后分别计算每个椭圆的面积,最后将这些椭圆的面积相加,就可以得到复杂图形的面积。

以上就是六种计算组合图形面积的方法,它们都可以帮助我们计算复杂图形的面积,但是要根据实际情况选择合适的方法。

只有掌握了这些方法,才能更好地计算组合图形的面积。

小升初数学寒假精品课程-第3讲 平面及组合图形(教师版)

小升初数学寒假精品课程-第3讲 平面及组合图形(教师版)

平面及组合图形1、了解平面图形的分类.2、掌握平面图形的周长及面积的计算.3、掌握组合图形面积计算的策略.重点:1、了解平面图形的特征.2、掌握平面图形的周长及面积的公式.难点:1、正确运用公式计算图形的周长及面积.2、掌握组合图形面积计算的策略,运用策略解决组合图形的面积.模块一:图形计数图形的计数,可以采用标序号的方法进行计数,注意组合图形组成的图形.例1.下列各图形中,三角形的个数各是多少?【答案】图(1)中有1+2=3(个);图(2)中有1+2+3=6(个);图(3)中有1+2+3+4=10(个);图(4)中有1+2+3+4+5=15(个).【解析】因为底边上的任何一条线段都对应一个三角形(以顶点及这条线段的两个端点为顶点的三角形),所以各图中最大的三角形的底边所包含的线段的条数就是三角形的总个数.【易】练习1.下图中各有多少个正方形?【答案】(1)8个;(2)26个.【解析】图(1)有6+2=8(个);图(2)有15+8+3=26(个).【中】练习2.数一数,下面各图中有多少个长方形?【答案】(1)30个;(2)90个.【解析】图(1)中有8+10+4+5+2+1=30(个);【难】练习3.下图中有多少个平行四边形?【答案】30个.【解析】8+10+4+5+2+1=30(个).图形的计数,可以采用标序号的方法进行计数,注意组合图形组成的图形.模块二:图形属性及数量关系例1.一个梯形如图所示,上底是5cm,下底是8c m.(1)在梯形中画一条线段,把梯形分割成一个平行四边形和一个三角形.(2)已知分割成的平行四边形的面积是20 平方厘米,求分割成的三角形的面积.【答案】(1)(2)20÷5×(8-5)÷2=6(平方厘米)答:分割成的三角形的面积为6平方厘米。

【解析】(1)分割出一个平行四边形,图中已有一组对边平行,因此只需画出一条线与梯形的一条腰平行;其次,另一部分是三角形,由三条边围成,所以只能通过上底的一个顶点画另一条腰的平行线;(2)平行四边形、三角形、梯形的高都相同,由平行四边形的面积和底求出平行四边形的高,其次因为平行四边形的对边相等,所以三角形的底是8-5=3.【易】练习1.下面图形中哪两个可以拼成平行四边形?哪两个可以拼成三角形?哪两个可以拼成梯形?【答案】可拼成平行四边形的有:①③、①④、③④;可拼成三角形的有:①③、①④、③④;可拼成梯形的有:①④、③④.【解析】根据平行四边形、三角形、梯形的图形特征,可以一一试验得出结果.【易】练习2.图是一个直角三角形,用两个这样的三角形拼图形.(1)拼成周长较短的三角形.(2)拼成周长最长的平行四边形.请画出草图表示你的拼法.【答案】【解析】(1)拼成的三角形有两种情况,取周长最短的即可.(2)要使拼成的平行四边形周长最短,那么拼在一起的边要最短.掌握图形的属性特征,并要考虑到情况的所有可能性.例2.计算下面平行线间各图形的面积,说一说你有什么发现.【答案】①梯形:(2+6)×5÷2=20(cm2);②平行四边形:4×5=20(cm2);③三角形:8×5÷2=20(cm2);④三角形:8×5÷2=20(cm2).发现:计算后的面积都一样.【解析】先直接数出各图形的底为多少厘米,然后根据各图形的面积公式计算即可.【易】练习1.计算下面图形的周长和面积(单位:cm)(1)(2)【答案】(1)18×24÷2=216(cm2);(2)(8+17)×10÷2=125(cm2).【解析】根据三角形和梯形的面积的公式进行计算.【易】练习2.先在各图中量出计算面积时需要的数据,再求出面积.(1)(2)(3)【答案】(1)梯形上底:0.8 cm,下底:1.3 cm,面积:(0.8+1.3)×1.3÷2=1.43(cm2);(2)三角形最长边长:2.4 cm,对应的高:0.9 cm,面积:2.4×0.9÷2=2.28(cm2);(3)平行四边形底:2.1 cm,高:1.4 cm,面积:2.1×1.4=2.94(cm2).【解析】数据测量要准确,再根据各图形的面积计算公式进行计算.【中】练习3.在下图的方格中分别画出面积是12 平方厘米的三角形、平行四边形和梯形各1 个.(每小格的边长为 1 厘米)【答案】【解析】根据三角形、平行四边形、梯形的面积公式,确定各个图形底和高的值.掌握各图形的面积计算公式,特别要注意三角形的面积计算不要忘记除以2.模块三:几种重要的模型例1.下图是由两个完全一样的直角三角形叠在一起而成的,求阴影部分的面积.(单位:厘米)【答案】S阴影=[(8-3)+8]×5÷2=65÷2=32.5(cm2)答:阴影部分的面积为32.5平方厘米。

004曲线型面积

004曲线型面积

水木学校独家版权资料,请勿外传!
1、用圆规画一个周长是 9.42 厘米的圆,圆规两脚间的距离是( )。 2、当长方形和正方形的周长相等时,( )的面积较大。 3、小圆的半径 3 厘米,大圆的半径 5 厘米,大圆面积和小圆 面积最简 单的整数比是( ) 4、一个圆的面积是 12.56,则它的周长是( ) 5、一个扇形所在的圆的半径是 2cm,它所对的圆心角是 60 度,则它的 弧长是( ),周长是( ),面积是( ) 6、右图中阴影部分的面积是 2.28 厘米 2,求扇形的半径。
(1)把组合图形分割成几个基本图形,分别计算每个图形的面积,然后
求出这些基本图形的面积的和或者差,最后求出组合图形的面积,
这种方法叫做“割补法”。
(2)在一个组合图形上填补一个基本图形,使组合图形变成另一个基本
图形,然后计算基本图形面积,再减去
补上的基本图形的面积,从而求出组合
图形的面积,这种求组合图形面积的方
法叫做“添补法”。
3.旋转法
旋转法的实质就是运用旋转变换的知识和几何图形的有关性质,把
图形围绕一个点进行旋转,通过恰到好处的变换,使原来看起来无法解
决的问题获得生机,立刻使问题迎刃而解,充分体现了旋转法的巧妙之
处。
4.等积位移法
把平面图形中的一部分,移到与它等积的另一处后,使问题得以解决。
等积位移法也可以说是割补法,在作图题或动手操作题中往往用到此法。
本站网址: www.aoshuwang.net 答疑热线:(吕老师)15101196520;15510323928 奥数王-帮你解决学奥数的一切问题! 第 3页 共3页
(π = 3.14 )(北京市迎春杯试题)
11、右上图是一个 400 米的跑道,两头是两个半圆,每一半圆的弧长是 100 米,中间是一个长方形,长为 100 米。求两个半圆的面积之和与跑 道所围成的面积之比。

求组合图形面积的十种解法

求组合图形面积的十种解法

求组合图形面积的十种解法
求组合图形面积是一个典型的几何问题,为了解决这一问题,可以使用以下十种解法:
1、分法法:将复杂图形分解成若干简单图形,然后求其各自的面积,最后求总和即可。

2、叠加法:如果复杂图形与某一简单图形有公共部分,那么就可以把复杂图形和简单图
形叠加在一起,求出叠加图形的面积,然后用叠加图形的面积减去简单图形的面积即可求
得复杂图形的面积。

3、分数解法:如果复杂图形的面积太难求,可以采用分数解法,先把复杂图形分成若干
等份,每份更容易求面积,最后把求的的结果加起来即可。

4、数学公式法:如果复杂图形有相应的数学公式,可以利用这个公式来求复杂图形的面积。

5、经验法:一些规则复杂图形,有时候还可以借助经验法,比如正多边形,多个等腰三
角形等组合,通过一定的经验公式即可求得面积。

6、极限法:如果复杂图形不是太复杂,可以采用极限法,采用适当的空间坐标,把图形
分解成若干若干子图形,然后求得每个子图形的面积,把这些子图形的面积累加,最后就
可以求得复杂图形的面积。

7、计算机图形学法:使用计算机图形学的方法可以更准确快速地求组合图形面积。

利用
图形赋值法,先将要求面积的图形表示成点阵图,此时此刻,图形上面每个点对应着某个面积的的面积,然后将每个点的面积相加,就可以求出总的面积了。

8、三角函数法:如果所求复杂图形是圆形,那么可以采用三角函数法,根据圆心角的计
算公式,计算复杂图形的圆形面积。

9、渐近法:渐近法可以用来求一类复杂图形的面积,它将复杂图形分割为若干小正方形,再根据小正方形和图形的相似度,算出复杂图形面积接近的结果。

10、变换法:变换法是将复杂图形变换为简单图。

小学奥数 圆与扇形(二) 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  圆与扇形(二) 精选练习例题 含答案解析(附知识点拨及考点)

研究圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,通过变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形来计算它们的面积.圆的面积2πr =;扇形的面积2π360nr =⨯;圆的周长2πr =;扇形的弧长2π360nr =⨯.一、跟曲线有关的图形元素:①扇形:扇形由顶点在圆心的角的两边和这两边所截一段圆弧围成的图形,扇形是圆的一部分.我们经常说的12圆、14圆、16圆等等其实都是扇形,而这个几分之几表示的其实是这个扇形的圆心角占这个圆周角的几分之几.那么一般的求法是什么呢?关键是360n.比如:扇形的面积=所在圆的面积360n⨯;扇形中的弧长部分=所在圆的周长360n⨯扇形的周长=所在圆的周长360n⨯+2⨯半径(易错点是把扇形的周长等同于扇形的弧长) ②弓形:弓形一般不要求周长,主要求面积.一般来说,弓形面积=扇形面积-三角形面积.(除了半圆)③”弯角”:如图:弯角的面积=正方形-扇形④”谷子”:如图:“谷子”的面积=弓形面积2⨯二、常用的思想方法:①转化思想(复杂转化为简单,不熟悉的转化为熟悉的) ②等积变形(割补、平移、旋转等) ③借来还去(加减法)④外围入手(从会求的图形或者能求的图形入手,看与要求的部分之间的”关系”)板块二 曲线型面积计算【例 1】 如图,已知扇形BAC 的面积是半圆ADB 面积的34倍,则角CAB 的度数是________. 例题精讲圆与扇形DCBA【考点】圆与扇形 【难度】3星 【题型】填空【解析】 设半圆ADB 的半径为1,则半圆面积为21ππ122⨯=,扇形BAC 的面积为π42π233⨯=.因为扇形BAC的面积为2π360n r ⨯,所以,22ππ23603n ⨯⨯=,得到60n =,即角CAB 的度数是60度. 【答案】60度【例 2】 如下图,直角三角形ABC 的两条直角边分别长6和7,分别以,B C 为圆心,2为半径画圆,已知图中阴影部分的面积是17,那么角A 是多少度(π3=)【考点】圆与扇形 【难度】4星 【题型】解答【解析】 167212ABC S =⨯⨯=△,三角形ABC 内两扇形面积和为21174-=,根据扇形面积公式两扇形面积和为2π24360B C∠+∠⨯⨯=°,所以120B C ∠+∠=°,60A ∠=°.【答案】60度【例 3】 如图,大小两圆的相交部分(即阴影区域)的面积是大圆面积的415,是小圆面积的35.如果量得小圆的半径是5厘米,那么大圆半径是多少厘米?【考点】圆与扇形 【难度】3星 【题型】解答【解析】 小圆的面积为2π525π⨯=,则大小圆相交部分面积为325π15π5⨯=,那么大圆的面积为422515ππ154÷=,而2251515422=⨯,所以大圆半径为7.5厘米.【答案】7.5【例4】有七根直径5厘米的塑料管,用一根橡皮筋把它们勒紧成一捆(如图),此时橡皮筋的长度是多少厘米?(π取3)CBA【考点】圆与扇形【难度】3星【题型】解答【解析】由右图知,绳长等于6个线段AB与6个BC弧长之和.将图中与BC弧相似的6个弧所对的圆心角平移拼补,可得到6个角的和是360︒,所以BC弧所对的圆心角是60︒,6个BC弧合起来等于直径5厘米的圆的周长.而线段AB等于塑料管的直径,由此知绳长为:565π45⨯+=(厘米).【答案】45【例5】如图,边长为12厘米的正五边形,分别以正五边形的5个顶点为圆心,12厘米为半径作圆弧,请问:中间阴影部分的周长是多少?(π 3.14=)【考点】圆与扇形【难度】4星【题型】解答【解析】如图,点C是在以B为中心的扇形上,所以AB CB=,同理CB AC=,则ABC∆是正三角形,同理,有CDE∆是正三角形.有60ACB ECD∠=∠=,正五边形的一个内角是1803605108-÷=,因此60210812ECA∠=⨯-=,也就是说圆弧AE的长度是半径为12厘米的圆周的一部分,这样相同的圆弧有5个,所以中间阴影部分的周长是()122 3.1412512.56cm360⨯⨯⨯⨯=.【答案】12.56【例6】如图是一个对称图形.比较黑色部分面积与灰色部分面积的大小,得:黑色部分面积________灰色部分面积.【考点】圆与扇形【难度】3星【题型】填空【解析】图中四个小圆的半径为大圆半径的一半,所以每个小圆的面积等于大圆面积的14,则4个小圆的面积之和等于大圆的面积.而4个小圆重叠的部分为灰色部分,未覆盖的部分为黑色部分,所以这两部分面积相等,即灰色部分与黑色部分面积相等.【答案】相等【例 7】 如图,大圆半径为小圆的直径,已知图中阴影部分面积为1S ,空白部分面积为2S ,那么这两个部分的面积之比是多少?(圆周率取3.14)【考点】圆与扇形 【难度】3星 【题型】解答【解析】 如图添加辅助线,小圆内部的阴影部分可以填到外侧来,这样,空白部分就是一个圆的内接正方形.设大圆半径为r ,则222S r =,2212S r r π=-,所以()12: 3.142:257:100S S =-=. 移动图形是解这种题目的最好方法,一定要找出图形之间的关系.【答案】57:100【例 8】 用一块面积为36平方厘米的圆形铝板下料,从中裁出了7个同样大小的圆铝板.问:所余下的边角料的总面积是多少平方厘米?【考点】圆与扇形 【难度】4星 【题型】解答【解析】 大圆直径是小圆的3倍,半径也是3倍,小圆面积∶大圆面积22π:π1:9r R ==,小圆面积13649=⨯=,7个小圆总面积4728=⨯=,边角料面积36288=-=(平方厘米).【答案】8【例 9】 如图,若图中的圆和半圆都两两相切,两个小圆和三个半圆的半径都是1.求阴影部分的面积.【考点】圆与扇形 【难度】4星 【题型】解答【解析】 由于直接求阴影部分面积太麻烦,所以考虑采用增加面积的方法来构造新图形.由右图可见,阴影部分面积等于16大圆面积减去一个小圆面积,再加上120︒的小扇形面积(即13小圆面积),所以相当于16大圆面积减去23小圆面积.而大圆的半径为小圆的3倍,所以其面积为小圆的239=倍,那么阴影部分面积为21259π1π 2.5636⎛⎫⨯-⨯⨯== ⎪⎝⎭.【答案】2.5【例 10】 如图所示,求阴影面积,图中是一个正六边形,面积为1040平方厘米,空白部分是6个半径为10厘米的小扇形.(圆周率取3.14)CA【考点】圆与扇形 【难度】3星 【题型】解答【解析】 所要求的阴影面积是用正六边形的面积减去六个小扇形面积、正六边形的面积已知,现在关键是小扇形面积如何求,有扇形面积公式2π360n R S =扇.可求得,需要知道半径和扇形弧的度数,由已知正六边形每边所对圆心角为60°,那么120AOC ∠=︒,又知四边形ABCO 是平行四边形,所以120ABC ∠=︒,这样就可求出扇形的面积和为21206π10628360⨯⨯⨯=(平方厘米),阴影部分的面积1040628412=-=(平方厘米). 【答案】412【例 11】 (09年第十四届华杯赛初赛)如下图所示,AB 是半圆的直径,O 是圆心,AC CD DB ==,M 是CD的中点,H 是弦CD 的中点.若N 是OB 上一点,半圆的面积等于12平方厘米,则图中阴影部分的面积是 平方厘米.【考点】圆与扇形 【难度】3星 【题型】填空 【解析】 如下图所示,连接OC 、OD 、OH .本题中由于C 、D 是半圆的两个三等分点,M 是CD 的中点,H 是弦CD 的中点,可见这个图形是对称的,由对称性可知CD 与AB 平行.由此可得CHN ∆的面积与CHO ∆的面积相等,所以阴影部分面积等于扇形COD面积的一半,而扇形COD的面积又等于半圆面积的13,所以阴影部分面积等于半圆面积的16,为11226⨯=平方厘米.【答案】2【巩固】如图,C、D是以AB为直径的半圆的三等分点,O是圆心,且半径为6.求图中阴影部分的面积.【考点】圆与扇形【难度】3星【题型】解答【解析】如图,连接OC、OD、CD.由于C、D是半圆的三等分点,所以AOC∆和COD∆都是正三角形,那么CD与AO是平行的.所以ACD∆的面积与OCD∆的面积相等,那么阴影部分的面积等于扇形OCD的面积,为21π618.846⨯⨯=.【答案】18.84【例12】如图,两个半径为1的半圆垂直相交,横放的半圆直径通过竖放半圆的圆心,求图中两块阴影部分的面积之差.(π取3)O【考点】圆与扇形【难度】4星【题型】解答【解析】本题要求两块阴影部分的面积之差,可以先分别求出两块阴影部分的面积,再计算它们的差,但是这样较为繁琐.由于是要求面积之差,可以考虑先从面积较大的阴影中割去与面积较小的阴影相同的图形,再求剩余图形的面积.如右图所示,可知弓形BC或CD均与弓形AB相同,所以不妨割去弓形BC.剩下的图形中,容易看出来AB与CD是平行的,所以BCD∆与ACD∆的面积相等,所以剩余图形的面积与扇形ACD的面积相等,而扇形ACD的面积为260π10.5360⨯⨯=,所以图中两块阴影部分的面积之差为0.5.【答案】0.5【例13】如图,两个正方形摆放在一起,其中大正方形边长为12,那么阴影部分面积是多少?(圆周率取3.14)AFEAFE【考点】圆与扇形 【难度】3星 【题型】解答【解析】 方法一:设小正方形的边长为a ,则三角形ABF 与梯形ABCD 的面积均为()122a a +⨯÷.阴影部分为:大正方形+梯形-三角形ABF -右上角不规则部分=大正方形-右上角不规则部分=14圆.因此阴影部分面积为:3.1412124113.04⨯⨯÷=.方法二:连接AC 、DF ,设AF 与CD 的交点为M ,由于四边形ACDF 是梯形,根据梯形蝴蝶定理有ADM CMF S S =△△,所以DCF S S =阴影扇形 3.1412124113.04=⨯⨯÷=【答案】113.04【巩固】如右图,两个正方形边长分别是10和6,求阴影部分的面积.(π取3)【考点】圆与扇形 【难度】3星 【题型】解答【解析】 (法1)观察可知阴影部分面积等于三角形ACD 的面积减去月牙BCD 的面积,那么求出月牙BCD 的面积就成了解题的关键.月牙BCD 的面积为正方形BCDE 的面积减去四分之一圆:166π6694⨯-⨯⨯⨯=;则阴影部分的面积为三角形ACD 的面积减去月牙BCD 的面积,为:()110669392S =⨯+⨯-=阴影.(法2)观察可知AF 和BD 是平行的,于是连接AF 、BD 、DF .则ABD ∆与BDF ∆面积相等,那么阴影部分面积等于BDF ∆与小弓形的面积之和,也就等于DEF ∆与扇形BED 的面积之和,为:211(106)6π63924-⨯⨯+⨯⨯=.【答案】39【例 14】 如图,ABC 是等腰直角三角形,D 是半圆周的中点,BC 是半圆的直径.已知10AB BC ==,那么阴影部分的面积是多少?(圆周率取3.14)DD【考点】圆与扇形 【难度】3星 【题型】解答【解析】 连接PD 、AP 、BD ,如图,PD 平行于AB ,则在梯形ABDP 中,对角线交于M 点,那么ABD ∆与ABP ∆面积相等,则阴影部分的面积转化为ABP ∆与圆内的小弓形的面积和. ABP ∆的面积为:()10102225⨯÷÷=;弓形面积: 3.145545527.125⨯⨯÷-⨯÷=; 阴影部分面积为:257.12532.125+=.【答案】32.125【例 15】 图中给出了两个对齐摆放的正方形,并以小正方形中右上顶点为圆心,边长为半径作一个扇形,按图中所给长度阴影部分面积为 ;(π 3.14=)A【考点】圆与扇形 【难度】3星 【题型】填空 【解析】 连接小正方形AC ,有图可见ACD ABC S S S S =+-△△阴影扇形∵211144222AC ⨯=⨯⨯ ∴232AC =同理272CE =,∴48AC CE ⨯=∴148242ACD S =⨯=△290π412.56360S =⨯=扇形,14482ABC S =⨯⨯=△∴2412.56828.56S =+-=阴影【答案】28.56【例 16】 如图,图形中的曲线是用半径长度的比为2:1.5:0.5的6条半圆曲线连成的.问:涂有阴影的部分的面积与未涂有阴影的部分的面积的比是多少?【考点】圆与扇形 【难度】4星 【题型】解答【解析】 假设最小圆的半径为r ,则三种半圆曲线的半径分别为4r ,3r 和r .阴影部分的面积为:()()22222111π4π3ππ5π222r r r r r -++=,空白部分的面积为:()222π45π11πr r r -=, 则阴影部分面积与空白部分面积的比为5:11.【答案】5:11【例 17】 (西城实验考题)奥运会的会徽是五环图,一个五环图是由内圆直径为6厘米,外圆直径为8厘米的五个环组成,其中两两相交的小曲边四边形(阴影部分)的面积都相等,已知五个圆环盖住的面积是77.1平方厘米,求每个小曲边四边形的面积.(π 3.14=)【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 ⑴每个圆环的面积为:22π4π37π21.98⨯-⨯==(平方厘米);⑵五个圆环的面积和为:21.985109.9⨯=(平方厘米); ⑶八个阴影的面积为:109.977.132.8-=(平方厘米); ⑷每个阴影的面积为:32.88 4.1÷=(平方厘米).【答案】4.1【例 18】 已知正方形ABCD 的边长为10厘米,过它的四个顶点作一个大圆,过它的各边中点作一个小圆,再将对边中点用直线连擎起来得右图.那么,图中阴影部分的总面积等于______方厘米.(π 3.14=)【考点】圆与扇形 【难度】4星 【题型】填空 【解析】 39.25 【答案】39.25【例 19】 如图,ABCD 是边长为a 的正方形,以AB 、BC 、CD 、DA 分别为直径画半圆,求这四个半圆弧所围成的阴影部分的面积.(π取3)DCBAaDCBAa【考点】圆与扇形 【难度】3星 【题型】解答【解析】 这道题目是很常见的面积计算问题.阴影部分是一个花瓣状的不规则图形,不能直接通过面积公式求解,观察发现阴影部分是一个对称图形,我们只需要在阴影部分的对称轴上作两条辅助线就明了了.如图,这样阴影部分就划分成了4个半圆减去三角形,我们可以求得,()4S S S =⨯-阴影半圆三角形21142222a a a π⎡⎤⎛⎫=⨯⨯⨯-⨯⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦212a =【答案】12a【巩固】如图,正方形ABCD 的边长为4厘米,分别以B 、D 为圆心以4厘米为半径在正方形内画圆.求阴影部分面积.(π取3)D BA DB【考点】圆与扇形 【难度】3星 【题型】解答【解析】 由题可知,图中阴影部分是两个扇形重叠的部分,我们可以利用容斥原理从图形整体上考虑来求阴影部分面积;同样,我们也可以通过作辅助线直接求阴影部分的面积.解法一:把两个扇形放在一起得到1个正方形的同时还重叠了一块阴影部分.则阴影部分的面积为=21π44482⋅⋅-⨯=;解法二:连接AC ,我们发现阴影部分面积的一半就是扇形减去三角形的面积,所以阴影部分面积=212π444284⨯⋅⋅-⨯÷=().【答案】8【例 20】 (四中考题)已知三角形ABC 是直角三角形,4cm AC =,2cm BC =,求阴影部分的面积.【考点】圆与扇形 【难度】4星 【题型】解答【解析】 从图中可以看出,阴影部分的面积等于两个半圆的面积和与直角三角形ABC 的面积之差,所以阴影部分的面积为:2214121ππ42 2.5π4 3.8522222⎛⎫⎛⎫⨯+⨯-⨯⨯=-= ⎪ ⎪⎝⎭⎝⎭(2cm ).【答案】3.85【例 21】 (奥林匹克决赛试题)在桌面上放置3个两两重叠、形状相同的圆形纸片.它们的面积都是100平方厘米,盖住桌面的总面积是144平方厘米,3张纸片共同重叠的面积是42平方厘米.那么图中3个阴影部分的面积的和 是平方厘米.【考点】圆与扇形 【难度】4星 【题型】填空【解析】 根据容斥原理得1003242144S ⨯--⨯=阴影,所以100314424272S =⨯--⨯=阴影(平方厘米) 【答案】72【例 22】 如图所示,ABCD 是一边长为4cm 的正方形,E 是AD 的中点,而F 是BC 的中点.以C 为圆心、半径为4cm 的四分之一圆的圆弧交EF 于G ,以F 为圆心、半径为2cm 的四分之一圆的圆弧交EF 于H 点,若图中1S 和2S 两块面积之差为2π(cm )m n -(其中m 、n 为正整数),请问m n +之值为何?S 2S 1G HFEDC B AS图1S 2S 1G HF E DCBA【考点】圆与扇形 【难度】3星 【题型】解答【关键词】国际小学数学竞赛 【解析】 (法1)2248cm FCDES=⨯=,21π44π4BCD S =⨯⨯=扇形2(cm ),21π2π4BFH S =⨯⨯=扇形2(cm ),而124ππ8FCDE BCD BFH S S S S S -=--=--扇形扇形3π8=-2(cm ), 所以3m =,8n =,3811m n +=+=.(法2)如右上图,1S S +=BFEA BFH S S -=扇形2422π48π⨯-⨯⨯÷=-2(cm ), 24444π4164πABCD BCD S S S S +=-=⨯-⨯⨯÷=-扇形2(cm ),所以,12(8π)(164π)3π8S S -=---=-2(cm ),故3811m n +=+=.【答案】11【巩固】在图中,两个四分之一圆弧的半径分别是2和4,求两个阴影部分的面积差.(圆周率取3.14)【考点】圆与扇形 【难度】3星 【题型】解答【解析】 我们只要看清楚阴影部分如何构成则不难求解.左边的阴影是大扇形减去小扇形,再扣除一个长方形中的不规则白色部分,而右边的阴影是长方形扣除这块不规则白色部分,那么它们的差应为大扇形减去小扇形,再减去长方形.则为:ππ4422423 3.148 1.4244⨯⨯-⨯⨯-⨯=⨯-=.【答案】1.42【例 23】 如图,矩形ABCD 中,AB =6厘米,BC =4厘米,扇形ABE 半径AE =6厘米,扇形CBF 的半径CB =4厘米,求阴影部分的面积.(π取3)CB A【考点】圆与扇形 【难度】3星 【题型】解答【解析】 方法一:观察发现,阴影部分属于一个大的扇形,而这个扇形除了阴影部分之外,还有一个不规则的空白部分ABFD 在左上,求出这个不规则部分的面积就成了解决这个问题的关键.我们先确定ABFD 的面积,因为不规则部分ABFD 与扇形BCF 共同构成长方形ABCD ,所以不规则部分ABFD 的面积为2164π4124⨯-⨯⨯=(平方厘米),再从扇形ABE 中考虑,让扇形ABE 减去ABFD 的面积,则有阴影部分面积为21π612154⨯⨯-=(平方厘米).方法二:利用容斥原理2211π6π4461544EAB BCF ABCD S S S S =+-=⨯+⨯-⨯=阴影扇形扇形长方形(平方厘米)【答案】15【巩固】求图中阴影部分的面积.【考点】圆与扇形 【难度】3星 【题型】解答【解析】 阴影部分面积=半圆面积+扇形面积-三角形面积22211211π()π121241.042282=⨯+⨯-⨯=.【答案】41.04【巩固】如右图,正方形的边长为5厘米,则图中阴影部分的面积是 平方厘米,(π 3.14=)【考点】圆与扇形 【难度】3星 【题型】填空【解析】 观察可知阴影部分是被以AD 为半径的扇形、以AB 为直径的半圆形和对角线BD 分割出来的,分头求各小块阴影部分面积明显不是很方便,我们发现如果能求出左下边空白部分的面积,就很容易求出阴影部分的面积了,我们再观察可以发现左下边空白部分的面积就等于三角形ABD 的面积减去扇形ADE 的面积,那么我们的思路就很清楚了. 因为45ADB ∠=︒,所以扇形ADE 的面积为:224545π 3.1459.8125360360AD ⨯⨯=⨯⨯=(平方厘米), 那么左下边空白的面积为:1559.8125 2.68752⨯⨯-=(平方厘米),又因为半圆面积为:215π9.812522⎛⎫⨯⨯= ⎪⎝⎭(平方厘米),所以阴影部分面积为:9.8125 2.68757.125-=(平方厘米).【答案】7.125【例 24】 如图所示,阴影部分的面积为多少?(圆周率取3)33B A33A1.51.51.545︒45︒B33【考点】圆与扇形 【难度】4星 【题型】解答【解析】 图中A 、B 两部分的面积分别等于右边两幅图中的A 、B 的面积.所以()()229271.5π 1.5343π3328498416A B S S +=-⨯÷+-⨯⨯÷=÷+÷=.【答案】2716【巩固】图中阴影部分的面积是 .(π取3.14)33【考点】圆与扇形 【难度】3星 【题型】填空【解析】 如右上图,虚线将阴影部分分成两部分,分别计算这两部分的面积,再相加即可得到阴影部分的面积.所分成的弓形的面积为:22131199π3π2242168⎡⎤⎛⎫⨯-⨯⨯=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦;另一部分的面积为:221199π33π8484⨯-⨯=-;所以阴影部分面积为:99992727πππ 1.92375 1.9216884168-+-==-=≈. 【答案】1.92【例 25】 已知右图中正方形的边长为20厘米,中间的三段圆弧分别以1O 、2O 、3O 为圆心,求阴影部分的面积.(π3=)O3【考点】圆与扇形 【难度】4星 【题型】解答【解析】 图中两块阴影部分的面积相等,可以先求出其中一块的面积.而这一块的面积,等于大正方形的面积减去一个90︒扇形的面积,再减去角上的小空白部分的面积,为:()()()2142020π202020100π4754S S S S ⎡⎤---÷=⨯-⨯-⨯-÷=⎡⎤⎣⎦⎣⎦圆正方形正方形扇形(平方厘米),所以阴影部分的面积为752150⨯=(平方厘米).【答案】150【例 26】 一个长方形的长为9,宽为6,一个半径为l 的圆在这个长方形内任意运动,在长方形内这圆无法运动到的部分,面积的和是_____.(π取3) 【考点】圆与扇形 【难度】3星 【题型】填空【解析】 方法一:圆在长方形内部无法运动到的地方就是长方形的四个角,而圆在角处运动时的情况如左下图,圆无法运动到的部分是图中阴影部分,那么我们可以先求出阴影部分面积,四个角的情况都相似,我们就可以求出总的面积是阴影部分面积的四倍.阴影部分面积是小正方形面积减去扇形面积,所以我们可以得到:每个角阴影部分面积为290111π13604⨯-⨯⨯=;那么圆无法运动到的部分面积为 1414⨯=方法二:如果把四个角拼起来,则阴影如右上图所示,则阴影面积为222311⨯-⨯=【答案】1【例 27】 已知半圆所在的圆的面积为62.8平方厘米,求阴影部分的面积.(π 3.14=)B【考点】圆与扇形 【难度】3星 【题型】解答【解析】 由于阴影部分是一个不规则图形,所以要设法把它转化成规则图形来计算.从图中可以看出,阴影部分的面积是一个45°的扇形与一个等腰直角三角形的面积差. 由于半圆的面积为62.8平方厘米,所以262.8 3.1420OA =÷=. 因此:22210AOB S OA OB OA =⨯÷=÷=△(平方厘米).由于AOB ∆是等腰直角三角形,所以220240AB =⨯=.因此:扇形ABC 的面积24545ππ4015.7360360AB =⨯⨯=⨯⨯=(平方厘米).所以,阴影部分的面积等于:15.710 5.7-=(平方厘米).【答案】5.7【例 28】 如图,等腰直角三角形ABC 的腰为10;以A 为圆心,EF 为圆弧,组成扇形AEF ;两个阴影部分的面积相等.求扇形所在的圆面积.【考点】圆与扇形 【难度】4星 【题型】解答【解析】 题目已经明确告诉我们ABC 是等腰直角三角形,AEF 是扇形,所以看似没有关系的两个阴影部分通过空白部分联系起来.等腰直角三角形的角A 为45度,则扇形所在圆的面积为扇形面积的8倍.而扇形面积与等腰直角三角形面积相等,即11010502S =⨯⨯=扇形,则圆的面积为508400⨯=【答案】400【例 29】 如图,直角三角形ABC 中,AB 是圆的直径,且20AB =,阴影甲的面积比阴影乙的面积大7,求BC 长.(π 3.14=)【考点】圆与扇形 【难度】3星 【题型】解答【解析】 因为两块阴影部分都是不规则图形,单独对待它们无法运用面积公式进行处理,而解题的关键就是如何把它们联系起来,我们发现把两块阴影加上中间的一块,则变成1个半圆和1个直角三角形,这个时候我们就可以利用面积公式来求解了.因为阴影甲比阴影乙面积大7,也就是半圆面积比直角三角形面积大7.半圆面积为:21π101572⨯⨯=,则直角三角形的面积为157-7=150,可得BC =2⨯150÷20=15.【答案】15【巩固】三角形ABC 是直角三角形,阴影I 的面积比阴影II 的面积小225cm ,8cm AB =,求BC 的长度.I IABCI【考点】圆与扇形 【难度】3星 【题型】解答【解析】 由于阴影I 的面积比阴影II 的面积小225cm ,根据差不变原理,直角三角形ABC 面积减去半圆面积为225cm ,则直角三角形ABC 面积为218π258π2522⎛⎫⨯+=+ ⎪⎝⎭(2cm ),BC 的长度为()8π25282π 6.2512.53+⨯÷=+=(cm ).【答案】12.53【巩固】 如图,三角形ABC 是直角三角形,阴影部分①比阴影部分②的面积小28平方厘米,AB 长40厘米.求BC 的长度?(π取3.14)【考点】圆与扇形 【难度】3星 【题型】解答【解析】 图中半圆的直径为AB ,所以其面积为2120π200 3.146282⨯⨯≈⨯=.有空白部分③与①的面积和为628,又②-①28=,所以②、③部分的面积和62828656+=.有直角三角形ABC 的面积为12AB BC ⨯⨯=1406562BC ⨯⨯=.所以32.8BC =厘米.【答案】32.8【例 30】 图中的长方形的长与宽的比为8:3,求阴影部分的面积.【考点】圆与扇形 【难度】3星 【题型】解答 【关键词】十三分,入学测试题【解析】 如下图,设半圆的圆心为O ,连接OC .从图中可以看出,20OC =,20416OB =-=,根据勾股定理可得12BC =. 阴影部分面积等于半圆的面积减去长方形的面积,为:21π20(162)12200π3842442⨯⨯-⨯⨯=-=.【答案】244【例 31】 如图,求阴影部分的面积.(π取3)【考点】圆与扇形 【难度】4星 【题型】解答【解析】 如图,图中阴影部分为月牙儿状,月牙儿形状与扇形和弓形都不相同,目前我们还不能直接求出 它们的面积,那么我们应该怎么来解决呢?首先,我们分析下月牙儿状是怎么产生的,观察发现月牙儿形是两条圆弧所夹部分,再分析可以知道,两条圆弧分别是不同圆的圆周的一部分,那么我们就找到了解决问题的方法了.阴影部分面积=12小圆面积+12中圆面积+三角形面积-12大圆面积=2221111π3π434π52222⋅⋅+⋅⋅+⨯⨯-⋅⋅=6【答案】6【例 32】 如图,直角三角形的三条边长度为6,8,10,它的内部放了一个半圆,图中阴影部分的面积为多少?68【考点】圆与扇形 【难度】4星 【题型】解答 【解析】S S S =-阴影直角三角形半圆, 设半圆半径为r ,直角三角形面积用r 表示为:610822r rr ⨯⨯+= 又因为三角形直角边都已知,所以它的面积为168242⨯⨯=,所以824r =,3r =所以1249π=24 4.5π2S =-⨯-阴影【答案】24 4.5π-【例 33】 大圆半径为R ,小圆半径为r ,两个同心圆构成一个环形.以圆心O 为顶点,半径R 为边长作一个正方形:再以O 为顶点,以r 为边长作一个小正方形.图中阴影部分的面积为50平方厘米,求环形面积.(圆周率取3.14)【考点】圆与扇形 【难度】3星 【题型】解答 【关键词】华校第一学期,期中测试,第6题【解析】 环形的面积应该用大圆的面积减去小圆的面积,但分别求出两个圆的面积显然不可能.题中已知阴影部分的面积,也就是2250R r -=平方厘米,那么环形的面积为: 2222πππ()π50=157R r R r -=-=⨯(平方厘米).【答案】157【巩固】图中阴影部分的面积是225cm ,求圆环的面积.【考点】圆与扇形 【难度】3星 【题型】解答【解析】 设大圆半径为R ,小圆半径为r ,依题有222522R r -=,即2250R r -=.则圆环面积为:22222πππ()50π157(cm )R r R r -=-==. 【答案】157【例 34】 已知图中正方形的面积是20平方厘米,则图中里外两个圆的面积之和是 .(π取3.14)【考点】圆与扇形 【难度】3星 【题型】填空 【关键词】101中学,考题【解析】 设图中大圆的半径为r ,正方形的边长为a ,则小圆的直径等于正方形的边长,所以小圆的半径为2a,大圆的直径2r 等于正方形的对角线长,即222(2)r a a =+,得222a r =.所以,大圆的面积与正方形的面积之比为:22π:π:2r a =,所以大圆面积为:202π10π÷⨯=;小圆的面积与正方形的面积之比为:22π():π:42aa =,所以小圆的面积为:204π5π÷⨯=;两个圆的面积之和为:10π5π15π15 3.1447.1+==⨯=(平方厘米).【答案】47.1【巩固】图中小圆的面积是30平方厘米,则大圆的面积是 平方厘米.(π取3.14)【考点】圆与扇形 【难度】3星 【题型】填空【解析】 设图中大圆的半径为r ,正方形的边长为a ,则小圆的直径等于正方形的边长,所以小圆的半径为2a,大圆的直径2r 等于正方形的对角线长,即222(2)r a a =+,得222a r =.所以,大圆的面积与小圆的面积之比为:222222π:π()::2:12424a a a a r r ===, 即大圆的面积是小圆面积的2倍,大圆的面积为30260⨯=(平方厘米).【答案】60【巩固】(2008年四中考题)图中大正方形边长为a ,小正方形的面积是 .【考点】圆与扇形 【难度】3星 【题型】填空【解析】 设图中小正方形的边长为b ,由于圆的直径等于大正方形的边长,所以圆的直径为a ,而从图中可以看出,圆的直径等于小正方形的对角线长,所以22222a b b b =+=,故2212b a =,即小正方形的面积为212a .【答案】212a【巩固】一些正方形内接于一些同心圆,如图所示.已知最小圆的半径为1cm ,请问阴影部分的面积为多少平方厘米?(取22π7=)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

曲线型组合图形的面积计算方法姓名对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有:
一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计
算它们的面积,然后相加求出整个图形的面积。

例如下图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了。

30厘米
二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图
形的面积之差。

例如下图中,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可。

三、
四、 重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求下图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了。

五、 辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如下图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便. 六、 割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如下图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半。

七、 平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积。

例如下图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边长方形内,这样整个阴影部分恰是一个长方形。

旋转法:这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如,欲求下左图中阴影部分的面积,可将左半图形绕B 点逆时针方向旋转180°,使A 与C 重合,从而构成如下右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积。

九、 对称添补法:这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半。

例如,欲求下图中阴影部分的面积,沿AB 在原图下方作关于AB 为对称轴的对称扇形ABD.弓形CBD 的面积的一半就是所求阴影部分的面积。

十、 重叠法:这种方法是将所求的图形看成是两个或两个以上图形的重叠部分,然后运用“容斥原理”(SA ∪B =SA +SB-SA ∩B )解决。

例如欲求下图中阴影部分的面积,可先求两个扇形面积的和,减去正方形面积,因为阴影部
分的面积恰好是两个扇形重叠的部分。

10厘米 6厘米 4厘米 20厘米 8厘米
10厘米 20厘米 30厘米 10厘米
十一、补全法:这种方法是将图形被剪去的部分还原完整后,从而变成基本图形例如求下左图中阴影部分的面积,可以补成下右图,先求出它的面积,再
乘以。

十二、比例法:这种方法是通过找出相关量之间的倍数(比例)关系,从而得到答案。

例如下图,把OA长60厘米,平均分成6个等份,以O为圆心画出
六个扇形,已知最小的扇形面积是100平方厘米,求阴影部分的面积。

0 十三、方程法:这种方法是通过找出相关量之间的关系,从而列出方程,再求解。

如下左图中,阴影部分的面积为0.43平方厘米,等腰直角三角形的面积为
是多少?。

相关文档
最新文档